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Abstract. We consider the two-level uncapacitated facility location problem with single-

assignment constraints (TUFLP-S), a problem that arises in industrial applications in 

freight transportation and telecommunications. We present a new Lagrangian relaxation 

approach for the TUFLP-S, based on solving a single-level uncapacitated facility location 

problem (UFLP) as the Lagrangian subproblem. We also develop a Lagrangian heuristic 

that includes a MIP-based large neighborhood search heuristic exploring neighborhoods 

by solving a series of small UFLPs. The dual and primal bounds thus obtained are used 

within an enumerative algorithm that implements specialized branching rules. Our 

computational experiments on instances derived from an industrial application in freight 

transportation, as well as on large, hard, artificial instances confirm the efficiency of our 

specialized branch-and-bound algorithm. 
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1 Introduction

The two-level uncapacitated facility location problem (TUFLP) (Kaufman et al. 1977)
is an extension of the uncapacitated facility location problem (UFLP) (Krarup and
Pruzan 1983). The UFLP consists in locating facilities from a finite set of potential
sites and in assigning each customer to one of the selected facility locations in order to
minimize the total costs, which include fixed costs for opening facility locations and
assignment costs between customers and facility locations. In the TUFLP, the finite
set of potential facility locations is replaced with two levels of such locations, depots
at the upper level and satellites at the lower one. The only arcs are between depots
and satellites, as well as between satellites and customers. The problem is to decide
which depots and satellites to open, and to which depot-satellite pair each customer
should be assigned, in order to satisfy customer demands at minimum cost (Aardal
et al. 1996). This problem arises in the design and operation of hierarchical networks
that take advantage of economies of scale, most notably in freight transportation
(Gendron and Semet 2009), but also in telecommunications (Chardaire et al. 1999).

We are concerned with a variant of the TUFLP that forces a single-assignment
property on satellites: each satellite can be linked to at most one depot, and fixed
costs are imposed on the use of arcs between depots and satellites. The single-
assignment constraints ensure that any solution is a forest of trees rooted at depots.
This variant of the TUFLP was introduced in (Chardaire et al. 1999), motivated by an
application in the design of telecommunications networks. Our study of the TUFLP
with single-assignment (TUFLP-S) is motivated by an industrial application in freight
transportation, related to the operation of multicommodity distribution systems over
a short-term planning horizon (Gendron and Semet 2009). In that industrial problem,
depot and satellite locations typically correspond to freight terminals and parking
spaces, respectively, for which the locations may vary every day in response to demand
fluctuations. The TUFLP-S arises as a subproblem in decomposition and heuristic
methods for solving the optimization problem derived from this application.

Our contribution is three-fold. First, we compare a mixed-integer programming
(MIP) formulation for the TUFLP-S with previously described formulations for vari-
ants of the TUFLP. Then, from that formulation, we derive a Lagrangian relaxation
scheme that provides stronger lower bounds than the linear programming (LP) re-
laxation, as well as a MIP-based large neighborhood search (LNS) heuristic; these
bounding algorithms are combined in a Lagrangian heuristic to compute tight lower
and upper bounds. Finally, we embed the Lagrangian heuristic within a branch-and-
bound algorithm that uses specialized branching schemes. On industrial instances,
the tighter bounds result in the exploration of fewer nodes than by a state-of-the-
art MIP solver, and, on large artificial instances, the specialized branching schemes
reduce computational times by a factor of two to eight.

Section 2 introduces MIP formulations for variants of the TUFLP, and compares
them with our formulation for the TUFLP-S. A description of the Lagrangian heuris-
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tic follows in Section 3: first, the Lagrangian relaxation scheme; then, a heuristic to
solve the Lagrangian dual; and finally, the MIP-based LNS heuristic. Section 4 out-
lines the branch-and-bound algorithm and its branching schemes. Section 5 reports
computational results on hard artificial instances and on large industrial instances.

2 TUFLP Formulations

A general model for two-level uncapacitated facility location problems is introduced
in (Barros and Labbé 1994). In addition to transportation costs for each path from
depot to satellite to customer and fixed costs on the use of depots and satellites, the
model includes fixed costs for arcs from depots to satellites. The model can be stated
as follows.

Let I be the set of potential depot locations, J the set of potential satellite loca-
tions and K the set of customer locations, and let

yi =

{
1, if depot i is open,

0, otherwise,
∀i ∈ I,

zj =

{
1, if satellite j is open,

0, otherwise,
∀j ∈ J,

tij =

{
1, if depot i and satellite j are operating together,

0, otherwise,
∀(i, j) ∈ I × J,

and

xijk =

{
1, if customer k is served through pair (i, j),

0, otherwise,
∀ (i, j, k) ∈ I × J ×K.

The general TUFLP, noted TUFLP-G, can then be formulated as

v(TUFLP-G) = min
∑
i∈I

fiyi +
∑
j∈J

gjzj +
∑

(i,j)∈I×J

hijtij +
∑

(i,j,k)∈I×J×K

cijkxijk
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subject to ∑
(i,j)∈I×J

xijk = 1, ∀k ∈ K, (1)

xijk ≤ tij, ∀(i, j, k) ∈ I × J ×K, (2)∑
j∈J

xijk ≤ yi, ∀(i, k) ∈ I ×K, (3)∑
i∈I

xijk ≤ zj, ∀(j, k) ∈ J ×K, (4)

0 ≤ xijk ≤ 1, ∀(i, j, k) ∈ I × J ×K,
yi ∈ {0, 1}, ∀i ∈ I,
zj ∈ {0, 1}, ∀j ∈ J,
tij ∈ {0, 1}, ∀(i, j) ∈ I × J,

where fi, gj and hij are the nonnegative fixed costs for, respectively, each depot i ∈ I,
each satellite j ∈ J and each pair of depot-satellite (i, j) ∈ I × J and where cijk is
the nonnegative total transportation cost for each path from a depot i to a satellite
j to a customer k (Barros and Labbé 1994).

Constraints (1) guarantee that the demand for each customer is satisfied exactly,
and constraints (2)–(4) ensure that fixed costs are incurred for the use of depot-
satellite pairs, depots and satellites. Note that the integrality of the xijk variables can
be relaxed without affecting the optimal objective value. Thus, TUFLP-G implicitly
ensures that the flow to each customer is never split.

Alternative versions of the general model also include the following constraints:

xijk ≤ yi, ∀(i, j, k) ∈ I × J ×K, (5)

xijk ≤ zj, ∀(i, j, k) ∈ I × J ×K, (6)

tij ≤ yi, ∀(i, j) ∈ I × J, (7)

tij ≤ zj, ∀(i, j) ∈ I × J. (8)

However, (5) are dominated by (3), and (6) by (4). Constraints (7) and (8) are
redundant given nonnegative fixed costs hij and constraints (2)–(4). Indeed, hij ≥ 0
implies the existence of an optimal solution such that tij = maxk∈K{xijk} ≡ xijk∗ for
each (i, j) ∈ I × J ; thus, yi ≥

∑
j′∈J xij′k∗ ≥ xijk∗ = tij, and (7) are implied by (2)

and (3). Likewise, (8) are implied by (2) and (4).
Note that an optimal solution to TUFLP-G does not necessarily satisfy the single-

assignment property. Transportation costs that vary significantly depending on the
depot, for a given customer, may lead to optimal solutions in which the same satellite
is linked to multiple depots.

We consider a variant in which we enforce this single-assignment property, ex-

3

A Lagrangian-Based Branch-and-Bound Algorithm for the Two-Level Uncapacitated Facility Location Problem with Single- 
Assignment Constraints

CIRRELT-2013-21



pressed with the additional constraints∑
i∈I

tij ≤ 1, ∀j ∈ J. (9)

The redundant constraints (7) are also added, as they are useful in solving the
model. Indeed, the binary nature of the tij variables along with constraints (7) imply
yi ∈ {0, 1} for each i ∈ I. When adding the redundant constraints (7), it is thus
possible to relax the integrality of the yi variables and still maintain feasibility. We
have observed that state-of-the-art MIP solvers perform better when these variables
are allowed to take fractional values, rather than restricting them to binary values. In
addition, we also use constraints (7) to strengthen the Lagrangian relaxation described
in Section 3.

Constraints (9) allow us to project out the zj variables by using the equations

zj =
∑
i∈I

tij, ∀j ∈ J.

The fixed cost gj on each satellite j can then be folded in the fixed cost lij = gj + hij
for every arc (i, j) ∈ I × J . Constraints (4) can be eliminated, since they are simple
aggregations of constraints (2).

The resulting formulation is TUFLP-S, where the yi variables are allowed to take
fractional values, as explained above:

v(TUFLP-S) = min
∑
i∈I

fiyi +
∑

(i,j)∈I×J

lijtij +
∑

(i,j,k)∈I×J×K

cijkxijk

subject to ∑
(i,j)∈I×J

xijk = 1, ∀k ∈ K,

∑
i∈I

tij ≤ 1, ∀j ∈ J,

xijk ≤ tij, ∀(i, j, k) ∈ I × J ×K,∑
j∈J

xijk ≤ yi, ∀(i, k) ∈ I ×K,

tij ≤ yi, ∀(i, j) ∈ I × J,
0 ≤ xijk ≤ 1, ∀(i, j, k) ∈ I × J ×K,

0 ≤ yi ≤ 1, ∀i ∈ I,
tij ∈ {0, 1}, ∀(i, j) ∈ I × J.

Most studies on two-level uncapacitated location problems without single-assignment
are concerned with a simplification of the general model TUFLP-G: fixed costs on
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links between depots and satellites, hij, are always zero. Two seminal papers (Kauf-
man et al. 1977, Ro and Tcha 1984) marked early research on this classical TUFLP:
they introduced MIP formulations and specialized lower bounding methods, and ex-
ploited them in branch-and-bound algorithms. Additional side constraints were also
considered in the past (Ro and Tcha 1984); we ignore such variants in this paper.
More recent approaches (Aardal et al. 1996, Barros 1995, Landete and Maŕın 2009)
are based on the MIP formulation obtained by eliminating the tij variables (since
hij = 0 for each (i, j) ∈ I × J) and constraints (2) from TUFLP-G; this does not
affect LP relaxation bounds, as values for tij variables can be assigned easily, without
affecting the total cost. We call the resulting formulation TUFLP-C:

v(TUFLP-C) = min
∑
i∈I

fiyi +
∑
j∈J

gjzj +
∑

(i,j,k)∈I×J×K

cijkxijk

subject to ∑
(i,j)∈I×J

xijk = 1, ∀k ∈ K,

∑
j∈J

xijk ≤ yi, ∀(i, k) ∈ I ×K,∑
i∈I

xijk ≤ zj, ∀(j, k) ∈ J ×K,

0 ≤ xijk ≤ 1, ∀(i, j, k) ∈ I × J ×K,
yi ∈ {0, 1}, ∀i ∈ I,
zj ∈ {0, 1}, ∀j ∈ J.

It is sometimes further assumed that the transportation costs cijk, for all (i, j, k) ∈
I × J × K, are sums of per-arc costs dkcij + cjk, thus allowing the use of a more
compact, but weaker, two-index formulation. Such a structure for transportation
costs, in conjunction with hij costs equal to zero, make it possible to impose or to
relax the single-assignment constraints without affecting the optimal value (Chardaire
et al. 1999). Sets of open depots and satellites obtained from an optimal solution can
be converted into a complete solution of TUFLP-S with a greedy procedure (that
breaks ties consistently). Thus, if only for this large class of instances, TUFLP-C and
TUFLP-S are equivalent.

Constraints (3) and (4) define facets of the feasible polytope for TUFLP-C (Barros
1995). TUFLP-S preserves nearly all the constraints of TUFLP-C, including (3); the
only missing constraints are (4), which are replaced with the stronger constraints (2).
Thus, when all three formulations are applicable, TUFLP-S leads to a stronger LP
relaxation than both TUFLP-G and TUFLP-C. Moreover, the difference is obtained
by strictly improving on constraints that define facets of the TUFLP-C polytope.
This can only be achieved by expanding the decision variables to include tij variables
and by explicitly considering single-assignment constraints.
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Solution methods for TUFLP-G, TUFLP-S and TUFLP-C can be cast into three
classes. Some approaches strengthen the formulation with valid inequalities, many of
them facet-defining (Aardal et al. 1996, Landete and Maŕın 2009), leading to large-
scale models. Other approaches attempt to decrease solution times by computing
approximate LP bound values, via dual ascent or Lagrangian relaxations combined
with subgradient methods (Barros 1995, Barros and Labbé 1994, Gao and Robinson Jr
1992). Finally, both metaheuristics (Barros and Labbé 1994) and approximation
algorithms (Bumb 2001, Zhang 2006) have been developed to quickly obtain primal
solutions.

The TUFLP with single-assignment has been studied in (Chardaire et al. 1999),
where the TUFLP-S formulation presented here is introduced. Lower bounds are
obtained with a Lagrangian relaxation scheme in which the dual is solved with a
subgradient method, and upper bounds are computed with a simulated annealing
method.

We have already shown that the TUFLP-S formulation leads to stronger LP relax-
ations bounds than the TUFLP-C formulation, when they can be compared, at the
expense of increased formulation size: each constraint (4) is replaced with multiple
constraints (2), and the number of binary variables grows from |I| + |J | to |I × J |.
Rather than attempting to quickly obtain approximate LP relaxation bounds for this
large-scale formulation, we will compute even stronger bounds than the LP relax-
ation with a Lagrangian relaxation scheme, extract upper bounds with a MIP-based
LNS heuristic, and further accelerate a branch-and-bound algorithm with specialized
branching schemes.

3 Lagrangian Heuristic

The TUFLP-S is similar to the (single-level) UFLP, a problem for which there exists a
large body of literature and efficient solution methods. We exploit this strong founda-
tion with a Lagrangian relaxation scheme in which the subproblems are UFLPs and
with a MIP-based LNS heuristic that explores neighborhoods by solving UFLPs.
These two components are further combined in a Lagrangian heuristic: the La-
grangian relaxation provides lower bounds and initial solutions, while the MIP-based
LNS heuristic repairs and improves these solutions.

3.1 Lagrangian Relaxation

In (Barros and Labbé 1994), it is proposed to obtain Lagrangian bounds for TUFLP-
G (or the related TUFLP-C) by relaxing constraints (1), (3) and (4). The alternative
chosen in (Chardaire et al. 1999) is to bound TUFLP-S by relaxing (1), (3) and (9).
In both cases, the Lagrangian bound is theoretically equal to the LP bound.

We focus on the Lagrangian relaxation obtained by dualizing only constraints
(2). As we now show, the resulting Lagrangian subproblem can be converted into
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a significantly smaller, efficiently-solved, UFLP. Moreover, this subproblem does not
exhibit the integrality property, and the relaxation thus yields stronger bounds than
the LP relaxation of TUFLP-S, both in theory and in practice.

When relaxing constraints (2), the Lagrangian subproblem S(λ) can be formulated
as follows, where λ ≥ 0 is the vector of Lagrange multipliers:

v(S(λ)) = min
∑
i∈I

fiyi +
∑

(i,j)∈I×J

(
lij −

∑
k∈K

λijk

)
tij +

∑
(i,j,k)∈I×J×K

(cijk + λijk)xijk

subject to ∑
(i,j)∈I×J

xijk = 1, ∀k ∈ K,

∑
i∈I

tij ≤ 1, ∀j ∈ J,∑
j∈J

xijk ≤ yi, ∀(i, k) ∈ I ×K,

tij ≤ yi, ∀(i, j) ∈ I × J,
0 ≤ xijk ≤ 1, ∀(i, j, k) ∈ I × J ×K,

0 ≤ tij ≤ 1, ∀(i, j) ∈ I × J,
yi ∈ {0, 1}, ∀i ∈ I.

In formulation TUFLP-S, all the variables are conceptually binary, but the x and
y variables are left free to take fractional values. In the Lagrangian subproblem,
all the variables are conceptually binary, but the x and t variables are free to take
fractional values, simplifying the formulation. This modification is valid, since the
integrality constraints on the yi variables are redundant in TUFLP-S and can therefore
be added to the Lagrangian subproblem; then, the integrality of the tij variables can
be relaxed without changing the optimal value of the Lagrangian subproblem. It can
be simplified further, as we now show.

A simple domination argument confirms that, for each pair of depot i ∈ I and
customer k ∈ K, all but one xi·k variables can be eliminated. If, in a given optimal
solution, there is a j ∈ J such that xijk = 1, that variable can always be substituted
with xij′k, where j′ = arg minj∈J{cijk +λijk}, a variable corresponding to a least-cost
(penalized) path from i to k.

By defining
c̃(λ)ik = min

j∈J
{cijk + λijk}, ∀(i, k) ∈ I ×K,

the Lagrangian subproblem S(λ) can then be solved as a more compact MIP, Sc(λ),
in which the number of variables scales quadratically (rather than cubically) with the
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instance size:

v(Sc(λ)) = min
∑
i∈I

fiyi +
∑

(i,j)∈I×J

(
lij −

∑
k∈K

λijk

)
tij +

∑
(i,k)∈I×K

c̃(λ)ikwik

subject to ∑
i∈I

wik = 1, ∀k ∈ K,∑
i∈I

tij ≤ 1, ∀j ∈ J,

wik ≤ yi, ∀(i, k) ∈ I ×K,
tij ≤ yi, ∀(i, j) ∈ I × J,

0 ≤ wik ≤ 1, ∀(i, k) ∈ I ×K,
0 ≤ tij ≤ 1, ∀(i, j) ∈ I × J,

yi ∈ {0, 1}, ∀i ∈ I.

This alternative formulation is easily seen to be equivalent to the previous one
by using the domination argument above. In particular, any solution to Sc(λ) can
be converted into a solution to S(λ), by keeping track of which cijk corresponds to
each c̃(λ)ik, for each pair of depot i ∈ I and customer k ∈ K; subgradients for the
Lagrangian subproblem can thus be extracted from optimal solutions to the compact
formulation.

The compact Lagrangian subproblem is equivalent to the UFLP (with links only
between facilities and customers). Any UFLP instance can be cast as an instance of
the compact subproblem, simply by mapping facilities to depots, customers to cus-
tomers and by letting the set of links between depots and satellites be empty. The
compact Lagrangian subproblem itself is also easily reduced to the UFLP, by map-
ping depots to facilities, and satellites and customers to customers. The assignment
inequalities,

∑
i∈I tij ≤ 1, ∀j ∈ J, can be turned into strict equalities by allowing

every satellite to be linked to an artificial depot with zero costs. The Lagrangian
subproblem, like the UFLP, therefore does not have the integrality property.

Computational experiments presented in Section 5 are based on implementations
in which the compact Lagrangian subproblem is solved directly with a state-of-the-art
MIP solver. Robust specialized UFLP solvers already exist (Barahona 2005, Hansen
et al. 2007, Korkel 1989, Posta et al. 2012) and it might be fruitful to exploit them
when tackling huge instances of the TUFLP-S.

3.2 Solving the Lagrangian Dual

The Lagrangian dual can be formulated as

max
λ≥0

v(Sc(λ)).
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We solve it with a two-step process well-suited to being embedded into branch-
and-bound methods. The first step computes a starting point for the Lagrangian
dual, by solving the LP of the original (non-dualized) model; the second step im-
proves the lower bound with a few iterations of the bundle method (Frangioni 1996).
This approach minimizes the computational effort dedicated to improving Lagrangian
multipliers that are very far from the optimum, and always yields lower bounds that
are at least as strong as the LP relaxation of TUFLP-S. An alternative to the first step
is to solve the Lagrangian dual with a bundle method and a continuous Lagrangian
subproblem. On large instances, this can be quicker than solving the LP relaxation
of TUFLP-S with a state-of-the-art simplex method. A primal optimal fractional
solution can even be computed (Barahona 2000, Frangioni 2005) while solving the
Lagrangian dual. However, in a branch-and-bound method, the efficiency of reop-
timization is a key element, and simplex-type methods are then preferable. Rather
than warm-starting the bundle method, our implementation solves the LP relaxation
of TUFLP-S directly, as a linear program, and exploits the simplex reoptimization
capabilities; initial Lagrangian multipliers are read as the dual values corresponding
to the relaxed constraints.

The compact integer Lagrangian subproblem Sc(λ) corresponding to this initial
set of Lagrangian multipliers is then solved. Lagrangian duality, along with the fact
that Sc(λ) is solved as an integer subproblem, ensures that the resulting bound will
always be at least as strong as the LP bound. Regardless of the bound value, integer
solutions to Sc(λ) are also useful to guide the primal heuristic.

The second step uses an implementation of the bundle method (Frangioni 1996)
to compute Lagrange multipliers that will increase the lower bound obtained with the
integer Lagrangian subproblem. The bundle method is a non-differentiable optimiza-
tion method with stronger convergence properties than simpler approaches like sub-
gradient methods; its main disadvantage is the increased computational requirement
at each iteration. This trade-off seems particularly attractive given the complexity
of each subproblem (an integer program) and the quality of the initial multipliers.
Our computational experiments, reported in Section 5, show that this implemen-
tation of the bundle method, with default settings, leads to tighter lower bounds.
Unfortunately, the method must perform several iterations before its model of the
Lagrangian dual is accurate enough to yield sizable improvements in bound quality.
In the branch-and-bound method described in the next section, the Lagrangian sub-
problem (with integer variables) is only evaluated once, with multipliers extracted
from the LP relaxation. The Lagrangian dual is thus optimized with a fast heuristic.

3.3 Primal Heuristic

The primal heuristic is a MIP-based LNS approach that alternates between two large
neighborhoods until no progress is observed between two consecutive iterations. Each
neighborhood is explored exactly, through the solution of UFLPs.
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The first neighborhood is defined by the set of solutions that preserve a given set
of open depots: satellites may be opened, closed and reconnected to open depots, and
each customer assigned to any open satellite. Let I∗ ⊂ I be a set of open depots; the
first neighborhood, corresponding to solutions in which the depots in I∗ are open and
those in I \ I∗ are closed, is explored by solving the following MIP formulation:

min
∑
i∈I∗

fi +
∑

(i,j)∈I∗×J

lijtij +
∑

(i,j,k)∈I∗×J×K

cijkxijk

subject to ∑
(i,j)∈I∗×J

xijk = 1, ∀k ∈ K, (10)

∑
i∈I∗

tij ≤ 1, ∀j ∈ J, (11)

xijk ≤ tij, ∀(i, j, k) ∈ I∗ × J ×K, (12)

0 ≤ xijk ≤ 1, ∀(i, j, k) ∈ I∗ × J ×K,
tij ∈ {0, 1}, ∀(i, j) ∈ I∗ × J.

This formulation corresponds to a UFLP in which the set of open facilities is sub-
ject to side conditions, the generalized upper bound (GUB) constraints (11). These
side constraints can be expressed in a UFLP with the addition, for each j ∈ J , of
an artificial customer kj. The cost for linking kj to any tij, i ∈ I∗ is very negative
(−M), and zero for all other facilities, and the location costs lij are all increased by
M . Thus, it is only profitable to open a location (i, j) if it can be linked to kj; in that
case, the M values sum to zero, and the objective function is not affected. Moreover,
constraints (10) mean that each kj is linked to exactly one tij, and thus that at most
one tij is set to one, for any j ∈ J .

The second neighborhood is defined by the set of solutions that preserve a given
assignment of customers to satellites: depots can be closed or open, and satellites
reconnected to different open depots. For each satellite j, let K∗(j) be the set of
customers linked to that satellite in a given solution. The second neighborhood for
that solution may be directly explored as a UFLP, in which facilities correspond to
depots and customers to satellites (for which K∗(j) 6= ∅). Let J∗ ⊂ J be the set of
depots for which K∗(j) 6= ∅, and let

dij = lij +
∑

k∈K∗(j)

cijk, ∀(i, j) ∈ I × J∗.
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We then have the following MIP model for the second neighborhood:

min
∑
i∈I

fiyi +
∑

(i,j)∈I×J∗
dijtij

subject to ∑
i∈I

tij = 1, ∀j ∈ J∗,

tij ≤ yi, ∀(i, j) ∈ I × J∗,
0 ≤ tij ≤ 1, ∀(i, j) ∈ I × J∗,

yi ∈ {0, 1}, ∀i ∈ I.

The primal heuristic must be initialized with a feasible solution. Rather than
constructing one, it is possible to repair solutions from the integer Lagrangian sub-
problem Sc(λ). The first neighborhood only requires a set of open depots; such a set
can be extracted from any solution to Sc(λ).

Tight lower and upper bounds are thus obtained in three steps:

1. Solve the LP relaxation of TUFLP-S;

2. Solve Sc(λ), with Lagrange multipliers λ extracted from the previous step;

3. Perform the primal heuristic, starting with the set of open depots in an optimal
solution to Sc(λ).

4 A Specialized Branch-and-Bound Method

The bounding procedure described in the previous section depends, in part, on the
full solution of the LP relaxation. It could be directly embedded within a standard
branch-and-bound method, to only improve bound values. We found it more efficient
to augment an LP-based branch-and-bound with the specialized lower and upper
bounds, and with branching schemes guided by complementary slackness violations
in solutions to the Lagrangian subproblem Sc(λ).

The method follows LP-based branch-and-bound approaches: variables are fixed
according to reduced costs, nodes are explored in a best-first order (but with respect
to Lagrangian lower bounds), and the primal heuristic is executed at each node that
is not fathomed. Evaluating each node is computationally heavy, and we attempt to
minimize the size of the search tree by using reliability branching (Achterberg et al.
2005) to determine which variable each node should branch on.

Reliability branching generalizes pseudocost branching and combines it with strong
branching. As usual, variables are considered for branching when they take fractional
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values in the LP relaxation, but history-based pseudocosts are used only when they are
based on sufficiently many evaluations (more than the reliability parameter η ∈ N).
Remaining candidate branches (for which too little history is available) are ordered
according to their potentially unreliable pseudocosts, and partially evaluated with
a small number of dual simplex iterations γ. This is repeated until the incumbent
branching choice has not changed for λ ∈ N (the lookahead factor) iterations. The
chosen branching choice is then processed as usual, i.e., by evaluating the children
completely and adjoining them to the search queue.

We implemented this method, with η = 8, λ = 4, as suggested in (Achterberg
et al. 2005), and γ = 200 (rather than adaptively). Once a branch is chosen, children
are fully evaluated by performing the simplex until convergence and then evaluating
the Lagrangian integer subproblem once; children are then adjoined to the best-first
search queue. Finally, solutions to the Lagrangian subproblems are used to initialize
the primal heuristic. To make sure a diverse range of initial solutions are provided to
the primal heuristic, any feasible solution corresponding to a neighborhood that has
already been explored is rejected when the MIP corresponding to each Lagrangian
subproblem Sc(λ) is solved.

We implemented two branching schemes that exploit the GUB constraints (9):
the GUB branching scheme and the polytomic branching scheme.

The GUB scheme branches on sums of variables
∑

i∈I tij, for some satellite j ∈ J ,
forcing them to be equal to 0 or 1, i.e., converting GUB constraints (9) to equalities.
The LP relaxation is exploited to consider only those j ∈ J for which the sum is
fractional. Note that these branches do not correspond directly to the reliability
branching framework described above; instead, average improvements are computed
for each satellite j ∈ J and for each right-hand side (whether the equality is fixed to
0 or 1).

The polytomic scheme branches on multiple variables at once. It can be used
alone, or in conjunction with the GUB branching scheme; it is then also applicable to
GUB constraints that were converted to strict equalities by earlier branching steps.
Rather than turning GUB constraints into either of two equalities, a child is spawned
for each variable in the sum, fixing that variable to one (and the others to zero), and
one more in which the sum is set to zero, when the constraint is an inequality. Again,
the LP relaxation is exploited to consider only those j ∈ J such that at least one
tij, for some i ∈ I, is fractional. Reliability branching was adapted to the polytomic
branches obtained with this branching scheme by separately tracking increases in
bound value for each variable when it is set to one, and when they are all set to zero
(equivalently, when the GUB constraint for satellite j becomes an equality with 0 on
the right-hand side).

The polytomic branching scheme, used alone, ensures the convergence of the
branch-and-bound method. However, on many instances, the number of nodes eval-
uated and the solution time are significantly reduced by initially branching with the
GUB scheme and resorting to the polytomic scheme only when necessary, i.e., the
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node is not fathomed and all the
∑

i∈I tij are integral.
In both cases, scores for candidate branching choices are aggregated by taking

the geometric average of the estimated bound increase for all the children (with
a small minimum value ε > 0). Additionally, while history-based estimates seem
accurate for relative ordering purposes, they provide a poor basis for comparison
with actually evaluated decisions; the initial incumbent branching choice, if any, is
partially evaluated, like choices with too little history.

Finally, the branch-and-bound method explores relatively few nodes, and the in-
stances tend to be large enough that even a single full strong branching step seems
unreasonable. Rather than attempting to initialize pseudocosts, branching choices
with no historic data are sorted with respect to complementary slackness violations
in the Lagrangian subproblem. For each satellite j,∑

(i,k)∈I×K

λijk|xijk − tij|

is computed, and satellites corresponding to larger values are considered first; search
nodes for both branching schemes are defined by the satellite to which they relate. In
preliminary experiments, this heuristic proved to reduce the number of nodes com-
pared to summing reduced costs, even on instances for which the integer Lagrangian
subproblem does not improve the LP bound value.

5 Computational Experiments

We compare the strength of the formulations and bounding methods by reporting
gaps at the root node. We also compare the performance of our branch-and-bound
method with that of the state-of-the-art MIP solver CPLEX, by reporting the runtime
and number of search nodes until optimality is proven (within 0.1%). The tests were
performed on three sets of instances.

All the computations were performed in single-threaded mode on a 2.8Ghz Intel
X5660 with 24 GB RAM (Hyperthreading and TurboBoost were disabled), the solvers
were compiled with G++ 4.6, with optimizations, and CPLEX 12.1 was used to solve
LP and MIP models. The only exceptions are values copied from (Landete and Maŕın
2009), which were computed on an older platform: 2.6 GHz AMD Opteron CPUs with
4 GB RAM and CPLEX 9.1.

The instances in the first set were generated as subproblems in a Lagrangian
relaxation used to solve the industrial location problem described in (Gendron and
Semet 2009). These instances cannot be solved as TUFLP-C, and are relatively
large, but exhibit low gaps at the root node; they highlight the effectiveness of the
Lagrangian heuristic to compute tight upper and lower bounds, and the significant
reduction in search nodes when using the specialized branch-and-bound method.

The second set contains Gap instances: artificial, small and difficult, TUFLP
(without single-assignment) instances constructed from the single-level UFLP Gap
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instances (Kochetov and Ivanenko 2005). These instances can be formulated as both
TUFLP-C and TUFLP-S, since their transportation costs are sums of per-arc costs.
Even on such difficult instances, our specialized methods perform reasonably well,
with runtimes in the same order of magnitude as CPLEX.

The instances in the third and final set are large-size TUFLP-S instances ob-
tained with Gap instances generated with the procedures described in (Kochetov and
Ivanenko 2005). The conversion procedure was also modified to force the explicit
consideration of the single-assignment constraints. These large, difficult, instances
allow us to show the improved scaling properties of the specialized branch-and-bound
method with respect to instance size, when compared to CPLEX.

5.1 Industrial Instances

Our interest in the TUFLP-S stems from its appearance as a subproblem in a La-
grangian relaxation method for an application in freight transportation. This subsec-
tion reports performance values for 80 TUFLP-S instances derived from that indus-
trial application, 20 on each of four networks: tiny, small, medium and full (Gendron
and Semet 2009). Full instances comprise 93 depots, 320 satellites, and 701 cus-
tomers. Medium instances are about 3/4 as large at each level, small ones 1/2 and
tiny ones 1/4.

5.1.1 Bounds at the Root

The industrial instances exhibit a cost structure that cannot be expressed with for-
mulation TUFLP-C. Thus, only formulations and relaxations derived from TUFLP-S
are compared. From left to right, the columns in Table 1 report the average gaps
(with respect to the optimal value) and CPU times for:

• “LP-S”, the LP relaxation of the TUFLP-S formulation;

• “Lagrangian”, the Lagrangian relaxation with a single execution of the integer
Lagrangian subproblem following the solution of the LP relaxation;

• “Lagrangian/300”, which improves the initial Lagrange multipliers with up to
300 iterations of the bundle method;

• “Heuristic”, the primal Lagrangian heuristic.

The gaps on these instances seem representative of industrial location problems:
across all instances, it is lower than 1%, even for the LP relaxation. Solving the
Lagrangian subproblem once, with Lagrange multipliers extracted from the LP relax-
ation, suffices to roughly halve the gap at the root, and the bundle method further
reduces the gap, but significantly increases the computational times.
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Table 1: Runtimes and gaps at the root for industrial instances
Instances LP-S Lagrangian Lagrangian/300 Heuristic
Tiny Gap (%) 0.00 0.00 0.00 0.57

Time (s) 0.03 0.06 0.15 0.01
Small Gap (%) 0.36 0.28 0.18 0.59

Time (s) 0.51 1.21 17.95 0.01
Medium Gap (%) 0.13 0.08 0.04 0.20

Time (s) 3.18 6.26 51.19 0.01
Full Gap (%) 0.16 0.05 0.03 0.24

Time (s) 19.75 32.51 649.91 0.01

The Lagrangian heuristic performs well on these instances, with solutions that are
nearly always less than 1% away from the optimum. For these industrial instances,
the Lagrangian heuristic produces good primal solutions with sufficiently tight lower
bounds, so that branching could be avoided.

5.1.2 Performance of Enumerative Methods

Recall that industrial instances cannot be solved as TUFLP-C. Thus, three enumera-
tive methods are compared: “MIP-S” corresponds to the TUFLP-S formulation solved
with CPLEX, “Lag/GUB” to the specialized branch-and-bound combining the GUB
and polytomic branching schemes, and “Lag” to the specialized branch-and-bound
with only polytomic branching. Table 2 displays the CPU times and the average
number of nodes for each enumerative method. The geometric average of their run-
times, relative to CPLEX, are also reported (Lag/GUB

MIP
and Lag

MIP
). Five of the twenty

instances in the “Small” class were not solved by Lag/GUB within two hours; the
corresponding cells are marked with n/a.

For tiny and medium instances, the specialized branch-and-bound method with
polytomic branching proves optimality in much fewer nodes than CPLEX on model
“MIP-S”. However, CPLEX nevertheless executes faster on average. Overall, it does
not seem useful, for these instances, to enable the GUB branching strategy.

The small instances seem more difficult: the other specialized method with both
branching schemes, “Lag/GUB”, reaches the time limit on many instances. The
specialized branch-and-bound with only polytomic branching, “Lag”, always termi-
nates in the allotted time, but is significantly slower than “MIP-S” on average, while
generally exploring less nodes.

On the largest (“Full”) instances, the specialized branch-and-bound method ex-
plores significantly fewer nodes than CPLEX on “MIP-S”, in comparable time. In
fact, it proves optimality faster than “MIP-S” for 9 of the 20 full instances; the av-
erage slowdown compared to “MIP-S” seems to be caused by the high variance of
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Table 2: Runtimes and node counts for enumerative methods on industrial instances
Instances MIP-S Lag/GUB Lag Lag/GUB

MIP
(%) Lag

MIP
(%)

Tiny Time (s) 0.06 0.10 0.13 124.9 127.4
Nodes 0.00 0.30 0.30 n/a∗ n/a∗

Small Time (s) 4.37 n/a 118.67 n/a 321.9
Nodes 52.55 n/a 26.80 n/a 70.7

Medium Time (s) 27.83 784.83 94.27 210.6 149.5
Nodes 35.70 35.55 1.60 80.1 39.7

Full Time (s) 243.53 758.32 795.98 121.2 132.0
Nodes 83.60 9.90 5.15 16.0 13.4

∗ all but a few instances are solved without any branching.

runtimes for the specialized branch-and-bound method.

5.2 Gap Instances

(Landete and Maŕın 2009) describe a simple procedure to construct TUFLP-C in-
stances from small and hard UFLP instances (Kochetov and Ivanenko 2005). We
used the same procedure, on the same input, to obtain the same set of 90 instances
with 50 depots, 50 satellites and 50 customers. These instance have transportation
costs that are sums of per-arc costs. Therefore, they can also be modeled as TUFLP-S.
This allows us to compare the bounds obtained with our methods with those in (Lan-
dete and Maŕın 2009). The only difference is that we consider the UFLP instances as
sparse graphs, while (Landete and Maŕın 2009) directly sums “big-M” costs. Slightly
less than half the instances are rendered infeasible, leaving 20 instances derived from
GapA, 12 from GapB and 23 from GapC.

5.2.1 Bounds at the Root

Table 3 reports the average gap (with respect to the optimal value) and CPU times at
the root for various bounding methods on Gap A, B and C instances. These instances
are derived from hard UFLP instances and are expected to exhibit huge integrality
gaps on all practical formulations. In order, the columns are:

• “Landete”, the formulation with specialized facet-defining constraints developed
in (Landete and Maŕın 2009). The result tables in (Landete and Maŕın 2009)
do not report solution times at the root, and we are unable to compare them
with those reported here;

• “LP-C”, the LP relaxation of the TUFLP-C formulation;
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Table 3: Runtimes and gaps at the root for Gap instances

Instances Landete LP-C LP-S Lagrangian Lagrangian/300 Heuristic
GapA Gap (%) 10.52 11.39 10.84 10.84 8.09 9.82

Time (s) 0.05 0.12 0.21 182.88 0.01
GapB Gap (%) 7.63 8.12 7.92 7.91 5.46 5.10

Time (s) 0.04 0.10 0.19 171.93 0.01
GapC Gap (%) 12.03 13.22 12.58 12.58 9.58 9.15

Time (s) 0.06 0.14 0.29 263.92 0.01

• “LP-S”, the LP relaxation of the TUFLP-S formulation;

• “Lagrangian”, the integer Lagrangian subproblem solved only once, with La-
grange multipliers extracted from TUFLP-S;

• “Lagrangian/300”, the Lagrangian relaxation with up to 300 iterations of the
bundle method;

• “Heuristic”, the primal Lagrangian heuristic.

For each instance, “LP-S” provides a better bound than “LP-C”, and “Lagrangian/300”
a better bound than “LP-S”. However, “Lagrangian” almost always obtains the ex-
act same bound as “LP-S”: for Gap instances, forcing the tij variables to take integer
values only improves the lower bound when the Lagrangian multipliers are optimized
with a bundle method. Overall, the valid inequalities introduced in (Landete and
Maŕın 2009) improve “LP-C” and yield bounds that are comparable with (and gen-
erally better than) those derived with “LP-S”; they too are weaker than the bounds
obtained with “Lagrangian/300”.

The “LP-S” formulation takes more time to solve than the more compact “LP-C”,
by a factor of 2 to 3. Solving one Lagrangian subproblem adds reasonable overhead,
roughly doubling the runtime compared to “LP-S”, but rarely improves the bound
value for Gap instances. Optimizing the Lagrange multipliers with up to 300 iterations
of the bundle method improves the lower bound significantly, but requires too much
CPU time to be practical.

The “Heuristic” column shows the optimality gap after one execution of the pri-
mal heuristic, from a solution to the Lagrangian relaxation. The execution of the
primal heuristic took negligible time compared to the Lagrangian subproblem, but
the average gaps are modest, between 5% to 10% depending on the instance sets.
However, even on these hard instances for which the relaxations are poor approxima-
tions of the integer problem, the primal heuristic converged to near-optimal solutions
(with gaps in the order of 0.1%) in one fifth of the instances.
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Table 4: Runtimes and node counts for enumerative methods on Gap instances
Instances Landete MIP-C MIP-S Lag/GUB Lag
GapA Time (s) 101.00 1.75 5.74 9.10 17.03

Nodes 92.68 154.08 385.54 18.15 29.27
GapB Time (s) 74.17 1.22 3.03 5.93 10.22

Nodes 96.08 123.92 210.58 13.17 16.83
GapC Time (s) 153.11 3.13 19.29 16.52 45.93

Nodes 191.47 238.48 1094.56 33.07 66.41

5.2.2 Performance of Enumerative Methods

In Table 4, columns “Landete”, “MIP-C” and “MIP-S” correspond, respectively, to
the formulation with specialized valid inequalities in (Landete and Maŕın 2009), the
TUFLP-C formulation and the TUFLP-S formulation, solved with CPLEX. Column
“Lag/GUB” reports values for the specialized branch-and-bound method combining
the two branching schemes, GUB and polytomic, while column “Lag” reports run-
times and node counts when only polytomic branching is used.

The difference in runtimes between our results and those of (Landete and Maŕın
2009) is so wide – a factor of 50 – that the averages are of limited usefulness. The
main reason for the difference seems to be their use of “big-M” values, instead of
a sparse formulation that implicitly filters forbidden paths. Improvements in CPU
performance and in CPLEX, from version 9 to 12, are other possible explanations for
such a huge difference in CPU times.

Formulation TUFLP-C (without single-assignment constraints) achieves the low-
est runtimes. It seems likely that a more sophisticated implementation of the for-
mulation with additional facet-defining inequalities described by (Landete and Maŕın
2009) would achieve slightly lower runtimes: the formulation size is similar, and the
facet-defining inequalities help decrease the number of nodes explored. TUFLP-S
comprises more variables and constraints than TUFLP-C for the same instance, and
this is reflected in increases in CPU time and number of nodes.

The specialized branching schemes (“Lag” and “Lag/GUB”) significantly reduce
the node count, compared to all the other formulations. This is even more marked
for “Lag/GUB”, which exploits the structure of GUB constraints to convert such
constraints to equalities, before executing polytomic branching. However, runtimes
remain comparable to or longer than those for the MIP formulations.

5.3 Large Gap Instances

We reimplemented the generators in (Kochetov and Ivanenko 2005) to produce 10
UFLP instances each of the A, B and C classes, of size 150 × 150, and converted
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Table 5: Runtimes and gaps at the root for large Gap instances
Instances LP-S Lagrangian Lagrangian/300 Heuristic
LargeA Gap (%) 16.62 16.62 15.57 12.25

Time (s) 1.31 2.81 2645.40 0.01
LargeB Gap (%) 20.14 20.14 19.73 17.66

Time (s) 1.55 2.75 2766.17 0.01
LargeC Gap (%) 18.38 18.38 17.90 8.54

Time (s) 1.99 4.10 2819.93 0.01

them to TUFLP-S instances of size 75 × 75 × 75 (“MediumA”, “MediumB” and
“MediumC”). We used the procedure described in (Landete and Maŕın 2009) with
one difference: each transportation cost was incremented by (7i+3j+k) mod 10, where
i is the rank of the depot, j that of the satellite and k that of the customer. These
modifications are necessary to consider the single-assignment constraints explicitly.

5.3.1 Bounds at the Root

Table 5 reports the average gaps (with respect to the optimal values) and the average
CPU times for the three classes of instances, and for the same methods as Table 1.
It paints a picture very similar to that of Table 3. The Lagrangian subproblem does
not improve bounds overly, but does not take too much additional time either, and
the heuristic finds solutions with gaps that often exceed 10%.

5.3.2 Performance of Enumerative Methods

The TUFLP-C formulation is not equivalent to TUFLP-S on these instances, so
we only consider “MIP-S” solved with CPLEX and “Lag/GUB”, which was already
shown to be preferable to “Lag” for instances in the Gap family. Indeed, “Lag”, the
Lagrangian branch-and-bound with only polytomic branching, failed to solve all but
a few of the large Gap instances.

Table 6 reports average CPU times and node counts until completion when solving
these large artificial instances (75x75x75) of the TUFLP-S, with a time limit of two
hours. “MIP-S” failed to provably solve a few instances (one MediumA, two MediumB
and two MediumC). The averages consider the runtimes for these instances as two
hours and count the number of nodes explored until the time limit. On average,
across all instances, the Lagrangian branch-and-bound method explores one fifth as
many nodes and uses two thirds as much time as CPLEX on “MIP-S”.
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Table 6: Runtimes and node counts for enumerative methods on large Gap instances

Instances MIP-S Lag/GUB Lag/GUB
MIP

(%)
LargeA Time (s) 2996 1326 66.8

Nodes 24982 701 19.7
LargeB Time (s) 4631 2044 70.6

Nodes 33764 972 21.4
LargeC Time (s) 4419 1829 64.8

Nodes 26027 693 19.5

6 Conclusion

We addressed the two-level uncapacitated facility location problem with single-assignment
constraints (TUFLP-S), a problem that arises in industrial applications in freight
transportation (Gendron and Semet 2009) and in telecommunications (Chardaire
et al. 1999). The problem can also be used to model two-level uncapacitated facility
location problems without single-assignment constraints, where transportation costs
are sums of per-arc costs, and there are no assignment cost between depots and satel-
lites (TUFLP-C). We show that the LP relaxation of TUFLP-S is stronger than the
LP relaxation of the usual MIP model used in this case, at the expense of increasing
the size of the formulation.

We presented a Lagrangian relaxation approach for which the Lagrangian sub-
problem reduces to a single-level uncapacitated facility location problem (UFLP).
The Lagrangian dual is solved with a fast two-step heuristic; in the first step, the
LP relaxation is solved, while the second step solves a single Lagrangian subproblem
with Lagrange multipliers initialized with the LP-optimal dual solution.

We also developed a Lagrangian heuristic that includes a MIP-based LNS heuris-
tic that solves a series of small UFLPs. The dual and primal bounds thus obtained
were embedded within a specialized branch-and-bound method that implements two
branching strategies: the GUB branching strategy and the polytomic branching strat-
egy. The latter can be used alone or combined with the first strategy.

We presented and analyzed computational results on three sets of instances. On in-
stances derived from a freight transportation application (Gendron and Semet 2009),
the Lagrangian heuristic, without any branching, provides lower and upper bounds
that are within 1% of optimality on average. On these instances, the Lagrangian lower
bound improves the (already strong) LP bound. The specialized branch-and-bound
method reduces significantly the number of nodes compared to CPLEX, but its CPU
times are nevertheless higher. On difficult instances, the combined polytomic/GUB
branching strategy performs well: compared to CPLEX on the TUFLP-S formula-
tion, the number of nodes is significantly reduced, and the CPU times comparable, if
not shorter. Since these instances can be cast as TUFLP-C, our experiments showed
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that a weaker, but smaller, formulation for the problem is solved more efficiently by
CPLEX than both CPLEX on the TUFLP-S model and our specialized branch-and-
bound method. Finally, on large, difficult, artificial instances that cannot be cast as
TUFLP-C instances, our specialized branch-and-bound method outperforms CPLEX.

The performance of the specialized branch-and-bound method could be improved
by adaptive parameter tuning and branching strategy choice, along with further re-
finements. In particular, it is likely that a specialized UFLP solver would be ben-
eficial, as nearly half the runtime of the specialized branch-and-bound methods is
used to solve such problems. Nevertheless, our specialized branch-and-bound method
exhibits better scaling properties to large and difficult instances than CPLEX: it is
competitive with CPLEX when solving large industrial instances, and markedly more
efficient on large, difficult, artificial instances.
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