Skip to Main content Skip to Navigation
Conference papers

Alignment-Based Trace Clustering

Abstract : A novel method to cluster event log traces is presented in this paper. In contrast to the approaches in the literature, the clustering approach of this paper assumes an additional input: a process model that describes the current process. The core idea of the algorithm is to use model traces as centroids of the clusters detected, computed from a generalization of the notion of alignment. This way, model explanations of observed behavior are the driving force to compute the clusters, instead of current model agnostic approaches, e.g., which group log traces merely on their vector-space similarity. We believe alignment-based trace clustering provides results more useful for stakeholders. Moreover, in case of log incompleteness, noisy logs or concept drift, they can be more robust for dealing with highly deviating traces. The technique of this paper can be combined with any clustering technique to provide model explanations to the clusters computed. The proposed technique relies on encoding the individual alignment problems into the (pseudo-)Boolean domain, and has been implemented in our tool DarkSider that uses an open-source solver.
Document type :
Conference papers
Complete list of metadata

Cited literature [16 references]  Display  Hide  Download
Contributor : Thomas Chatain <>
Submitted on : Thursday, December 14, 2017 - 4:09:15 PM
Last modification on : Monday, February 15, 2021 - 10:40:13 AM


Files produced by the author(s)



Thomas Chatain, Josep Carmona, Boudewijn van Dongen. Alignment-Based Trace Clustering. ER 2017 - 36th International Conference on Conceptual Modeling, Nov 2017, Valencia, Spain. pp.295-308, ⟨10.1007/978-3-319-69904-2_24⟩. ⟨hal-01664235⟩



Record views


Files downloads