M. Ainsworth, A framework for obtaining guaranteed error bounds for finite element approximations, J. Comput. Appl. Math, vol.234, pp.2618-2632, 2010.

A. , A. Rodríguez, and A. Valli, Finite element potentials, Appl. Numer. Math, vol.95, pp.2-14, 2015.

T. Arbogast and Z. Chen, On the implementation of mixed methods as nonconforming methods for second-order elliptic problems, Math. Comp, vol.64, pp.943-972, 1995.

M. Arioli, E. H. Georgoulis, and D. Loghin, Stopping criteria for adaptive finite element solvers, SIAM, J. Sci. Comput, vol.35, pp.1537-1559, 2013.

M. Arioli, D. Loghin, and A. J. Wathen, Stopping criteria for iterations in finite element methods, Numer. Math, vol.99, pp.381-410, 2005.

D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér, vol.19, pp.7-32, 1985.

I. Babu?ka and T. Strouboulis, The finite element method and its reliability, Numerical Mathematics and Scientific Computation, 2001.

D. Bai and A. Brandt, Local mesh refinement multilevel techniques, SIAM J. Sci. Statist. Comput, vol.8, pp.109-134, 1987.

R. E. Bank and A. H. Sherman, An adaptive, multilevel method for elliptic boundary value problems, Computing, vol.26, pp.91-105, 1981.

R. E. Bank and R. K. Smith, A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal, vol.30, pp.921-935, 1993.

M. Bebendorf, A note on the Poincaré inequality for convex domains, Z. Anal. Anwendungen, vol.22, pp.751-756, 2003.

R. Becker, C. Johnson, and R. Rannacher, Adaptive error control for multigrid finite element methods, Computing, vol.55, pp.271-288, 1995.

R. Becker and S. Mao, Convergence and quasi-optimal complexity of a simple adaptive finite element method, M2AN, Math. Model. Numer. Anal, vol.43, pp.1203-1219, 2009.

D. Braess, V. Pillwein, and J. Schöberl, Equilibrated residual error estimates are p-robust, Comput. Methods Appl. Mech. Engrg, vol.198, pp.1189-1197, 2009.

D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements, Math. Comp, vol.77, pp.651-672, 2008.

J. H. Bramble, Multigrid methods, vol.294, 1993.

A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp, vol.31, pp.333-390, 1977.

, Guide to multigrid development, Multigrid methods, vol.960, pp.220-312, 1981.

S. C. Brenner, Discrete Sobolev and Poincaré inequalities for piecewise polynomial functions, Electron, Trans. Numer. Anal, vol.18, pp.42-48, 2004.

F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol.15, 1991.

C. Cancès, I. S. Pop, and M. Vohralík, An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, Math. Comp, vol.83, pp.153-188, 2014.

C. Carstensen and S. A. Funken, Fully reliable localized error control in the FEM, SIAM J. Sci. Comput, vol.21, pp.1465-1484, 1999.

L. Chen, R. H. Nochetto, and J. Xu, Optimal multilevel methods for graded bisection grids, Numer. Math, vol.120, pp.1-34, 2012.

Z. Chen, Multiphase flows in porous media, vol.65, 1995.

S. Chippada, C. N. Dawson, M. L. Martínez, and M. F. Wheeler, A projection method for constructing a mass conservative velocity field, Comput. Methods Appl. Mech. Engrg, vol.157, pp.1-10, 1998.

B. Cockburn, J. Gopalakrishnan, and H. Wang, Locally conservative fluxes for the continuous Galerkin method, SIAM J. Numer. Anal, vol.45, pp.1742-1776, 2007.

P. Daniel, A. Ern, and M. Vohralík, An adaptive hp-refinement strategy with inexact solvers and computable guaranteed bound on the error reduction factor, Comput. Methods Appl. Mech. Engrg, vol.358, p.112607, 2020.
URL : https://hal.archives-ouvertes.fr/hal-01931448

C. Dawson, S. Sun, and M. F. Wheeler, Compatible algorithms for coupled flow and transport, Comput. Methods Appl. Mech. Engrg, vol.193, pp.2565-2580, 2004.

P. Destuynder and B. Métivet, Explicit error bounds in a conforming finite element method, Math. Comp, vol.68, pp.1379-1396, 1999.

D. A. Di-pietro, E. Flauraud, M. Vohralík, and S. Yousef, A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media, J. Comput. Phys, vol.276, pp.163-187, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00839487

J. Douglas, R. E. Ewing, and M. F. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal. Numér, vol.17, pp.17-33, 1983.

A. Ern, I. Smears, and M. Vohralík, Discrete p-robust H(div)-liftings and a posteriori estimates for elliptic problems with H ?1 source terms, Calcolo, vol.54, pp.1009-1025, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01377007

A. Ern and M. Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput, vol.35, pp.1761-1791, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00681422

, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal, vol.53, pp.1058-1081, 2015.

, Stable broken H 1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions, Math. Comp, vol.89, pp.551-594, 2020.

R. D. Falgout and J. E. Jones, Multigrid on massively parallel architectures, Multigrid methods, VI (Gent, 1999), vol.14, pp.101-107, 2000.

B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth, Performance and scalability of hierarchical hybrid multigrid solvers for Stokes systems, SIAM J. Sci. Comput, vol.37, pp.143-168, 2015.

M. Griebel and P. Oswald, On the abstract theory of additive and multiplicative Schwarz algorithms, Numer. Math, vol.70, pp.163-180, 1995.

W. Hackbusch, Multigrid methods and applications, vol.4, 1985.

R. Hiptmair, H. Wu, and W. Zheng, Uniform convergence of adaptive multigrid methods for elliptic problems and Maxwell's equations, Numer. Math. Theory Methods Appl, vol.5, pp.297-332, 2012.

B. Janssen and G. Kanschat, Adaptive multilevel methods with local smoothing for H 1 -and H curlconforming high order finite element methods, SIAM, J. Sci. Comput, vol.33, pp.2095-2114, 2011.

P. Jiránek, Z. Strako?, and M. Vohralík, A posteriori error estimates including algebraic error and stopping criteria for iterative solvers, SIAM J. Sci. Comput, vol.32, pp.1567-1590, 2010.

S. Lacroix, Y. Vassilevski, J. Wheeler, and M. Wheeler, Iterative solution methods for modeling multiphase flow in porous media fully implicitly, SIAM J. Sci. Comput, vol.25, pp.905-926, 2003.

J. Liesen and Z. Strako?, Krylov Subspace Methods. Principles and Analysis, Numerical Mathematics and Scientific Computation, 2013.

S. Loisel, R. Nabben, and D. B. Szyld, On hybrid multigrid-Schwarz algorithms, J. Sci. Comput, vol.36, pp.165-175, 2008.

R. Luce and B. I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal, vol.42, pp.1394-1414, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00343040

D. Meidner, R. Rannacher, and J. Vihharev, Goal-oriented error control of the iterative solution of finite element equations, J. Numer. Math, vol.17, pp.143-172, 2009.

A. Miraçi, J. Pape?, and M. Vohralík, A multilevel algebraic error estimator and the corresponding iterative solver with p-robust behavior, 2019.

S. Nicaise, K. Witowski, and B. I. Wohlmuth, An a posteriori error estimator for the Lamé equation based on equilibrated fluxes, IMA J. Numer. Anal, vol.28, pp.331-353, 2008.

Y. Notay and A. Napov, A massively parallel solver for discrete Poisson-like problems, J. Comput. Phys, vol.281, pp.237-250, 2015.

M. A. Olshanskii and E. E. Tyrtyshnikov, Iterative methods for linear systems, Society for Industrial and Applied Mathematics, 2014.

P. Oswald, Multilevel finite element approximation, Teubner Skripten zur Numerik, Theory and applications, 1994.

P. Oswald, Stable subspace splittings for Sobolev spaces and domain decomposition algorithms, Domain decomposition methods in scientific and engineering computing, vol.180, pp.87-98, 1993.

J. Pape?, J. Liesen, and Z. Strako?, Distribution of the discretization and algebraic error in numerical solution of partial differential equations, Linear Algebra Appl, vol.449, pp.89-114, 2014.

J. Pape?, Z. Strako?, and M. Vohralík, Estimating and localizing the algebraic and total numerical errors using flux reconstructions, Numer. Math, vol.138, pp.681-721, 2018.

J. Pape? and M. Vohralík, Inexpensive guaranteed and efficient upper bounds on the algebraic error in finite element discretizations. HAL Preprint 02422851, 2019.

R. Pasquetti and F. Rapetti, Spectral element methods on simplicial meshes, Spectral and high order methods for partial differential equations-ICOSAHOM 2012, vol.95, pp.37-55, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00946866

L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal, vol.5, pp.286-292, 1960.

W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space, Quart. Appl. Math, vol.5, pp.241-269, 1947.

S. Repin, A posteriori estimates for partial differential equations, Radon Series on Computational and Applied Mathematics, vol.4, 2008.

U. Rüde, Fully adaptive multigrid methods, SIAM J. Numer. Anal, vol.30, pp.230-248, 1993.

, Mathematical and computational techniques for multilevel adaptive methods, vol.13, 1993.

, Error estimates based on stable splittings, Domain decomposition methods in scientific and engineering computing, vol.180, pp.111-118, 1993.

Y. Saad, Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2003.

J. Schöberl, J. M. Melenk, C. Pechstein, and S. Zaglmayr, Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements, IMA J. Numer. Anal, vol.28, pp.1-24, 2008.

S. Sun and M. F. Wheeler, Projections of velocity data for the compatibility with transport, Comput. Methods Appl. Mech. Engrg, vol.195, pp.653-673, 2006.

H. Sundar, G. Stadler, and G. Biros, Comparison of multigrid algorithms for high-order continuous finite element discretizations, Numer, Linear Algebra Appl, vol.22, pp.664-680, 2015.

P. S. Vassilevski, Matrixbased analysis and algorithms for solving finite element equations, 2008.

M. Vohralík, On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of the Sobolev space H 1, Numer. Funct. Anal. Optim, vol.26, pp.925-952, 2005.

, Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods, Math. Comp, vol.79, pp.2001-2032, 2010.

, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, J. Sci. Comput, vol.46, pp.397-438, 2011.

M. Vohralík and M. F. Wheeler, A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows, Comput. Geosci, vol.17, pp.789-812, 2013.

H. Wu and Z. Chen, Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems, Sci. China Ser. A, vol.49, pp.1405-1429, 2006.

J. Xu, L. Chen, and R. H. Nochetto, Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and unstructured grids, in Multiscale, nonlinear and adaptive approximation, pp.599-659, 2009.

U. M. Yang, Parallel algebraic multigrid methods-high performance preconditioners, Numerical solution of partial differential equations on parallel computers, vol.51, pp.209-236, 2006.