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Abstract In this paper, we address a rich Traveling Salesman Problem with Prof-
its encountered in several real-life cases. We propose a unified solution approach
based on variable neighborhood search. Our approach combines several removal
and insertion routing neighborhoods and efficient constraint checking procedures.
The loading problem related to the use of a multi-compartment vehicle is ad-
dressed carefully. Two loading neighborhoods based on the solution of mathemat-
ical programs are proposed to intensify the search. They interact with the routing
neighborhoods as it is commonly done in matheuristics. The performance of the
proposed matheuristic is assessed on various instances proposed for the Orienteer-
ing Problem and the Orienteering Problem with Time Window including up to
288 customers. The computational results show that the proposed matheuristic
is very competitive compared with the state-of-the-art methods. To better evalu-
ate its performance, we generate a new testbed including instances with various
attributes. Extensive computational experiments on the new testbed confirm the
efficiency of the matheuristic. A sensitivity analysis highlights which components
of the matheuristic contribute most to the solution quality.

Keywords · Profitable Tour Problem with Compartments ·Matheuristic · Exact
Loading Neighborhoods · Approximate Routing Neighborhoods · Orienteering
Problem · Orienteering Problem with Time Window

1 Introduction

Routing problems where profits are associated with the visits of customers are
extensively studied in the combinatorial optimization literature. Many papers and
book chapters discuss these problems, since many industrial applications are mod-
eled according to this general framework (e.g., Laporte and Martello (1990); Gen-
dreau et al (1998a); Fischetti et al (2007); Balas (2007)). Some surveys appeared
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2 Rahma Lahyani et al.

over the last decade review variants and applications of these problems (see e.g.,
Feillet et al (2005); Vansteenwegen et al (2011); Archetti et al (2013)).

Traveling Salesman Problems (TSP) with Profits are single-vehicle routing
problems with two conflicting objectives. One consists in maximizing the total
collected profit while the other aims to reduce the total route cost. Depending on
the definition of the objective function, three classes of TSP with profits can be
distinguished, Feillet et al (2005). When both criteria are combined linearly in the
objective function, the problem is the so-called Profitable Tour Problem (PTP) in-
troduced by Dell’Amico et al (1995). When the total travel cost is upper-bounded
and the profit is maximized, the problem is referred to as the Orienteering Problem
(OP) introduced by Tsiligirides (1984) or the selective traveling salesman prob-
lem. When the objective is to minimize the travel costs and the profit collected
must exceed a preset lower bound, the problem is called the Prize Collecting TSP
(PCTSP). The PCTSP is originally defined by Balas (1989) by penalizing the un-
visited vertices in the objective function. In this paper, an extended variant of the
PTP including multiple constraints is addressed. The OP and the Orienteering
Problem with Time Windows (OPTW) are considered to assess the efficiency of
the proposed approach.

As stated in Lahyani et al (2014), a Rich Vehicle Routing (RVRP) Problem is a
problem reflecting the complexities of a real-life context by combining various chal-
lenges faced daily. In this paper, we are interested in solving a Rich variant of the
PTP with a maximum route duration, referred to as (RPTP). The proposed RPTP
enriches the basic PTP in many ways. It may be considered as a time constrained
capacitated profitable tour problem with multiple products and incompatibility
constraints. Dealing with several complicated constraints encountered in common
practical situations makes this problem more challenging. Particularly, we exam-
ine a variant of the PTP arising when a multi-compartment vehicle is involved.
The use of such vehicles is relevant in several practical situations dealing with
incompatible products, (e.g., to perform selective waste collection (Muyldermans
and Pang (2010)), to transport animals from farms to slaughterhouses, (Oppen
et al (2010)), to distribute various petroleum products to petrol stations, (Brown
and Graves 1981, Cornillier et al (2012)), to deliver dry, refrigerated and frozen
food (Derigs et al (2011)), to collect olive oil (Lahyani et al (2015)). In the RPTP,
the request of a customer is composed of demands for different products. A profit
is associated with the demand for each product. A customer may be satisfied par-
tially by delivering one or more products of its placed request. Since feasible tours
are limited in time and capacity, the vehicle might not visit all the customers. The
vehicle has different compartments with different capacities. A key feature is that
some products are incompatible and must be kept separated during transporta-
tion. There are also incompatibility relations between some products and some
compartments. Last, a time window and a service time are associated with each
customer. Waiting times at the customer site are permitted but penalized in the
objective function. The total cost of a tour is the total profit minus the travel cost
and the cost for the total waiting time.

Formally, the RPTP considered can be defined as follows. Let G = (V, E)
be an undirected complete graph where V = {0, . . . , n} is the vertex set and
E = {(i, j) : i, j ∈ V, i 6= j} is the edge set. Feasible tours correspond to cycles
including the depot, vertex 0. Vertices i ∈ V ′ = {1, . . . , n} correspond to poten-
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A unified matheuristic for solving multi-constrained TSPs with profits 3

tial customers. Let dij and tij denote the non-negative travel cost and the travel
time associated with edge (i, j) ∈ E . We set dij = ∞ if the edge (i, j) 6∈ E . With
each customer i ∈ V ′, are associated a hard time window [ei, li], within which
the deliveries of i take place, and a service time si. In the case of early arrival
at customer i, a cost is incurred corresponding to the waiting time until ei. Time
windows are also associated with the depot, and they correspond to the opening
hours. There is no service time at the depot. For the sake of simplicity, the service
times are included in the travel time. Service times are then disregarded in the
remainder of this paper. There is a set p ∈ P = {1, . . . , P} of products. Each
customer i ∈ V ′, can place several orders, each referring to one single product p.
We denote by opi ∈ O the order placed by customer i for product p. With each
order opi we associate a demand qpi . A positive integer profit gpi is associated with
each qpi 6= 0. There is at least one order for each product type p ∈ P and the
delivery of any product must not be split. We consider one vehicle which can visit
a subset of customers within a given time limit Tmax. The vehicle has a capacity
Q with compartments w ∈ W = {1, . . . ,W}. Each compartment w has a capacity
Qw and is equipped with a debit meter. The set IP ⊆ P × P denotes the in-
compatibility relation between products. (p, q) ∈ IP means that products p and
q must not be carried together in the same compartment. The set IPC ⊆ P ×W
defines incompatibilities between products and compartments, forbidding product
p to be transported in compartment w.

In this paper, we tackle a challenging problem since we address a routing
problem with complicated loading restrictions. Only one study devoted to a rout-
ing problem with vehicles with compartments considered the loading component
according to the general case (Pirkwieser (2012)). The authors propose first-fit,
best-fit and best-fit decreasing heuristics as well as a constraint programming al-
gorithm to solve the problem of assigning products to compartments considering
potential incompatibilities. Previous works (e.g., Muyldermans and Pang (2010);
El Fallahi et al (2008)) consider a simple case with two compartments and two
products, each being dedicated to one compartment. There is no assignment prob-
lem, and the loading problem reduces to knapsack problems. Following Pirkwieser
(2012), we denote the loading subproblem as the Compartment Assignment Prob-
lem (CAP).

Considering the literature devoted to vehicle routing problems, some attempts
have been made recently to propose unified models and algorithms tackling differ-
ent classes of vehicle routing problems (e.g., Pisinger and Ropke (2007); Subrama-
nian (2012); Vidal et al (2014)). Some studies describe optimization algorithms for
multi-constrained OP with m vehicles, referred to as Team Orienteering Problem,
(e.g., Garcia et al (2010); Tricoire et al (2010); Souffriau et al (2013)). However, no
previous work has been dedicated to rich variants of TSP with profits. There are
few studies dealing with basic extended variants of TSP with profits, e.g., the ca-
pacitated PTP (CPTP) (e.g., Archetti et al (2009); Jepsen (2011)), or the OPTW
(e.g., Righini and Salani (2006); Tricoire et al (2010); Labadie et al (2011)). In
this paper, we present a unified solution approach for a large class of TSP with
profits ranging from academic problems to multi-attribute problems with no need
for customization. The main contributions of this paper are the followings. We
define a multi-constrained TSP with profits which is a generalization of the PTP,
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4 Rahma Lahyani et al.

the CPTP, the PTP with time windows, the OP and the OPTW. We model the
CAP with incompatible products. We develop a unified matheuristic combining
routing and loading neighborhoods. The proposed solution approach, referred to
as VNS*, addresses a large set of instances from the OP and the OPTW liter-
ature following a generic parameters tuning. Last, we design a new testbed for
the multi-constrained PTP with compartments, which may be useful for future
multi-compartments routing studies. This paper is organized as follows. Section
2 describes the matheuristic approach. Section 3 presents the detailed issues re-
lated to the constructive heuristic, the routing neighborhoods, the CAP solution
and the route feasibility check procedures. Computational results and an extensive
sensitivity analysis on a large class of problems are reported in Section 4. Section
5 concludes and discusses some future research guidelines.

2 Matheuristic approach

In Cordeau et al (2002), the authors claim that VRP heuristics can be analyzed
according to four attributes: accuracy, speed, flexibility and simplicity. Designing
a unified method for RVRPs represents a considerable research challenge which
makes difficult to meet these four criteria simultaneously. The matheuristic pro-
posed in this paper will rather focus on flexibility and simplicity. Most of the VRP
heuristics proposed to solve one variant concentrate rather on accuracy and speed.
To maintain a good compromise between flexibility and simplicity, a special at-
tention must be paid to the main features of the problem and to the properties of
the solution.

The multi-attribute PTP is an NP-hard combinatorial problem since the OP
is NP-hard (Golden et al, 1987). Moreover, Gendreau et al (1998b) outline some
reasons explaining the difficulty of designing high-quality heuristics for the OP.
Part of the trouble lies in the fact that profits associated with customers and the
distances between them are independent and lead to define conflicting objectives.
While it is, usually, difficult to select the customers that are part of the solution,
considering time-windows further complicates the solution process. Therefore, the
design of a simple method providing high-quality solution is quite challenging.

In this paper, we propose a matheuristic based on Variable Neighborhood
Search (VNS) which includes exact procedures for the examination of loading
neighborhoods. We denote this method VNS*. Our choice to select the VNS meta-
heuristic (Mladenovic and Hansen, 1997) to solve the RPTP is motivated by its
ability to take into account a wide variety of constraints. VNS proves to be very
efficient for solving complex VRPs (Wen et al, 2011; Schilde et al, 2011). This
success may be explained either by its ability: (i) to escape from local optima
compared with population based metaheuristics; (ii) to exploit unexplored parts
of the solution space by applying different problem specific neighborhoods. The
basic steps of the proposed matheuristic are provided in Algorithm 1.

The proposed matheuristic includes two main phases. The first phase corre-
sponds to the constructive stage (Steps 5-7 in Algorithm 1) and consists in building
an initial solution s thanks to an adapted Nearest Neighbor Algorithm (NNA).
NNA aims to insert each order in the current circuit while satisfying the temporal,
capacity and compatibility constraints (see Section 3.1). The second stage (Steps
8-25) consists in applying VNS* to diversify and improve the initial solution. The
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A unified matheuristic for solving multi-constrained TSPs with profits 5

key idea is to exploit systematically the neighborhood structures during the search.
Given an initial solution s, VNS* procedure alternates between the perturbation
phase and the improvement phase (see Sections 2.1 and 2.2) for a preset number
itermax of iterations.

Figure 1 sketches the main steps of VNS*, and illustrates the solution rep-
resentation. Let L be the set of customers served by route s and M be the set
of customers removed from s at a given step. The set M is initially empty. We
denote by U ⊆ O the set of the orders opi placed by customers i ∈ V ′ \ L. When
the insertion of an order in s is examined, s may not include all orders opi asso-
ciated with customer i ∈ L. However a deletion move removes from the route all
delivered orders opi placed by customer i. Since the orders placed by a customer
i ∈ V ′ \ L are known and not delivered, we use interchangeably the expression
inserting customers or inserting orders in pool U in the remainder of this paper.

Fig. 1 VNS* main steps

2.1 Perturbation phase

The perturbation phase (Step 13), also known as the shaking phase, aims to diver-
sify the search while maintaining the promising parts of the incumbent solution,
without spending too much computational time. We propose to design the pertur-
bation phase as an adapted Large Neighborhood Search (LNS) heuristic (Shaw,
1997, 1998). The perturbation phase of VNS* consists in partially destroying the
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6 Rahma Lahyani et al.

Algorithm 1: Variable Neighborhood Search* (VNS*)

input : (s)/* (obtained after applying the constructive NNA) */
output: (s∗)

1 Let s+ be an intermediate solution;
2 s∗ ← s;
3 iter ← 1;
4 while iter ≤ itermax do
5 if (iter 6= 1 ) then
6 s← new built solution;/* (obtained by the multi-start NNA) */
7 end

8 s+ ← s;

9 for (i← 1 to 4)/* (Select a removal neighborhood H−i ) */ do

10 for (j ← 1 to 4)/* (Select an insertion neighborhood H+
j ) */ do

11 for (k ← 1 to kd)/* (Fix the number of deleted customers) */ do
12 kc = 2 ∗ kd;/* (Fix the number of inserted customers) */
13 Apply perturbation phase on s;
14 Apply local search heuristic on s;
15 Apply 2 opt local search heuristic on s;

16 if ( s is better than s+) then
17 goto Step 8 ;
18 end

19 end

20 end

21 end

22 if ( s+ is better than s∗) then
23 s∗ ← s+ ;
24 end
25 Apply loading based improvement heuristic on s∗;
26 iter + + ;

27 end
28 Waiting T ime Optimization (s∗);
29 return s∗;

current solution without trying to reinsert removed customers again. Rather than
using one large neighborhood as in standard LNS, we consider a set of four re-
moval neighborhoods H−i , i ∈ {1, . . . , 4}: the similarity removal neighborhood,
the random removal neighborhood, the worst profit removal neighborhood and
the spatio-temporal removal neighborhood (see Section 3.2.1 for more details).
Each removal neighborhood eliminates up to kd customers from the current solu-
tion s according to a predefined criterion. The perturbation phase is followed by
local search procedures aiming to improve the shaken solution gradually.

2.2 Improvement phase

The local search approach iteratively improves the solution obtained at the pertur-
bation phase by moving from neighbors of the current solution to local optima. Two
important issues must be addressed when local search heuristics are designed: (i)
the quality of the solutions obtained (ii) the complexity of the local search heuris-
tic. An efficient local search heuristic should reach a good balance. The Variable
Neighborhood Descent (VND) (Hansen and Mladenovic, 2003) satisfies both cri-
teria and has been applied successfully to many optimization problems. It enables
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A unified matheuristic for solving multi-constrained TSPs with profits 7

to reach global optima more probably than with a single neighborhood struc-
ture. Our adapted VND considers alternatively routing based neighborhoods and
loading based neighborhoods. It includes three different local search procedures
described in what follows.

Local search heuristic (Step 14) : The implemented local search heuristic, denoted
for short by (LS), is a modified extension of the Ruin and Recreate heuristic
introduced by Schrimph et al (2000). It consists in removing randomly one or
more customers from the current solution and inserting undelivered orders of pool
U , unlike the Ruin and Recreate procedure which tries to re-insert the removed
customers in better positions. The LS is a first improvement heuristic, i.e., the
search procedure stops as soon as a solution improving the current objective value
is found. We consider four sequential insertion neighborhoods, denoted by H+

i ,
i ∈ {1, . . . , 4}. Since the objective in the RPTP combines the total profit, the
total travel costs and the total waiting time costs, the insertion criteria either
ensure a good trade-off between two or three of these terms or focus on a single
one. Given an insertion neighborhood, orders are considered sequentially to select
the best feasible insertion. The selected order is then cost-effectively inserted in
the solution. LS steps are parameterized according to the number of customers to
remove, kd, the maximum number of customers to insert, kc, and the position in
the route from which customer(s) may be removed.

2-opt Local Search (Step 15) : This heuristic attempts to reoptimize the solution
obtained by the LS heuristic by decreasing the total travel time. First, it removes
two arcs from a given route and reconnects the route by inserting two other arcs.
When the time window constraints are considered, the orientation of the path
may be reversed. The evaluation of the solution feasibility with respect to time
window constraints is ensured by an effective time feasibility algorithm. If the new
feasible solution is better than the current best solution in terms of total travel
time, the procedure is reiterated. The algorithm stops in a local optima when no
2-opt exchange is possible. When an improved solution is identified, an attempt
to insert new customers from U , the pool of undelivered orders, according to the
current insertion neighborhood H+

i . Even if feasible 2-opt exchanges are seldom
identified in the presence of time windows, experimental results demonstrate that
it is worthy to keep this improvement technique.

Loading based improvement heuristic (Step 25) : Determining the loading of prod-
ucts for a multi-compartment vehicle while satisfying incompatibilities constraints
between products and between products and compartments results in an NP-hard
packing problem, referred to as the CAP. This vehicle loading problem is a key
feature of the RPTP. We propose two exact loading neighborhoods based on the
solution of mathematical programs: the Quadratic Multiple Knapsack Problem
with Conflicts and the Linear Multiple Knapsack Problem with Conflicts. These
neighborhoods, described in Section 3.2.2, aim to reoptimize the loading plan as-
sociated with the current routing solution. The first neighborhood explores the
search space by swapping products between compartments. The second one deter-
mines the optimal loading of the vehicle given L, the set of customers visited.
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8 Rahma Lahyani et al.

To speed up the solution evaluation, it is crucial to implement efficient feasi-
bility check algorithms with respect to temporal and physical incompatibilities.
Savelsbergh (1992) proposed fundamental algorithms for handling time windows
in routing problems, later improved versions by Cornillier et al (2009). In this pa-
per, we implemented two algorithms: TW Feasibility Check and Waiting T ime
Optimization based on the algorithms proposed by Cornillier et al (2009). The
TW Feasibility Check is an exact algorithm checking the feasibility of the route
with regards to time windows. It is called after each removal or insertion move.
The purpose of the Waiting T ime Optimization exact algorithm is to minimize
the waiting time in a given solution. This algorithm is called at the end of the
search, it postpones the departure time from the depot as much as possible. The
capacity and incompatibility constraints are checked through a fast assignment
heuristic that we propose to solve the CAP. It is an adapted version of the best-fit
heuristic designed for the bin-packing problem. Invoked after each insertion move,
it provides feasible assignment of orders while satisfying the loading constraints.
Specifically, it first checks the feasibility of a potential order insertion with re-
spect to capacity and incompatibility constraints. Then, it assigns the order to
a compartment considering compartments according to their increasing residual
capacity.

3 Main features of the matheuristic

3.1 Multi-start constructive heuristic

In 1994, Perttunen (1994) claimed that using initial solutions generated by con-
structive heuristics outperforms randomly generated initial solutions for TSPs. In
this section, we propose a simple and fast NNA able to construct a feasible solution
s by inserting orders of U . Starting from an empty route, the NNA tries to insert
all orders opi of customer i, p ∈ P = {1, . . . , P} in the last position of the route
as long as the temporal, capacity and compatibility restrictions are satisfied. The
insertion is repeated until no feasible insertion exists. When the insertion of order
opj associated with customer j (and profit gpj ) after order opi associated with cus-
tomer i is considered, the insertion cost ĉpij is computed as expressed in equation
(3). gcrt, dcrt, tcrt denote respectively the current total profit, the current total
distance and the current total time of the route. dij corresponds to the distance
between customers i and j. shiftNNAtij and shiftNNAdij (see equations (1) and (2))
are the time and distance increases. wj = max{0, ej − aj} is the waiting time in
j where aj corresponds to the vehicle arrival time at customer j.

shiftNNAdij = dij + dj0 − di0 (1)

shiftNNAtij = tij + wj + tj0 − ti0 (2)

ĉpij =
(dcrt + shiftNNAdij + tcrt + shiftNNAtij )

(gcrt + gpj )
(3)

The NNA repeatedly selects the order having the lowest coefficient ĉpij . This cri-
terion promotes orders with high profits and generating low time and distance
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A unified matheuristic for solving multi-constrained TSPs with profits 9

increases. Such criterion has been experimentally proved to be more efficient than
other criteria focusing either on time, distance or profit. The complexity of this
heuristic is O(n) since only the last position of the current route is considered
when an insertion move is evaluated.
Metaheuristics based on local optimization, usually, need some diversification to
escape from local optimality. To achieve diversification, we implement a multi-start
strategy in VNS* which consists in initiating the search itermax times from a new
solution once a region of the solution space has been explored. The first solution is
obtained applying the NNA as described above. For the remaining iterations, the
profits associated with orders and the distance matrix between customers i, j ∈ V ′
are randomized. The randomization is controlled by a parameter σ which varies
between [1/2, 3/2].

3.2 Neighborhoods

The proposed matheuristic may be seen as an iterative sequence of Ruin and
Recreate steps since it destroys a part of the solution in the shaking phase and
repairs it by means of the local search procedures. The search may be guided
either for diversification, i.e., examining new regions of the solution space, or for
intensification, i.e., focusing on promising regions. The neighborhoods developed
for the RPTP solution are of two types:

– Routing neighborhoods: They modify the sequence and the customers visited in
a given solution. They include four insertion neighborhoods and four removal
neighborhoods. Some neighborhoods are adapted from the VRP literature.
They may require some parameters denoted by Greek letters which will be set
in Section 4.

– Loading neighborhoods: We propose two loading neighborhoods with different
objectives. In both cases, the best solution in the neighborhood is obtained
through the optimal solution of a mathematical program.

The diversity of the proposed neighborhoods allows a good exploration of the
solution space as discussed in Section 4.

3.2.1 Routing neighborhoods

Removal neighborhoods : The first three removal neighborhoods are adapted from
the literature while the last one is new. A pseudo-code outlining the generic removal
method is presented in Algorithm 2. It takes as an input an initial feasible solution
s and returns a partial solution s∗. The removal neighborhoods removes up to kd
customers according to a predefined neighborhood. Let Li be the ith customer
of L. It is noteworthy that removal neighborhoods eliminate all orders associated
with a given customer from a route. The procedure is controlled by the parameter
ψ and the randomization parameters φ.

Similarity removal neighborhood : This removal neighborhood was proposed by
(Shaw, 1997, 1998) and implemented by (Ropke and Pisinger, 2006; Pisinger and
Ropke, 2007; Ribeiro and Laporte, 2012; Demir et al, 2012). The aim of the simi-
larity removal neighborhood is to remove a set of customers that are similar with
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10 Rahma Lahyani et al.

Algorithm 2: Generic removal procedure

input : (s, kd, L, ψ ≥ 1)
output: (s∗)

1 Initialize M, M ← ∅;
2 Eliminate randomly a customer i from s;
3 M = {i};
4 while ( |M | ≤ kd ) do
5 Select randomly a customer i from M;
6 Update L;
7 Compute the removal ratio;
8 Sort all the customers j ∈ L according to the removal ratio;
9 Generate a random number φ ∈ [0, 1];

10 j ← bφψ |L|c;
11 Eliminate randomly Lj from s;
12 M =M

⋃
{Lj} ;

13 end
14 Remove from s customers in M, let s∗ be the resulting solution;
15 return s∗;

respect to a predefined similarity criterion. Removing similar customers promotes
the insertion of more customers which may lead to better solutions. We define the
criterion Sim(i, j) between two customers i and j as follows:

Sim(i, j) = φ1dij + φ2|bi − bj |+ φ3|shiftgi − shift
g
j | (4)

This criterion includes three terms. The first term represents the distance dij
between customers i and j. Temporal similarity is expressed through the difference
between the departure times from i and j. The third term measures the difference
of attractiveness between i and j. shiftgi denotes the contribution of customer i
to s in terms of profit : shiftgi =

∑
p∈P g

p
i ,∀o

p
i /∈ U . φ1, φ2 and φ3 are normalized

weights.
The heuristic initially selects a customer i randomly and removes it from the
solution s. For the subsequent kd − 1 iterations, the heuristic selects customers
similar to the removed customer according to Sim(i, j). The similarity between
customers increases as the value of the criterion decreases. More precisely, at Step
8 of Algorithm 2 the customers in L are sorted in increasing order according to
Sim(i, j). Then, some randomness is introduced in the selection thanks to the
parameter φ. For a given value of φ, a low value of ψ (ψ = 1) corresponds to
complete determinism and leads to remove customer j with a low value of Sim(i, j)
while the probability of choosing a customer j less similar to customer i increases
as the value of ψ increases. The time complexity of the neighborhood exploration
in the worst cases is O(n2). Figure 2 summarizes the main steps of this heuristic
when kd = 4. The similarity removal procedures selects randomly from the solution
s customer 3 and puts it in the pool M. Then it computes the Sim(i, j) value
between customer 3 and all the remaining customers in s. Customers 2, 4 and 5
are considered as similar to customer 3 and are removed from s.

Random removal neighborhood : This neighborhood consists in removing kd cus-
tomers randomly. It may be seen as a special case of the similarity removal neigh-
borhood with φ1 = φ2 = φ3 = 0. The exploration of this neighborhood is imple-
mented in O(1).
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A unified matheuristic for solving multi-constrained TSPs with profits 11

Fig. 2 Removal procedure based on the similarity removal neighborhood

Spatio-temporal removal neighbordhood : This neighborhood is another adaptation
of the removal neighborhood proposed by (Shaw, 1997, 1998). It aims to remove
customers similar in terms of distance and time. It differs from the similarity
removal neighborhood by its removal criterion. The spatio-temporal ratio was
proposed by Prescott-Gagnon et al (2009) and is defined by equation (5).

STij =
1

(
dij
dmax
i

+ 1
TST

ij +TST
ji

)
(5)

We set dmaxi = maxj∈s{dij}, i ∈ s. If customer i is visited immediately before
customer j, TSTij measures the proximity of time windows between i and j and is
equal to max{1,min{lj , li+ tij}−max{aj , ai+ tij}} (Gendreau et al, 1995). This
neighborhood is explored according to the procedure described in Algorithm 2. The
customers served by the current route are sorted in decreasing order with respect
to STij value. The larger STij is, the closer are customers i and j. The heuristic
removes customer j∗ = argmaxj∈s{STij}. The exploration of the spatio-temporal
removal neighborhood is implemented in O(n2) in the worst case.

Worst profit removal neighborhood : The worst profit removal neighborhood aims
to remove the less profitable customers. The idea is to select customers that do
not contribute enough to the total solution profit. First, customers i ∈ L are
sorted in increasing order of the total profit of delivered orders shiftgi . Then,
kd customers are removed according to this order with some randomization as
explained in Algorithm 2. Note that the procedure described in Algorithm 2 is
slightly modified since Step 2 is useless. This heuristic is implemented in O(n).
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Insertion neigborhoods : Four insertion neighborhoods are used to improve the
current solution. The first two neighborhoods are adapted neighborhoods proposed
in the OPTW literature, whereas the last two are new ones. As a general rule, the
neighborhood exploration consists in determining the best insertion among orders
opi ∈ U according to a predefined insertion ratio. Thus, kc orders at most are
inserted in the solution. The orders placed by a given customer are served in
sequence, i.e. during a single visit to the customer. Such sequences are enforced by
defining null distances and times between these orders. In addition, the insertion
of orders of partially served customers would be favored by the second loading
neighborhood. In each insertion neighborhood, the feasibility of an insertion move
is checked before it is implemented. Since the checking feasibility algorithms have
different time complexities, they are invoked according to the increasing order of
their complexities. The worst case time complexity of the exploration of the four
neighborhoods is in O(n2). The generic pseudo-code is provided in Algorithm 3.

Algorithm 3: Generic insertion procedure

input : (s, kc)
output: (s∗)

1 while (kc ≥0) do
2 for (i← 1 to |U|) do
3 if (the compatibility and capacity constraints are satisfied) then
4 for (j ← 1 to |L|) do
5 if ( ei + tij ≤= lj and tcrt + tij ≤ Tmax ) then
6 Compute the insertion ratio;
7 Memorize and update the best position best pos;
8 i∗ ← i;

9 end

10 end

11 end

12 end
13 Insert i∗ at best pos;/* (Best insertion) */
14 if (the temporal feasibility of s∗ is maintained) then
15 Update s∗;
16 else
17 remove i∗ from s∗;
18 end
19 kc−−;

20 end
21 return s∗;

Profit-time insertion neighborhood : This insertion neighborhood is adapted from
a neighborhood described in the constructive heuristic proposed by Labadie et al
(2011) for the single-product OPTW. It consists in inserting new orders while
the feasibility of capacity, temporal and incompatibilities constraints are satisfied.
Giving a current route s, the heuristic examines all feasible insertions of order opi in
s and, the position leading to the best compromise between profit and time increase
is selected. More precisely, the insertion of order opi in route s between orders opj
and opj+1 results in a new route s. The route time increase can be computed as

shiftti = tji + wsi + ti,j+1 + wsj+1 − tj,j+1 − wsj+1 where wsj+1 corresponds to the
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A unified matheuristic for solving multi-constrained TSPs with profits 13

waiting time incurred at customer j+ 1 in route s. Then, the profit-time insertion
criterion for order opi is the ratio between the asssociated profit and the route

time increase :
gpi

shiftti
. We select the undelivered order with the best ratio. More

complex ratios, including terms related to the number of customers which can be
reached from a given customer, were considered but preliminary experiments did
not demonstrate any improvement in the solution quality.

Availability insertion neighborhood : Vansteenwegen et al (2009b) proposed a neigh-
borhood for solving the Team OPTW (TOPTW) based on the following insertion

criterion:
(gpi )2

shiftti
. Preliminary results showed that this criterion is of little interest

for the RPTP since the solution quality depends on other attributes. We extend
this insertion criterion by considering the time, travel cost and capacity attributes.
Let shiftdi denotes the travel cost increase if order opi is inserted. Ratios are com-
puted to measure the increase for each attribute on the current route with respect
to the available quantity. The insertion criterion is computed according to the
expression (6). The best insertion corresponds to the order with the highest value.

(gpi )2

shiftti
availableT ime +

qpi
availableCapacity +

shiftdi
availableDistance

(6)

Cost-profit insertion neighborhood : This neighborhood select orders with the best
compromises between the cost and the time increases and the profit. For opi ∈
U , the order associated with the lowest value of the following ratio is selected :
shiftti+shift

d
i

gpi
.

Best profit insertion neighborhood : This neighborhood focuses on a central at-
tribute in the RPTP objective function which is the profit. It selects orders with
the highest profits while satisfying the route feasibility and attempts to insert
them in the current solution at the first feasible positions.

3.2.2 Loading neighborhoods

Quadratic Multiple Knapsack Problem with Conflicts : This neighborhood aims
to rearrange the loading of the vehicle to maximize the empty space while main-
taining the route sequence unchanged, (see Figure 3). We model this problem as a
Quadratic Multiple Knapsack Problem with incompatibility constraints between
products and products and compartments. This problem is NP-hard, (Golumbic.,
2004). Let Os ⊆ O be the set of orders delivered by route s. To simplify the no-
tation, we refer to order opi served by route s as order o. With each order o, is
associated a customer i ∈ L, a quantity qo and a product po ∈ P. Binary variables
xow indicate whether or not order o is loaded in compartment w. The problem
considered is:

max
∑
w∈W

(Qw −
∑
o∈Os

xowqo)
2

(7)
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14 Rahma Lahyani et al.

subject to ∑
o∈Os

xowqo ≤ Qw w ∈ W (8)

∑
w∈W

xow = 1 o ∈ Os (9)

xow + xkw ≤ 1 o ∈ Os, k ∈ Os, w ∈ W, p ∈ P, q ∈ P,
(po, qk) ∈ IP (10)

xow = 0 o ∈ Os, w ∈ W, (po, w) ∈ IPC (11)

xow ∈ {0, 1} o ∈ Os, w ∈ W. (12)

Fig. 3 Example of solution of the Quadratic Multiple Knapsack Problem with Conflicts.
Suppose P={p1, p2, p3}, Os={1, . . . , 10}, qo=1 ∀o ∈ Os, W={w1, w2, w3}, Qw1=3, Qw2=7,
Qw3=11, IP={(p2, p3)} and IPC={(1, w2, p1)}. Figure (a) corresponds to the loading of the
current solution s. Figure (b) corresponds to the solution of the associated Quadratic Knapsack
Problem with Conflicts.

Defining a suitable objective function in any neighborhood search is a critical
factor. In this case, the maximization of the total residual compartment capacity is
useless since the objective value is equal to the total residual capacity of the initial
loading (see the example described in Figure 3). In this neighborhood, the objective
function focus rather on loading used compartments optimally to keep unused the
remaining compartments. To do so, the proposed objective function (7) consists
in maximizing the sum of the squares of the residual compartment capacities.
Constraints (8) ensure that compartment capacities are respected. Constraints (9)
impose that each order o ∈ Os is assigned to exactly one compartment w ∈ W.
Constraints (10)–(11) express the incompatibility conditions between products
and between products and compartments. This model is solved thanks to the
commercial solver IBM CPLEX 12.5.

Multiple Knapsack Problem with Conflicts : This second loading neighborhood
aims to determine the optimal loading of the vehicle according to the total profit
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A unified matheuristic for solving multi-constrained TSPs with profits 15

given L, the set of visited customers. This problem is modeled as a Multiple Knap-
sack Problem with incompatibility constraints between products and products and
compartments. This problem is also known as the disjunctively constrained Knap-
sack Problem (Pferschy. and Schauer., 2009) and is NP-hard. Let Ō be the set of
orders ōpi placed by customers i ∈ L. For sake of simplicity, we refer to ōpi by ō with
which is associated a product pō ∈ P, a customer i ∈ L, a quantity qō and a profit
gō. The binary variable yōw is equal to one if order ō is loaded in compartment
w. The loading neighborhood is explored by solving the following integer linear
program:

max
∑
w∈W

∑
ō∈Ō

yōwgō (13)

subject to∑
ō∈Ō

qōyōw ≤ Qw w ∈ W (14)

∑
w∈W

yōw ≤ 1 ō ∈ Ō (15)

yōw + ykw ≤ 1 ō ∈ Ō, k ∈ Ō, w ∈ W, p ∈ P, q ∈ P, (pō, qk) ∈ IP (16)

yōw = 0 ō ∈ Ō, w ∈ W, (pō, w) ∈ IPC (17)

yōw ∈ {0, 1} ō ∈ Ō, w ∈ W. (18)

The objective (13) maximizes the total collected profit whereas constraints
(14)-(18) can be interpreted as constraints (8)-(12). This model is solved using the
commercial integer programming solver IBM CPLEX 12.5 and the performance
on small and large instances is discussed in Section 4.3.

4 Computational experiments

To assess the efficiency of the proposed matheuristic, we report experimental re-
sults on problems related to the RPTP. This section is divided into three main
subsections. In Section 4.1, we report results obtained by applying the proposed
matheuristic on OP instances. In Section 4.2, computational experiments are con-
ducted on the OPTW, a more difficult RPTP. Since the loading neighborhoods are
not relevant for the OP and OPTW instances, we generate new instances under
three real-life scenarios to evaluate VNS* better. Extensive computational exper-
iments and a sensitivity analysis for the RPTP demonstrate the contribution of
the main components of the matheuristic to the solution quality.

The matheuristic was coded in C and ran on an Intel Quad Core with 2.66
GHz and 4 GB Ram. Results are summarized in Tables 1-5 and 7-9. In these
tables, results are provided by instance class and average statistics over the 5 runs
are reported for each instance class. Columns headed Class identify the instance
class, columns headed Gap% report the percentage gap to the best known value
solution and columns headed Time(s) give the computational time in seconds for
each instance class.

Preliminary experiments were carried out on sample instances to determine
the best parameter setting with respect to speed and efficiency. itermax, the max-
imum number of VNS* iterations, is fixed to 20. The maximum number of deleted
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16 Rahma Lahyani et al.

customers in the shaking phase is kd = 2. The local search procedures try to in-
sert new customers while kc ≤ 2 ∗ kd. For the routing neighborhoods, we use the
parameter setting determined in (Ropke and Pisinger, 2006), (φ1, φ2, φ3)=(9, 3, 2)
and (Prescott-Gagnon et al, 2009), ψ=35. Preliminary experiments also revealed
that the performance of VNS* is improved when itermax or kd are increased. Since
this improvement is at the expense of increased computational times, we do not
consider such settings. We keep the same parameter values for the whole testbed
to demonstrate that the performance of the proposed matheuristic is not subject
to any customization, as in Vidal et al (2014).

4.1 OP instances

Tsiligirides (1984) propose 3 sets of instances (1 p21, 1 p32 and 1 p33) for the
OP, which include 18, 11 and 20 instances respectively. The number of customers
ranges from 21 to 33. A second testbed with larger instances was generated by
Chao et al (1996). It includes 2 sets of instances (1 p64 and 1 p66) with 14 and
26 instances including 64 and 66 customers respectively. We compare the values
obtained by VNS* with the optimum values published by Tsiligirides (1984) and
the best known (BK) provided by Chao et al (1996). Moreover, we compare the
efficiency of VNS* with those of 5 methods:

– A five steps heuristic (CGW) by Chao et al (1996)
– An Ant Colony Optimization algorithm with 20 iterations (ACOt

20) by Souf-
friau et al (2008) (best of 3 runs),

– A deterministic Guided Local Search (GLS) by Vansteenwegen et al (2009a),
– A Pareto Ant Colony Optimization (P-ACO) and a Pareto Variable Neighbor-

hood Search (P-VNS) by Schilde et al (2009)(best of 10 runs),
– a GRASP based algorithm with path relinking (GRASP) proposed by Campos

et al (2013) (best of 10 runs).

Tables 1 and 2 summarize the computational results on both instances sets. Columns
headed Gap% in Table 1 and Table 2 give the average percentage gaps to the opti-
mal or BK values. Note that for the three instances sets generated by Tsiligirides
(1984), both methods described by Schilde et al (2009) find the optimal values
but computational times are not reported. Table 1 shows that VNS* outperforms
the previously proposed methods by providing the optimal values in less than one
second, 0.67 seconds on average. GLS appears to be the fastest method on average
on the three classes of instances (0.44 seconds) but provides worst results with an
average deviation equal to 1.74% . In Table 2, VNS* finds the best deviation gap
for the set 1 p64 in 4.64 seconds. The CGW identifies solutions with the same de-
viation gap but requires longer computation times. On the second set of instances,
VNS* achieves only slightly worse results with an average deviation gap equal to
0.08% compared with the best deviation gap (0.06%) obtained by P ACO.

According to Dongarra (2013), computers used for VNS* and four methods
considered have similar performance (similar enough to compare absolute run
times). The exception is the machine used to run the GLS heuristic, which is
two times slower. Note that Schilde et al (2009) and Campos et al (2013) re-
port only running times elapsed to identify the BK values for Chao et al (1996)
instances.
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Class Gap% Time(s)
GLS ACOt20 VNS* GLS ACOt20 VNS*

1 p21 1.34 4.78 0.00 0.25 - 0.33
1 p32 3.28 1.80 0.00 0.52 - 0.70
1 p33 0.60 1.79 0.00 0.55 - 0.98

Table 1: Comparison of VNS* with state-of-the-art methods on instances proposed
by Tsiligirides (1984)

Class Gap% Time(s)
CGW GLS P ACO P VNS GRASP VNS* CGW GLS P ACO P VNS GRASP VNS*

1 p64 0.07 1.09 0.13 0.17 0.14 0.07 177.04 2.18 1.97 2.56 0.08 4.64
1 p66 0.43 1.31 0.00 0.13 0.00 0.10 158.65 2.26 0.22 1.18 0.07 4.94

Table 2: Comparison of VNS* with state-of-the-art methods on instances proposed
by Chao et al (1996)

4.2 OPTW instances

The OPTW is a simplified version of the RPTP where the vehicle has only one
compartment w and the demand for a unique product p is known for each customer
i. The OPTW has received significant attention in the literature, and a large set
of instances was proposed. The instances were obtained from the data sets gen-
erated by Solomon (1987) for the VRPTW and from the data sets of Cordeau
et al (1997) for the periodic MDVRPTW. Based on the Solomon instances, Righ-
ini and Salani (2006) generated 58 instances for the OPTW by considering 50
and 100 customers (c-50, r-50, rc-50, c-100, r-100, rc-100). They derived a second
set of 10 instances based on Cordeau data sets (pr01-pr10). Righini and Salani
(2006, 2009) solved the derived sets of the OPTW to optimality thanks to a dy-
namic programming approach. Montemanni and Gambardella (2009) proposed an
Ant Colony System (ACS) and added 2 data sets by considering 27 Solomon in-
stances with 100 customers (c2-100, r2-100, rc2-100) and 10 additional Cordeau
instances (pr11-pr20). The Solomon instances (c2-100, r2-100, rc2-100) as well as
the Cordeau instances are characterized by wide time windows and are known to
be hard to solve to optimality (Righini and Salani, 2006; Labadie et al, 2011).
Most approximate algorithms failed to obtain optimal solutions in a reasonable
time on these instances. In total, 105 instances for the OPTW divided into 11
classes are available. The number of customers for Cordeau data sets ranges from
48 to 288 while the Solomon instances contain 50 or 100 customers. The demand
of each customer in each instance represents the associated profit. The maximum
route duration Tmax is equal to the closing time of the starting point. These test
instances can be downloaded from http://www.mech.kuleuven.be/en/cib/op.

The performance of the proposed matheuristic is compared with those of the
ACS algorithm developed by Montemanni and Gambardella (2009), and those of
the 5 following heuristics. Vansteenwegen et al (2009b) proposed a fast Iterative
Local Search (ILS) based on a multi-start strategy to solve the OPTW and the
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TOPTW instances. Tricoire et al (2010) designed a VNS to deal with instances of
the multi-period orienteering problem with multiple time windows, the OPTW and
the TOPTW. A GRASP hybridized with an evolutionary local search algorithm
was proposed in Labadie et al (2011). Recently, Labadie et al (2012) developed an
effective Granular VNS (GVNS). To compare the performance of the GVNS to the
ILS fairly, the authors report the detailed results of a fast version of the GVNS
which terminates once the solution value of the ILS is retrieved. Lin and Yu (2012)
propose a fast and a slow version of an algorithm based on Simulated Annealing
((FSA) and (SSA)). The SSA outperforms the FSA due to a stopping criterion
based on the number of iterations without improvement of the best encountered
solution. The SSA improves the BK solutions for 4 instances: rc2-104, pr11, pr17
and pr18. In the remainder of this paper, we compute average percentage gaps
for ACS, ILS, VNS, GRASP and GVNS taking into consideration these new BK
values.

In this paper, the Euclidean distances for all the instances are rounded down to
the second decimal as in (Righini and Salani, 2009; Montemanni and Gambardella,
2009; Labadie et al, 2011, 2012). It is worth mentioning that for the remaining
methods distances are rounded down to the second digit for Cordeau instances
and to the first digit for Solomon instances.

For a fair comparison, we compare the computers on which computational
results were conducted (Dongarra, 2013). The performance of our computer is
equivalent to the computers used by Vansteenwegen et al (2009b) and Lin and Yu
(2012). For the other methods, our processor is approximately two times faster. It
should be noted that ILS and SSA are deterministic algorithms and were run only
once. ACS, GRASP and GVNS were executed 5 times while the results reported
for VNS were obtained with 10 runs. The comparison with previous methods is
provided in Tables 3-5.

Since a large variance of computational time can be observed on Solomon
instances, we divide methods into slow algorithms: ACS and VNS, (see Table 3)
and fast algorithms: ILS, GRASP, GVNS and SSA (see Table 4). In Table 3, we
report results obtained with VNS* when we limit the CPU time to 120 and 300
seconds. In Table 4, the stopping criteria for VNS* is either itermax fixed to 20 or
the CPU time limited to 20 seconds. Results for Cordeau instances are summarized
in Table 5. Then, the computational results for VNS* are those obtained with a
CPU time limit equal to 120 or 300 seconds.

As a rule, the efficiency of VNS* increases with running time. After 120 seconds
of computation time, VNS* provides better average solution values than the ACS
on 8 out of 9 classes. After 300 seconds, VNS* and VNS provide similar results for
the different instances classes. On average, Tricoire et al (2010) report a deviation
gap to BK values equal to 0.33% in 318 seconds while VNS* obtain 0.38% in 300
seconds.

When the stopping criteria is a preset number of iterations, VNS* leads to near-
optimal solutions with a little computational effort. The average deviation gap to
the BK solutions ranges from 0% to 2.77% over all instance classes with an average
computation time equal to 7.86 seconds. VNS* outperforms GVNS in terms of
solution quality and provides average deviation gap similar to GRASP (0.88% vs.
0.73% respectively). For the instances classes with 50 and 100 customers, the SSA
provides slightly lower average deviation gaps than VNS* at the expense of larger
computational times. Computation times indicate that ILS is certainly the fastest
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Class Gap% Time(s)
ACS VNS VNS* VNS* VNS
(3600s) (120s) (300s)

c-50 0.00 0.00 0.00 0.00 53.63
r-50 0.00 0.00 0.33 0.33 24.18
rc-50 0.00 0.19 0.00 0.00 31.93
c-100 0.00 0.11 0.00 0.00 98.39
r-100 0.24 0.05 0.06 0.05 89.10
rc-100 0.00 0.04 0.00 0.00 65.21
c2-100 0.58 0.21 0.42 0.33 560.17
r2-100 3.16 1.05 2.10 1.53 1065.82
rc2-100 2.04 1.35 1.61 1.23 869.41

Table 3: Average results of the slow methods on Solomon instances

method, but with the worst average gap (1.93%). This is not surprising since ILS
is a deterministic algorithm designed to reach good quality solution very quickly.

Considering the first seven instance classes in Table 4, VNS* achieves better
results when the stopping criterion is the CPU time limit (20 seconds) than the
number of iterations. For the instances classes (r2-100 and rc2-100) known to be
very challenging, VNS* is able to provide good quality solution with an average
gap equal to 3.05% at most. This leads us to conclude that VNS* is competitive
with respect to the state-of-the-art methods on the Solomon instances.

On the Cordeau data sets, VNS* is not as efficient as on the Solomon instances.
After 120 seconds and 300 seconds of computation time, the average gaps to BK
solutions on (pr01-pr10) and (pr11-pr20) are 4% and 3.06% respectively. VNS*
outperforms ILS (6.91%) and ACS (6.02%) with average computational times of
1.86 seconds and 3600 seconds respectively. SSA provides the best solution values
on average and finds new BK solutions for three of the Cordeau instances: pr11,
pr17 and pr18. For the state-of-the-art methods, the average gap from BK solutions
ranges from 0.97% to 10.84%. Due to their characteristics (large TW, large time
duration per route), Cordeau instances require much more diversification than
intensification. Therefore, to assess the efficiency of the proposed matheuristic
on more difficult instances, we propose a slightly modified version of the VNS*.
This method, VNS*C, explores the solution space more effectively. It consists in
increasing the number of deleted customers kd to #Cust

3 in each iteration and by
reducing itermax to 5. The average deviation gap decreases significantly. After 300
seconds of running time, VNS*C is as efficient as SSA: 0.99% and 2.96% versus
0.97% and 3.25% in 112.21 seconds and 162.40 seconds respectively. In addition, it
is worth mentioning that VNS* improves the BK solution for instance pr11 while
VNS*C improves the BK solution for instance pr13.

Altogether, the performance of the unified matheuristic is very promising.
VNS* is able to compete with the current state-of-the-art methods. It provides
optimal or BK solutions for slightly longer running times. Note that some proce-
dures are invoked even though they are useless. Indeed, the code was not modified
to solve OP and OPTW instances. This represents the cost to pay when the method
implemented is able to solve a wider range of multi-constrained problems.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 Rahma Lahyani et al.

Class Gap% Time(s)
ILS GRASP GVNS SSA VNS* VNS* ILS GRASP GVNS SSA VNS*

(20 iter) (20s) (20 iter)

c-50 0.33 0.00 - - 0.00 0.00 0.27 7.01 - - 0.88
r-50 0.63 0.47 - - 0.33 0.33 0.20 0.93 - - 0.80
rc-50 2.21 1.11 - - 0.10 0.00 0.18 0.91 - - 0.65
c-100 1.11 0.00 1.22 0.00 0.49 0.00 0.33 22.59 166.46 21.07 1.88
r-100 1.90 0.22 2.68 0.11 0.25 0.09 0.19 3.51 29.43 23.34 2.75
rc-100 2.92 0.40 3.51 0,00 0.19 0.00 0.23 1.99 9.80 22.19 2.03
c2-100 2.28 0.61 1.11 0.13 1.16 0.85 1.71 32.18 192.40 37.49 11.28
r2-100 2.89 1.61 3.37 1.29 2.77 3.05 1.66 11.18 33.82 45.83 29.46
rc2-100 3.43 2.20 3.96 0.96 2.65 2.60 1.63 8.21 16.01 50.25 21.05

Table 4: Average results of the fast methods on Solomon instances

Class Gap%
Time(s)
ILS ACS VNS GRASP GVNS SSA VNS*C VNS*C VNS* VNS*

(3600s) (120s) (300s) (120s) (300s)

pr01-10 4.72 1.20 1.08 1.44 1.61 0.97 1.20 0.99 2.41 1.77
1.75 822.07 5.03 12.37 112.21

pr11-20 9.11 10.84 2.92 2.92 3.81 3.25 3.45 2.96 5.60 4.36
1.98 1045.93 7.90 24.22 162.40

Table 5: Average results of the state-of-the-art methods on Cordeau instances

4.3 Computational results for the RPTP

4.3.1 A new testbed

Since no data sets are available for the RPTP addressed in this paper, we generate
a new testbed to evaluate VNS*. The proposed testbed is based on the Solomon
data sets with 50 and 100 customers and on the extended instances including
200 customers proposed for the VRPTW by Gehring and Homberger (1999). We
generate 172 original instances classified according to 18 classes. We introduce
three types of products p ∈ P = {1, 2, 3} with unit profits respectively equal to
10, 15, 20. We split the original customer demand into three demands randomly. A
customer i may not place an order for a given product p, i.e., qpi = 0. The profit
gpi associated with each order opi is obtained by multiplying the quantity qpi by the
associated unit product profit.

Three compartments w ∈ W = {1, 2, 3} are considered for each vehicle. The
compartments capacities (Q1, Q2, Q3) are obtained by dividing the original capac-
ity Q into three parts as follows: Q1 = 0.2 ∗ Q,Q2 = 0.3 ∗ Q,Q3 = 0.5 ∗ Q. W
and P are kept identical for all instances. As in the original data sets, instances
belonging to the same class have the same customers locations but have different
time windows and quantity (eventually, null) of products for each customer. Last,
we have to define incompatibility relations. To address different loading problems
as they arise in real-life scenarios, we propose to generate three types of incom-
patibilities as shown in Table 6. For each type of incompatibilities, we have 172
instances divided into 18 classes.
For the first type of instances, type A, no incompatibility constraints are imposed,
i.e., each product may be loaded in any compartment with any other product.
Therefore, a solution for an instance of type A is feasible for the corresponding
OPTW instance. Type B instances correspond to the distribution of liquid prod-
ucts to customers or animal feeds to farms or to the waste collection. In such cases,
there are no product-compartment incompatibilities and all the products are in-
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compatible pairwise. The third instances type, type C, corresponds to the general
case. We choose to maintain a moderate level of incompatibility restrictions. Two
products must be kept segregated during transportation and each product may be
loaded in two compartments out of three.

Sets Type A Type B Type C
IP ⊆ P × P IP= {∅} IP={(1,2),(1,3),(2,3)} IP={(1,3)}
IPC ⊆ K ×W ×P IPC= {∅} IPC={∅} IPC={(1,1,1),(1,2,2),

(1,3,3)}

Table 6: Incompatibility scenarios in generated data sets

The instance names are as follows: the first two letters give the type of customer
distribution followed by an asterisk to differentiate the instances designed for the
VRPTW with compartments from the original VRPTW ones. The first digit gives
the type of time windows (1: narrow, 2: large), the second three-digits indicate the
number of customers.

In Table 7 the performance of VNS* on the three data sets is reported. The
first two columns are the average number of customers, and the average number
of orders included in the solution respectively. Columns headed Obj report the
average objective value obtained with the standard parameter setting. These re-
sults show that solutions for instances of type A provide higher average objective
than solutions for instances of type B and type C, although the average number of
customers served remains almost the same. This could be expected since instances
of class A are less constrained. Even if the number of visited customers is limited
by the temporal and capacity constraints, the absence of incompatibility relations
enables to assign products freely to compartments and to increase the objective
value.

For instances of type B, identifying very good solutions requires larger com-
putational times, almost equal to the double of average running time required for
the solution of type A and type C instances. This is likely because the assign-
ment of each product to any compartment induces some symmetry which cannot
be broken easily. Finally, VNS* seems sensitive not only to incompatibility con-
straints but also to the type of the time windows associated with customers, since
a few customers are inserted for instances with narrow time windows. These ob-
servations seem to be consistent with previous research works (Righini and Salani,
2006; Labadie et al, 2011).

To assess the efficiency of the loading neighborhoods, we consider two new
versions of VNS*:

– VNS*= The Linear Multiple Knapsack Problem with Conflicts is solved at the
end of each VNS iteration.

– VNS*I= The Quadratic Multiple Knapsack Problem with Conflicts is solved
at the end of each VNS iteration. Next an insertion neighborhood attempting
to insert new orders is applied. Last, we solve the Linear Multiple Knapsack
Problem with Conflicts.

– VNS*II= VNS* without any loading neighborhoods.
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To avoid misleading results, the remaining tests are performed on instances of type
C. In Table 8, we report the results for each instance class.

Clearly, VNS*II provides good but not convincing results. The solutions serve
almost the same number of customers as the solutions obtained when the loading
neighborhoods are invoked. However, average objective values obtained by VNS*II
are 10% lower than those provided by VNS* and VNS*I. As expected, optimizing
the loading plan in MC-VRP has a significant impact on the solution quality.

Extensive computational experiments with VNS*I put into highlight that im-
proving the quality solution is unlikely within a reasonable amount of computation
time. When solving the Quadratic Multiple Knapsack Problem with Conflicts, we
stop CPLEX when an integer feasible solution has been proved to be within 0.05%
of optimality or when the CPU time limit set to 25 seconds is reached. Given the re-
sults presented in Table 8, VNS*I is two to thirty times slower than VNS* without
a significant improvement on the solution quality. VNS* provides slightly better
results than those provided by VNS*I compared to the results obtained without
loading neighborhoods. However, we did not try to increase the CPU time limit.
Indeed, deriving better results at the expense of longer run times was not our
goal. To conclude, VNS* is the best configuration providing high quality solutions
without a large computational effort. However, the efficiency of the VNS* varies
according to the type of the time windows and to the instances size.

4.3.2 Sensitivity analysis

The proposed matheuristic embeds different components that contribute to the
performance of VNS*. In order to better analyze the contribution of the main
ones, we conduct some additional experiments reported in this section. In these
experiments, the performance of each setting is assessed by reporting the aver-
age deviation gap from the best solution value found over the three classes of
instances (c*1-100, r*1-100 and rc*1-100). The results provided by VNS* are used
as reference solutions. The parameter setting is unchanged.

First, we study the impact of the multi-start constructive heuristic by running
VNS* with the same initial solution for 20 iterations, i.e., lines (5-7) are removed
from Algorithm 1. We obtain an average percentage gap of 1.04%, 6.33% and 4.42%
for classes: c*1-100, r*1-100 and rc*1-100 respectively. These results confirm that
starting from a new solution at each iteration plays an important role in the
effective exploration of the solution space.

One critical component in VNS* is the Get Compartment heuristic. To prove
its efficiency, we solve the Quadratic Multiple Knapsack Problem with Conflicts for
the final solution s∗ obtained by VNS*. We denote the new solution s̄. We compare
the residual capacity of solutions s∗ and s̄. No improvement has been obtained on
the sample instances. Therefore, the loading feasibility check heuristic provides a
very good (most likely the optimal) assignment of products to compartments. It
represents a key component in the design of VNS*. Furthermore, we test the VNS*
without the Waiting time optimization heuristic. The average results obtained
are slightly worse than those obtained when theWaiting time optimization heuris-
tic is applied.
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Table 9 summarizes the behavior of each removal and insertion neighborhood,
invoked in the current version of VNS*, when used in a LNS scheme combining one
insertion neighborhood and one removal neighborhood. For these tests, we compare
the quality of the solution obtained by VNS* without theWaiting time optimization
heuristic. The first four settings describe the impact of the removal neighborhoods
when the insertion neighborhood is fixed. The results show that there is no sig-
nificant difference between the four removal neighborhood performance. The aim
of a removal neighborhood is to diversify the solution, which seems to be ensured
by the four neighborhood in a similar way. However, the combination of the four
removal neighborhoods leads to improve the exploration of the solution space.

For the next experiments (settings 5, 6 and 7), we arbitrarily select the similar-
ity removal neighborhood to perturb the solution. In these experiments, all inser-
tion neighborhoods perform well except insertion neighborhood (1). The insertion
neighborhood (3) performs better with an average gap equal to 1.32% followed
by the insertion neighborhoods (4) and (2). The insertion neighborhood (1) gives
the worst average gap 12.20%. Among the 8 settings described in Table 9, setting
6 turns out to be the most efficient combination on the testbed. Nevertheless,
applying setting 6 combining the insertion neighborhood (3) and the similarity re-
moval neighborhood on the OP and OPTW instances fails to provide good quality
solutions while the VNS* performs particularly well. These observations support
the idea that combining several removal and insertion neighborhoods may have a
positive impact on the solution quality and that designing the matheuristic with
different neighborhoods is definitely a good option.

Conf. Removal heuristics Insertion heuristics Gap%
Similarity Worst Random Spatio- Insert Insert Insert Insert c*1-100

temporal (1) (2) (3) (4) r*1-100
rc*1-100

1 • • 3.84
3.78
3.70

2 • • 3.19
4.81
3.65

3 • • 3.66
4.29
3.95

4 • • 3.78
5.12
3.61

5 • • 5.33
12.85
18.41

6 • • 0.75
1.88
1.32

7 • • 3.05
3.08
3.57

VNS* • • • • • • • • 0.00

Table 9: Effectiveness of the insertion and removal heuristics

5 Conclusions

In this paper, we introduce a rich variant of the PTP including a large class of
temporal and physical constraints. Each customer may place one or more orders
which may be not satisfied entirely. We developed a unified matheuristic based
on routing and loading neighborhoods denoted VNS*. To diversify and intensify
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the search, we suggested removal and insertion neighborhoods as well as different
local search procedures. We tried to focus on the loading aspect of the problem
which was barely considered in the MC-VRP literature. We introduced a heuristic
to assign products to compartments, and we proposed two loading neighborhoods
based on the solution of mathematical programs. We incorporated these neighbor-
hoods in the matheuristic approach to optimize the loading plan for the current
solution.

Extensive experimental results show that VNS* competes with state-of-the-art
methods proposed for the OP and the OPTW without any customization. To bet-
ter evaluate the matheuristic performance on rich instances, we generated three
data sets. Each data set includes 172 instances and describes three real-life scenar-
ios. As expected, VNS* performs especially well on the less constrained instances.
In the presence of incompatibility restrictions, VNS* produces high-quality solu-
tions on average with a larger computational effort. The sensitivity analysis reveals
that the exact loading neighborhoods contribute to the VNS* performance signifi-
cantly. They lead to improve the solution quality with no significant time increase.
Furthermore, starting from a different solution at each iteration and combining re-
moval and insertion neighborhoods contribute to the solution quality.

As Feillet et al (2005) pointed out, the PTP may appear as a sub-problem in
column generation algorithms for a variety of vehicle routing problems that cannot
be solved efficiently with a branch-and-bound/branch-and-cut algorithms. Future
works could rely on the Dantzig-Wolfe decomposition of such problems to obtain
a set-partitioning model of the problem and to solve RPTPs heuristically within a
branch-and-price framework. Another future work could be to test our approach
on other variants of PTP considering real-world applications.
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