
Submitted to:
OCaml 2016

© F. Balestrieri & M. Mauny
This work is licensed under the
Creative Commons Attribution License.

Generic Programming in OCAML

Florent Balestrieri
ENSTA-ParisTech, Université Paris-Saclay

Florent.Balestrieri@ensta-paristech.fr

Michel Mauny
Inria Paris

Michel.Mauny@inria.fr

We present a library for generic programming in OCAML, adapting some techniques borrowed from
other functional languages. The library makes use of three recent additions to OCAML: generalised
abstract datatypes are essential to reflect types, extensible variants allow this reflection to be open
for new additions, and extension points provide syntactic sugar and generate boiler plate code that
simplify the use of the library. The building blocks of the library can be used to support many
approaches to generic programming through the concept of view. Generic traversals are implemented
on top of the library and provide powerful combinators to write concise definitions of recursive
functions over complex tree types. Our case study is a type-safe deserialization function that respects
type abstraction.

1 Introduction

Typed functional programming languages come with rich type systems guaranteeing strong safety prop-
erties for the programs. However, the restrictions imposed by types, necessary to banish wrong programs,
may prevent us to generalise over some particular programming patterns, thus leading to boilerplate code
and duplicated logic. Generic programming allows us to recover the loss of flexibility by adding an extra
expressive layer to the language.

The purpose of this article is to describe the user interface and explain the implementation of a generic
programming library1 for the language OCAML. We illustrate its usefulness with an implementation of
a type-safe deserialization function.

1.1 A Motivating Example

Algebraic datatypes are very suitable for capturing structured data, in particular trees. However general
tree operations need to be defined for each specific tree type, resulting in repetitive code.

Consider the height of a tree, which is the length of the longest path from the root to a leaf. We will
define a different height function on lists, binary trees and rose trees.

For lists, the height corresponds to the length of the list.

let rec length = function

| [] → 0
| _ :: tail → 1 + length tail

For binary trees the definition is very similar, but in the inductive step we must now take the maximum
of the heights of the children.

This work was partially supported by the Secure-OCaml FUI project.
1The library is available at https://github.com/balez/generic

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://github.com/balez/generic

2 Generic Programming in OCaml

type α btree = Empty | Node of α btree × α × α btree
let rec bheight = function

| Empty → 0
| Node (l , _, r) → 1 + max (bheight l) (bheight r)

Rose trees have nodes of variable arity, we define them as records with two fields: attr is the data
associated to a node, and children is the list of its immediate subtrees.

type α rtree = {attr: α ; children: α rtree list}
let rec rheight rtree =

match List.map rheight rtree .children with

| [] → 0 (∗ The height of a leaf is zero. ∗)
| h :: hs → 1 + List.fold left max h hs

The reader can see how the definition of new types of trees would require the implementation of their
own specialised height function. Yet we can see a common pattern emerging. Is it possible to factorise
the common behaviour? Yes! thanks to parametric polymorphism and higher-order functions, we may
abstract over the notion of children: the function gheight below takes an argument function children that
computes the list of children of a node.

val gheight : (α → α list) → α → int
let rec gheight children tree =

let subtrees = children tree in

match List.map (gheight children) subtrees with

| [] → 0
| h :: hs → 1 + List.fold left max h hs

Then each particular case above can be implemented using gheight by providing the appropriate imple-
mentation of children:

let length' x = gheight (function [] → [] | _ :: tail → [tail]) x
let bheight' x = gheight (function Empty → [] | Node (l , _, r) → [l ; r]) x
let rheight' x = gheight (fun x → x .children) x

Having factored the functionality of height, we’re left with the task of implementing children for
each datatype. This task follows systematically from the definition of a type and this time the pattern
cannot be abstracted. This is when generic programming comes into play! With generic programming,
we can write a single children function working over all types. It is indexed by the type representation of
its tree argument: a value of type α ty is the value-level representation of the type α .

val children : α ty → α → α list

The type-indexed version of height is obtained by composing gheight and children:

val height : α ty → α → int
let height t = gheight (children t)

The implementation of children will be explained in Section 2.3.
Note: the type witness α ty is explicitly given to a generic function, for instance if x : α list we

might call height list x where list is a suitable value of type α list ty. It is theorically possible to infer
the type witness since there is a one to one correspondance between the witnesses and types. The work
on modular implicits [34] promises to offer this functionality.

F. Balestrieri & M. Mauny 3

1.2 A Case for Generic Programming

Generic Traversals Some common operations on structured data, eg. abstract syntax trees require a
lot of boilerplate code to traverse the datastructure and modify it recursively, or extract some result. This
boilerplate code needs to be adapted to each new datatype.

When writing specific traversals over an AST using pattern matching over the constructors, it often
happens that only a few cases carry the meaningful computation, others being default cases. Boilerplate
removal allows us to write such function by only giving the meaningful cases. In addition to conciseness,
this has the benefit of making the code robust to changes in the AST type: since the same function would
treat additional constructors using the default case. Generic traversals is the focus of section 3.

Ad-hoc Polymorphism OCAML lacks an overloading mechanism such as Haskell type-classes. The
generic library implements similar mechanisms, through explicit type representation and dynamic dis-
patch. This feature is illustrated in the generic traversals of section 3 in which we adapted some Haskell
libraries that rely heavily on type-classes.

Safer Alternatives to the Built-in Generic Functions in OCAML The OCAML standard library pro-
vides a few functions that perform black magic. Such functions are defined over the concrete memory
model of the OCAML value runtime representation. In fact one of them is actually called magic : α → β

and does what its type suggests: casting a value to an arbitrary type, which is unsafe. Deserialization, as
implemented by Marshal.from string is also unsafe. Such operations can provoke segmentation faults if
used unwisely. Other magical operations—such as polymorphic comparisons and the polymorphic hash
function—break the abstraction provided by abstract types: such types are often defined as quotients over
an equivalence relation, yet the structural comparisons work on their concrete implementation instead of
the equivalence classes.

With a generic programming library, the user can define alternatives to the built-in functions that are
well-behaved regarding both type safety and abstraction.

1.3 Overview of the article

Section 2 explains the three elements of a generic programming library: means to reflect types, to define
type-dependent functions and to represent the structure of types. Section 3 shows how generic traversals
can be defined on top of the library. Section 4 covers a complex generic program implementing safe
deserialization. Section 5 gives some context to our approach, which is compared with other implemen-
tations. We also discuss genericity within other type systems. Section 6 sums up the main points of the
article.

2 The Three Elements of Generic Programming

Following the Generic Programming in 3D approach [13], we identify three orthogonal dimensions in
the design of generic programming libraries:

A reflexion of types at the value level over which our generic functions are defined.

A mechanism for overloading that enables us to define and call generic functions over different types.

A generic view of types that provides a uniform representation of types on top of which generic func-
tions are recursively defined.

4 Generic Programming in OCaml

We describe each dimension in turn and finish the section with some examples of generic programs.

2.1 Type Reflexion

Generalised algebraic datatypes (GADT), introduced in OCAML version 4, are type indexed families of
types. Using GADTs, we can define singleton types where each index of the family is associated with
a single data constructor. The one to one correspondence between type indices and data constructors
allows us to reflect types as values.

The syntax of GADT extends the syntax of variants by allowing the return type to be specified, where
the indices may be instanciated to concrete types. Hence, we may reflect types as follows:

type _ ty =
| Int : int ty
| String : string ty
| List : α ty → α list ty
| Pair : α ty × β ty → (α × β) ty
| Fun : α ty × β ty → (α → β) ty

Notice how we reflected type formers as value constructors of the same arity with type witnesses as
arguments. A complex type is reflected straightforwardly:

Fun (List String, Fun (Int, (Pair (String, Int))))
: (string list → int → string × int) ty

2.1.1 Open Types

Introduced in version 4.02, open types allow us to extend ty with new cases reflecting newly introduced
user types. We declare an extensible type with:

type _ ty = ..

New cases are added with the syntax:

type _ ty += Float : �oat ty
type _ ty += Btree : α ty → α btree ty

Objects and Polymorphic Variants Objects of anonymous classes and polymorphic variants are spe-
cial amongst OCAML types in that they are not nominal types. Therefore, they do not fit nicely with
the nominal type witnesses. One possibility to support them indirectly is to give them a name. Another
possibility is to break the general scheme of type witnesses, and provide two special constructors for
objects and polymorphic variants:

type _ ty += Object : α object desc → α ty
type _ ty += PolyVariant : α polyvariant desc → α ty

With suitable generic views object desc and polyvariant desc described in section 2.3.5.

F. Balestrieri & M. Mauny 5

2.2 Type-Indexed Functions

With type reflexion we can write type-indexed functions, for instance a pretty printer has the following
type:

val show : α ty → α → string

Note how the reflected type is also used as a parameter of the function.
To implement show we need another extension to OCAML type system introduced in version 4.00:

locally abstract types. This type annotation is necessary to help the type checker while pattern matching
over a GADT: since the type indices of a GADT may be instantiated to different concrete types depending
on the constructor case, which is not possible with the classical Hindley-Milner algorithm. In addition,
our function uses polymorphic recursion: a call show (List a) recurses on the type of the list elements:
show a , this requires the explicit polymorphic quantification of the locally abstract type a .

let rec show : type a . a ty → a → string
= fun t x → match t with

| Int → string of int x
| String → "\"" ^ x ^ "\""
| List a → "[" ^ String.concat "; " (List.map (show a) x) ^ "]"
| Pair (a , b) → "(" ^ show a (fst x) ^ ", " ^ show b (snd x) ^ ")"
| Fun (a , b) → "<fun>"

Such a definition by pattern matching is suitable for a closed type universe were the cases may be
given exhaustively. However we want our universe to be extensible, so that we may add new types.
Consequently the type indexed functions must also be extensible: as new type witnesses are added to ty,
new cases must be added to the type indexed functions.

This problem problem of extending a datatype and a function on that datatype is known as Wadler’s
expression problem [32] and is indicative of the modularity of the language. Solutions in Haskell have
been given involving type classes [30, 1] and cannot easily be adapted to OCAML. However, OCAML

v. 4.02 introduced extensible variant types. The only missing ingredient is extensible functions. The rest
of the chapter explains how they are implemented in the library.

2.2.1 Extensible Functions

To define extensible functions, we will use the imperative features of OCAML. The idea is to keep a
reference to a function which will be updated when a new case is added. The reference is kept private
while the public interface offers the means to add a new case:

val show ext : (∀α . α ty → α → string) → unit

However this type is not correct in OCAML because a polymorphic function is not allowed as an argu-
ment. Fortunately, we are allowed polymorphic record fields, thus we define:

type show fun = {apply : ∀α . α ty → α → string}
val show ext : show fun → unit

We may already use this public interface to define the cases above. Once again the GATD forces us to
provide type annotations. Compiler warnings also encourage us to explicitly raise an exception for the
cases that do not concern us. Note that we use show for the recursive calls.

6 Generic Programming in OCaml

let () = begin

show ext { apply = fun (type a) (t : a ty) (x : a) → match t with

| Int → string of int x
| _ → raise Not found };

show ext { apply = fun (type a) (t : a ty) (x : a) → match t with

| List a → "[" ^ String.concat "; " (List.map (show a) x) ^ "]"
| _ → raise Not found };

show ext { apply = fun (type a) (t : a ty) (x : a) → match t , x with

| (Pair (a ,b)) , (x , y) → "(" ^ show a x ^ ", " ^ show b y ^ ")"
| _ → raise Not found };

end

All this syntactic noise could be avoided by the use of a PPX [20] providing the following syntactic
sugar:

[%extend] show Int x = string of int x
[%extend] show (List a) x = "[" ^ String.concat "; " (List.map (show a) x) ^ "]"
[%extend] show (Pair (a , b)) (x ,y) = "(" ^ show a x ^ ", " ^ show b y ^ ")"

2.2.2 A Simple Implementation of Extensible Functions

How can we implement show ext? First we need to define a reference to a show fun record.

val show ref : show fun ref

The reference is initialized to a function that always fails.

let show ref = ref {apply = fun t x → failwith "show: type not supported yet"}

This reference is private, we define two public functions: show to call the function in the reference, and
show ext to update it.

let show t x = !show ref.apply t x

To update the function, we simply try the new case, and resort to the previous version if it raises a
Not found exception.

let show ext new case =
let old show = !show ref in
show ref := {apply = fun t x → try new case.apply t x

with Not found → old show.apply t x}

Semantics The semantics of show depends on the order of the calls to show ext, since the most recent
extension is tried before the previous ones. When some patterns overlap between two extensions, it is
the most recent extension that succeeds. This semantics is fragile since it depends on the order in which
top level modules are linked.

2.2.3 A Generic, Efficient and Robust Implementation of Extensible Functions

The previous implementation of extensible functions has a couple of issues: (1) it is not general, the
same boilerplate we wrote for show would need to be written for new functions, (2) it is not very efficient

F. Balestrieri & M. Mauny 7

because a list of cases is tried until one match succeeds and (3) it is fragile as the semantics depends on
the order in which the cases are added at runtime.

The implementation we give now solves those problems by (1) using an encoding of higher-kinded
polymorphism, (2) using a hashtable indexed by the constructors, and (3) using a partial order on patterns.

Higher Kinded Polymorphism To state the obvious, the type of a type indexed function may depend
on its type index. For instance

show : α ty → α → string
read : α ty → string → α

enumerate : α ty → α list
equal : α ty → α → α → bool

How can we define a general type for type-indexed functions? They are all instances of the same scheme,
which would be expressed like this if OCAML allowed it:

type φ ty fun = ∀α . α ty → α φ

For instance show : show t ty fun where type α show t = α → string. Unfortunately OCAML does
not allow the use of type parameters of higher kinds (partially applied types like show t above). However,
we may use a defunctionalisation method to emulate them [37]. The idea is that (α ,φ) app represents
the type application of φ to the type α . We make app an extensible variant so that new constructors may
be added as we need them.

type (α ,φ) app = ..

Concretely, each type abstraction Λα . φ(α) is represented by an empty type φ ' and we add a new
constructor App_φ such that (α , φ ') app is isomorphic to φ(α)

type (_,_) app += App_φ : φ(α) → (α , φ ') app

For instance, the list type former is represented by a type list' (with no parameters), and its semantics is
given by:

type (_,_) app += App list : α list → (α , list') app

Type Indexed Functions Using app we can give a general type for type-indexed functions:

type φ ty fun = { f : ∀α . α ty → (α ,φ) app }

For instance, show may be defined using the type abstraction Λα . α → string, represented with the
abstract type show' and the app constructor

type (_,_) app += App show : (α → string) → (α , show') app

So that show' ty fun is isomorphic with ∀α . α ty → α → string.
An extensible function is a collection of ty funs. A collection is created with a function create

returning a record φ closure whose field f is the extensible function, and field ext allows us to extend it
with a new case by providing a type pattern and a ty fun matching that type pattern.

val create : string → φ closure
type φ closure = {

f : ∀α . α ty → (α , φ) app;

8 Generic Programming in OCaml

ext : ∀α . α pat → φ ty fun → unit ;
}

Type patterns are inductively defined using the type constructors of α ty plus a universal pattern Any
that acts as a wildcard, matching any type. For simplicity, type patterns are defined as synonyms of type
witnesses.

type α pat = α ty

The constructor Any : ∀α . α ty, may only be used in a context where a pattern is expected. For in-
stance, we may extend our show function to lists with the statement:

show.ext (List Any) {f = show list}

show list is a type indexed function that expects a type witness of the form List a .

let show list : type a . a ty → (a , show') app = function

| List a → App show (show list of a)
| _ → invalid arg "show_list: expected a list"

val show list of : α ty → α → string

Extensibility For fast application, we store the ty fun’s in a hashtable indexed by a type pattern where
all the parameters of a type constructor are set to Any. For instance, if an indexed function has indepen-
dent cases for Pair (Int, Bool), Pair (List String, Bool), Pair (Any, Bool), Pair (Float, Any), they will
all be associated to the same entry in the hashtable, with key Pair (Any, Any).

For each constructor pattern we store a list of functions ordered by their type pattern so that when
applying the extensible function to some given type, the more general patterns are tried after all the
more specific ones have failed to match the type. This mechanism ensures that the behaviour of an
extensible function does not depend on the order in which the cases are given. In the example above,
Pair (Int, Bool) and Pair (List String, Bool) will be tried before Pair (Any, Bool) and Pair (Float, Any)
will be tried before Pair (Any, Any).

The order on patterns is lexicographic: so that Pair (Int, Any)matches before Pair (Any, Int). Pair (Int,Int)
matches before both of them, and Pair (Any, Any) matches after all of them. Any is the most general
pattern and matches when all the other patterns fail to match.

This approach combines both efficient application in the most frequent case in which there will be
only one definition per constructor, and flexibility as it allows nested pattern matching and the order in
which the function is extended does not matter.

2.2.4 Type Equality and Safe Coercion

GADTs allows us to define type indexed types, which can also be seen as type predicates (or relations),
and their values can be seen as the proof of the predicates. Hence we may define a binary type predicate
for type equality, with a single constructor for the proof of reflexivity.

type (_,_) equal = Re� : (α ,α) equal

Pattern matching on the Re� constructor forces the type-checker to unify the type parameters of equal.
This allows us to define a safe coercion function.

let coerce from equal : type a b . (a , b) equal → a → b
= function Re� → fun x → x

F. Balestrieri & M. Mauny 9

That definition is possible because by the time we match Re�, the type b is unified with a hence, the
variable x may be used both with type a and b .

We define an extensible type-indexed function ty equal.

val ty equal : α ty → β ty → (α , β) equal option

Adding new cases to ty equal is very systematic. They may be automatically derived by a PPX extension
described in section 2.4.

ty equal ext Char { f = fun (type a) (type b) (a : a ty) (b : b ty) →
match a , b with

| Char, Char → Some (Re� : (a , b) equal)
| _ , _ → None };

In the case of parametric types, all type parameters must be recursively checked for equality.

ty equal ext (List Any) { f = fun (type a) (type b) (a : a ty) (b : b ty) →
match a , b with

| List x , List y → (match ty equal x y with

| Some Re� → Some (Re� : (a , b) equal)
| None → None)

| _ , _ → None };

By composing the previous functions we may derive a type-indexed safe coercion function:

let coerce : type a b . a ty → b ty → a → b option
= fun a b → Option.map coerce from equal (ty equal a b)

Where val Option.map : (α → β) → α option → β option.
coerce is used as the basis for implementing the function children, as well as the Uniplate and Mul-

tiplate scrap functions (sections 3.1 and 3.2).

2.3 Generic Views

A generic view is a uniform representation of the structure of types. Most libraries are built around a
single view. In our design, we allow the user to choose among many views and even to define his own.

Depending on the task, some views might be more appropriate than others. For instance, to imple-
ment safe deserialization in Section 4 we need a low level view reflecting the specificities of OCAML

types. When such details can be ignored, a higher level view is more adequate and easier to work with.
For instance, the Multiplate library is written on top of the list-of-constructors view.

The low level view desc is special in the library in that it is the primitive view and is automatically
derived from type definitions using the PPX attribute reify described in section 2.4. All the high level
views are defined as a generic function by using the low level view. We show some examples in Section
2.3.

2.3.1 What is a View?

A generic view is given by a datatype α view together with a type indexed function view : α ty → α view.
It maps a type witness to a value giving the structure of the type.

10 Generic Programming in OCaml

The rest of the chapter describes some common views that are available in the library. For each view,
we show how binary trees are represented and we give an implementation of the function children : α ty → α → α list
seen in the introduction.

Note that abstract types may have a public representation associated to them: their generic view gives
the structure of that public representation.

2.3.2 Sum of Products

The sum of products view represents algebraic datatypes using finite products and finite sums. The
implementation follows closely that of the Haskell LIGD library [4].

We must define an empty type and a binary sum type from which all finite sums may be constructed:

type empty
type (α , β) sum = Left of α | Right of β

The sum of products representation is given by an indexed type α sp whose index α is the type being
represented. We first give a representation of finite sums and products by reifying the index:

type α sp =
| Empty : empty sp
| Sum : α sp × β sp → (α , β) sum sp
| Unit : unit sp
| Prod : α sp × β sp → (α × β) sp

With only those constructors, α sp would only allow us to represent types α built out of empty, sum,
unit and (×). We extend it to user defined types (variants, records, etc) by providing an isomorphism
between the user type and a representation as a sum of products.

| Iso : α sp × (α , β) Fun.iso → β sp

Meta information may be attached to the representation, for instance we may provide the name of variant
constructors and record fields with:

| Con : string × α sp → α sp
| Field : string × α sp → α sp

We provide a type witness for the types that cannot be represented as a sum of products, those are the
base cases that require a specific behaviour: int, �oat, char, string, array, etc.

| Base : α ty → α sp

Finally, we need a constructor to delay the computation of a view, similar in its role to the lazy keyword
in that it prevents an infinite term to be computed.

| Delay : α ty → α sp

Intuitively, the meaning of Delay t is lazy (view t). Delaying the recursive computation of the view is
very useful. Without it, it wouldn’t be possible to define the function children for instance (see below).

Sum of Products View for Binary Trees The generic function sumprod : α ty → α sp computes the
sum of products representation of any type, it is derived from the low level desc view. In the case of
binary trees, the view is equivalent to:

F. Balestrieri & M. Mauny 11

sumprod (Btree a) ≡
Iso (Sum (Con ("Empty", Unit)

, Con ("Node", Prod (Delay (Btree a)
, Prod (Delay a , Delay (Btree a)))))

, { fwd = (function Left () → Empty | Right (l , (x , r)) → Node l x r)
; bck = (function Empty → Left () | Node l x r → Right (l , (x , r))) })

Generic Equality A common pattern when defining a generic function is to define two mutually recur-
sive functions, one working on the type witness and the other one working on a generic view. The first
one may implement ad-hoc cases by pattern matching on the type witness and a generic case covering
the other cases.

The function equal calls equal sp on the sumprod view:

let rec equal : type a . a ty → a → a → bool
= fun t → equal sp (sumprod t)

and equal sp : type a . a sp → a → a → bool
= fun s x y → match s with (∗ ... ∗)

and equal sp is by induction on the type structure. Equality on unit is trivial:

| Unit → true

Equality for products is component wise.

| Prod (a , b) → (match x , y with

| (xa, xb) , (ya, yb)
→ equal sp a xa ya && equal sp b xb yb)

Equality on sums is also straightforward:

| Sum (a , b) → (match x , y with

| Left xa , Left ya → equal sp a xa ya
| Right xb , Right yb → equal sp b xb yb
| _ , _ → false)

Meta information is ignored:

| Con (_, a) → equal sp a x y
| Field (_, a) → equal sp a x y

User types are delt with by recursion over the representation:

| Iso (s , fb) → equal sp s (fb.bck x) (fb.bck y)

The constructor Delay is used to delay the computation of a view to avoid infinite representations. Note
the mutual recursion with equal since t is a type witness rather than a sum of product representation.

| Delay t → equal t x y

Equality over the empty type is the empty function. We use empty elim : ∀α . Empty → α .

| Empty → Sum.empty elim x

For the basic types (char, �oat, etc) we resort to the primitive equality:

| Base t → x = y

12 Generic Programming in OCaml

Children The function children makes crucial use of the Delay constructor to check whether the de-
layed type is the same as the type of the term.

let rec children t = children sp t (sumprod t)
and children sp : type b . α ty → b sp → b → α list

= fun t s x → function

| Delay t ' → child t t ' x

The children lists of both components of a product are concatenated:

| Prod (a , b) → (match x with (xa, xb)
→ children sp t a xa @ children sp t b xb)

All the remaining cases simply recurse, following the type structure.

| Sum (a , b) → (match x with

| Left xa → children sp t a xa
| Right xb → children sp t b xb)

| Con (_, s ')
| Field (_, s ') → children sp t s ' x
| Iso (s ', fb) → children sp t s ' (fb.bck x)

Base and Empty have no children.

| Base _ | Empty → []

child builds a singleton list only if the two type witnesses are equal.

val child : α ty → β ty → β → α list

To implement child we use a function to coerce a value from a type to another if they are equal, coerce is
a primitive of the library discussed in section 2.2.4.

val coerce : α ty → β ty → α → β option
let child a b x = list of opt (coerce b a x)

list of opt does what its name suggests:

let list of opt = function None → [] | Some x → [x]

2.3.3 Spine

The spine view underlies the Scrap Your Boilerplate library for Haskell [12]. It allows to write generic
functions very concisely compared to other views like the sum of product view. However it has some
limitations, for instance it is not possible to define generators (such as a generic parser for instance). It is
only really useful to define consumers (such as a generic print function).

The spine view is unusual in that it gives a view on a typed value rather than on the type alone:

val spine : α ty → α → α spine

The spine representation shows the applicative structure of a value as a constructor applied to its argu-
ments:

type α spine =
| Con : α → α spine
| App : (α → β) spine × α ty × α → β spine

F. Balestrieri & M. Mauny 13

For instance, the value Node (Empty, 1, Node(Empty, 2, Empty)) is represented as

App (App (App (Con node, Btree Int, Empty), Int, 1), Btree Int, Node(Empty, 2, Empty))

Where node is a curried constructor function.

let node l x r = Node (l ,x ,r)

Spine View for Binary Trees Let us look at the spine view of binary trees. We define a function
spine btree of type:

val spine btree : α ty → α btree → α btree spine

such that spine (Btree a) = spine btree a . Note that spine—like all the high level views—is in fact
generically defined in terms of the low level view.

let spine btree a = function

| Empty → Con Empty
| Node (left , x , right) → App (App (App (Con node, Btree a , left), a , x), Btree a , right)

Equality Generic equality can be implemented using the spine view with a small modification to our
spine type.

let rec equal : type a . a ty → a → a → bool
= fun t → equal het t t

and equal het : type a b . a ty → b ty → a → b → bool
= fun a b x y → equal spine (view a x , view b y)

and equal spine : type a b . a Spine.t × b Spine.t → bool
= function

| Con x , Con y → raise Unde�ned
| App (f , a , x) , App (g , b , y) →

equal het a b x y
&& equal spine (f , g)

| _ , _ → false

First, notice that we need to generalise the type of equality to arguments of different types (heteroge-
neous equality). This is because the spine view for each argument gives rise to independent existentially
quantified variables. As a result, when comparing two constructors for equality, we are left with two
values of different types, since Con : α → α spine. And we are stuck, since not even primitive equality
can work on different types. To fix our problem, we need to extend the spine datatype to carry more
information about constructors, such as its name, arity, module, file location, and so on. If we make
sure that the meta information associated to a constructor uniquely identifies it then we can finish our
implementation of equal by changing the erroneous line with:

| Con (x , meta x), Con (y , meta y) → meta x ≡ meta y

Using primitive equality to check that the meta information is indeed the same.

14 Generic Programming in OCaml

Children Let us implement the children function from the introduction using the spine view.

let children a x = children spine a (spine a x)

children spine takes the type witness of the tree—this is also the type of the children—and a spine whose
type is different. This is because when we recursively go through the spine, the type of the spine changes.

val children spine : α ty → β spine → α list

If the spine is a constructor, it contains no child and we return the empty list. If the spine is an application
f x , we collect the children of both f and x . A type annotation is necessary because the recursive calls
change the type of b spine.

let rec children spine : type b . α ty → b spine → α list
= fun t → function

| Con _ → []
| App (f , a , x) → children spine t f @ child t a x

See how much simpler that definition of children is in comparison to the one using the sum of products
view.

2.3.4 Low Level View

Whereas the high level views give a uniform structural representation of types, the low level view desc
captures the particularities.

OCAML types are grouped in categories. Each of them is identified by a constructor of the desc view:

type α desc =
| Array : β ty × (module Array intf with type t = α and type elt = β) → α desc
| Product : β product × (β , α) iso → α desc
| Record : (β ,α) record → α desc
| Variant : α variant → α desc
| Extensible : α ext → α desc
| Custom : α custom → α desc
| Class : α class t → α desc
| Synonym : α synonym → α desc
| Abstract : α abstract → α desc
| NoDesc : α desc

Array OCAML has a few array-like types: array, string and bytes. They can be handled generically
using a common interface.

module type Array intf = sig

type t
type elt
val length : t → int
val get : t → int → elt
val set : t → int → elt → unit
val init : int → (int → elt) → t
val max length : int

end

F. Balestrieri & M. Mauny 15

The rest of the array operations can be derived from this minimal interface.
The desc view for arrays consists of a witness for the type of the array elements, and a first class

module of type Array intf.

Product Tuple types are a family of builtin types. The desc view for n-ary products consists of an
isomorphism between the product and n nested binary products, i.e. α × β × γ ≅ α × (β × (γ × unit)).

Right-nested binary products are fully captured by the following indexed-type:

type α product =
| Nil : unit product
| Cons : α ty × β product → (α × β) product

The isomorphism is given by two functions which are required to be each other’s inverse.

type (α ,β) iso = {fwd : α → β ; bck : β → α}

Record A record type is described as a set of fields, each field is described by its name, type and a
procedure to update its value if it is mutable.

To complete the description of a record type, it is associated to a product type and an isomorphism
to convert between the record and the product.

type (β , α) record =
{ name : string
; module path : string list
; �elds : (β , α) �elds
; iso : (β , α) iso
}

type (β , α) �elds =
| Nil : (unit, α) �elds
| Cons : (β , α) �eld × (γ , α) �elds → (β × γ , α) �elds

type (α , ρ) �eld =
{ name : string
; ty : α ty
; set : (ρ → α → unit) option
}

Variant A variant is described as a set of constructors.

type α variant =
{ name : string
; module path : string list
; cons : α cons
}

The set of constructors is an abstract type cons. The primitive way to build a description of the set
of constructors is through the function cons that turns a list of single constructor description into the
abstract set cons.

val cons : α con list → α cons

16 Generic Programming in OCaml

Through the public functions, non-constant constructors and constant constructors are accessed sep-
arately and ordered by their internal tag. This information is crucial for checking the compatibility of
runtime values with a given variant and is needed in the implementation of safe-deserialisation, see sec-
tion 4.

The interface consists of functions to get the number of constant constructors, access a constant
constructor of a given tag and construct the list of all constant constructors ordered by their tags.

val cst len : α cons → int
val cst get : α cons → int → α con
val cst : α cons → α con list

The same set of functions is provided for non-constant constructors.

val ncst len : α cons → int
val ncst get : α cons → int → α con
val ncst : α cons → α con list

Finally the list of all constructors (constant and non-constant) may be computed with con list.

val con list : α cons → α con list

Each constructor is described by its name, the types of its arguments given as a nested product, a
function to embed a value of the nested product to the variant type, and a partial projection function that
only succeeds when its argument is built with precisely this constructor.

type (β , α) con =
{ name : string (∗ name of the constructor ∗)
; args : (β , α) �elds (∗ arguments of the constructor ∗)
; embed : β → α (∗ applies the constructor to the arguments. ∗)
; proj : α → β option (∗ tries to deconstruct that constructor ∗)
}

Finally, the function conap : α cons → α → α conap deconstructs—in constant time—a value into
a pair of a constructor and its arguments.

type α conap = Conap : (β , α) con × β → α conap

The function conap enjoys the following property: conap cs x = Conap (c ,y) Ô⇒ c .embed y = x .
Note that GADTs may be described as variants. The set of constructors may vary depending on the

concrete type index of the GADT.

Extensible Extensible variants allow new constructors to be added to a type after it has been defined.
The generic view for extensible variants must also be extensible so that the description of the new con-
structors may be added to the description of the extensible variant.

type α extensible =
{ name : string
; module path : string list
; ty : α ty
; cons : ext cons
}

F. Balestrieri & M. Mauny 17

The extensible set of constructors for the type α is given by the field cons : ext cons where ext cons is
an abstract type. An initially empty set is created with:

val create : unit → cons

A public interface allows us to modify and query the set of constructors:

val add con : α extensible → con → unit (∗ add the description of a new constructor ∗)
val con list : α extensible → α con list (∗ return the list of existing constructors ∗)
val con : α extensible → α → α con (∗ find the constructor of a given value ∗)
val conap : α extensible → α → α conap (∗ deconstruct a value as a constructor application ∗)

Finally, the function �x is of particular interest for deserialization:

val �x : α extensible → α → α

Serialising then deserializing an extensible value (including exceptions) does not preserve structural
equality: umarshall (marshall x) ≠ x . In particular, pattern matching the deserialized value does not
work as expected. The function �x fixes that: when given a deserialized value, it returns a value struc-
turally equal to the one that was serialized: �x (unmarshall (marshall x)) = x

In details, when an extensible value has been deserialized, its memory representation will be different
from that of the value before it was serialized. This is because constructors of extensible variants are
implemented as object blocks (same as OCaml objects), and they get assigned a unique identifier when
created. �x ext x replaces the constructor of x with the original constructor object that is stored in the
α extensible datastructure ext.

Custom Custom data are defined outside of OCAML, typically in the language C. They are considered
as abstract from an OCAML perspective. The only information available is their identifier, given by the
homonymous field of the C-struct custom operations defined in <caml/custom.h>.

type α custom =
{ name : string
; module path : string list
; identi�er : string
}

Generic support for custom types comes from the use of a public representation, just like with abstract
types, see section 2.3.7.

Class A class is given as a list of methods.

type α class t =
{ name : string
; module path : string list
; methods : α method list
}

A method has a name, a type, and a function that is executed when the corresponding method is called
on an object of the class.

type α method = Method : (β , α) method desc → α method
type (β , α) method desc =

18 Generic Programming in OCaml

{ name : string
; send : β → α

; ty : β ty
}

For example, the point class

class point init = object

val mutable x = init
method get x = x
method move d = x ← x + d

end

is described by

let get x = { name = "get_x" ; send = (fun c → c #get x); ty = Int }
and move = { name = "move" ; send = (fun c → c #move); ty = Fun (Int, Unit) }
in Class { name = "Point" ; methods = [Method get x; Method move] }

Synonym The view for a type synonym type s = t consists of a type witness for t and a proof that
the two types are equal. The equality type corresponds to the equivalence of type synonyms in OCAML;
it was introduced in section 2.2.4.

type α synonym =
{ name : string
; module path : string list
; ty : β ty
; eq : (β ,α) equal
}

Abstract No information is associated with an abstract type, except for its name, thus respecting the
desire of the programmer to hide the concrete implementation of the type. Still, we may run generic
functions over abstract types if they have a public representation. This is explained in section 2.3.7.

type α abstract =
{ name : string
; module path : string list
}

NoDesc The constructor NoDesc is used to signify that a view is not yet, or cannot be, associated with
a type. For instance a function type does not have a meaningful generic view.

2.3.5 Objects and Polymorphic Variants

Objects types and polymorphic variants types are structural types rather than nominal types: an object
type is given by the set of his methods signatures, and a polymorphic variant type is given by the set of
its constructors signatures. Since there is no type name to be reflected in a type witness, one must instead
provide a view as the type witness.

F. Balestrieri & M. Mauny 19

type _ ty += Object : α object desc → α ty
type _ ty += PolyVariant : α polyvariant desc → α ty

To describe objects, the method datatype of the previous section is reused:

type α object desc = α method list

Values of polymorphic variant types have a different memory representation than values of normal vari-
ants, as such they need a distinct generic description. Each data constructor of a polymorphic variant
is associated to a hash value, thus we provide operations to compute that hash value and operations to
compute the data constructor corresponding to a given hash.

We define an abstract type α poly variant representing the set of constructors of a polymorphic
variant type α , together with functions to create a poly variant and extract a constructor and compute its
hash value.

type α poly variant
val poly variant : α Con.t list → α poly variant
val hash : α con → int
val �nd : α poly variant → int → α con

conap deconstructs a polymorphic variant value into its data constructor and its arguments (See the
paragraph on variants, in section 2.3.4).

val conap : α poly variant → α → α conap

Important note: the support for objects and polymorphic variant types is very fragile and should
be considered experimental. It is not obvious how they may be compared for equality. As a result we
may not yet extend a type-indexed function with a case for an object or polymorphic variant type. It is
however possible to define generic functions that work on them (through a generic view). An example is
the deserialization function presented in section 4.

2.3.6 List of Constructors

The list of constructor view is similar to the underlying view of the RepLib Haskell library [33]. In
a nutshell, the view sees all types as variants. Products and records are viewed as variants of a single
constructor. The other categories of types do not fit well under that description, and are left as base cases
with no constructors.

The view is similar to the sum-of-products view in the sense that each constructor is associated to a
product and the type is the sum of those products.

We reuse the type of constructor descriptions con defined for the low level desc view. For instance,
given the witness of the type parameter a : α ty, the list-of-constructors view for α btree is:

let cons btree a =
let empty = Con

{ name = "Empty"
; args = Nil
; embed = (function () → Empty)
; proj = (function Empty → Some () | _ → None)
}

and node = Con
{ name = "None"

20 Generic Programming in OCaml

; args = f3 (Btree a) a (Btree a)
; embed = (function (l ,(x ,(r ,()))) → None (l , x , r))
; proj = (function Node (l ,x ,r) → Some (l ,(x ,(r ,()))) | _ → None)
}

in [empty; node]

f3 computes a lists of three fields with empty labels.

val f3 : α ty → β ty → γ ty → (α × (β × (γ × unit)), δ) �elds

Equality Typically, functions using the list-of-constructors view are defined by three mutually recur-
sive functions: the first works with type witnesses and delegates the work on the view, the second works
on the view and iterates through the list of constructors to find the matching constructor, the third works
on the product of arguments of a single constructor.

let rec equal : type a . a ty → a → a → bool
= fun t → match conlist t with

| [] → (=) (∗ Base case (core types) ∗)
| cs → equal conlist cs (∗ Generic case ∗)

and equal conlist : type a . a con list → a → a → bool
= fun cs x y → match conap cs x with

| Conap (c ,x ') → match c .proj y with

| None → false (∗ Not the same constructor ∗)
| Some y ' → equal prod (product c) x ' y '

and equal prod : type p . p product → p → p → bool
= function

| Nil → fun _ _ → true

| Cons (t , ts) → fun (x ,xs) (y ,ys) → equal t x y && equal prod ts xs ys

A particularly useful function is conap which deconstructs a value into a constructor and its argu-
ments, it has the same semantics as the homonymous function on variants given earlier, but this one has
a linear complexity since it must walk through its list argument in order to find a matching constructor.

val conap : α con list → α → α conap

Children The list-of-constructor view makes our job really easy here: conap computes the list of all
children, whatever their types, and we only need to keep those that have the same type as the parent. The
function child was defined p. 12.

let rec �lter child t = function

| Nil , () → []
| Cons (t ', ts) , (x , xs) →

child t t ' x @ �lter child t (ts , xs)

let children t x = match conap (conlist t) x with

| Conap (c , y) → �lter child t (product c , y)

F. Balestrieri & M. Mauny 21

2.3.7 Abstract Types

Abstract types are an essential element of modular programming. Separating the public interface from
the concrete implementation allows us to change the implementation without consequences for the users
of the module. Generic functions should respect the abstraction, therefore the concrete type structure
of an abstract type should not be available through the generic views. This is why the low level view
provides a constructor Abstract for abstract types that only exports their names. However, in order to
compute anything useful, one needs a generic view to convert back and forth between the abstract type
and a public representation on which the generic functions may act.

The view is given by a type α repr that specifies a representation for an abstract type α , and a type-
indexed function repr that returns the representation associated to a type witness:

val repr : α ty → α repr

The type α repr is existentially quantified over the representation type β :

type α repr = Repr : (α ,β) repr by → α repr

type (α ,β) repr by specifies how the abstract type α is represented by the type β . It is a record type
whose fields we explain below:

repr ty : β ty Witness of the representation type.
to repr : α → β Conversion from the abstract type to the representation.
from repr : β → α option Partial conversion from representation to the abstract type. It may

fail with None if the representation is not valid.
default : α A default value.
update : α → β → unit When possible, update x y should modify in place the abstract

value α to match the representation β .

The reason for the last two fields will become clear when we explain the implementation of type safe
deserialization in section 4, which was the primary reason for including them.

Example An abstract type for natural numbers implemented as int.
The module signature hides the implementation of nat. The type witness Nat must be exported as

well if we want to support generic programming. However, the views desc and repr are extended as side
effects and are not visible in the signature.

module Nat : sig
type nat
type _ ty += Nat : nat ty

end = struct

type nat = int
type _ ty += Nat : nat ty

We define Nat as Abstract in the low level view.

Desc fun.ext Nat {f = fun (type a) (t : a ty) → (match t with

| Nat → Abstract { name = "nat" ; module path = ["Test" ; "Nat"] }
| _ → assert false : a desc) }; ;

We define the representation using int and making sure that negative integers are not converted to nat:

22 Generic Programming in OCaml

let nat repr = Repr
{ repr ty = Int
; to repr = (fun x → x)
; from repr = (fun x → if x ≥ 0 then Some x else None)
; default = 0
; update = (fun _ _ → ()) }

The abstract view repr must be extended manually.

Repr.ext Nat { f = fun (type a) (t : a ty) → (match t with

| Nat → nat repr
| _ → assert false : a repr) }; ;

end (∗ end of Nat module ∗)

2.4 Syntax Extensions

The library is compatible with OCAML version 4.04. In order to provide support for a user type τ , one
should add a corresponding type witness τ ty, and add a corresponding case to the low level view τ desc,
as well as τ ty desc, and also extend the type equality function ty equal (section 2.2.4). This involves a
lot of boilerplate which can be fully automated by using extension points (PPX).

When the structure item attribute [@@reify] is associated with a type declaration, a type witness
obtained by capitalizing the type name is defined and the low level view is extended. The generated code
is placed right after the type declaration.

Alternatively a global (floating) attribute [@@@reify−all], placed at the top of the file, ensures that
every type declaration is reified, unless the type declaration is marked with [@@dont reify].

The attribute [@@abstract] ensures that the low level view for that type is Abstract and hides the
concrete structure of the type. However, the repr view must still be extended manually.

The attribute [@@no desc] maybe used in case the user wants to provide his own implementation of
the low level view for the type but still wants the type witness to be generated and a new case for the type
equality function.

Potential Compile-Time Errors Name conflicts may arise from the generated type witnesses, which
are new data constructors extending the type ty: constructor names are obtained from type names by
capitalizing them.

The user should make sure that all the necessary types and type witnesses are in scope. The PPX
does not open any module. In particular, it is usually necessary to open Generic.Core.Ty.T which exports
the witnesses for the builtin types (bool, char, int, int32, int64, nativeint, float, bytes, string, array, exn,
ref, option, list, ty, unit, and tuples up to decuples).

When reifying a type, the witnesses for all the types that are mentionned in the definition should be
in scope (fields of records, constructors of variants, definitions of synonyms).

Reifying GADTs Currently the low level view for GADTs must be written by hand. The view that is
derived by default for variant datatypes doesn’t work with GADTs, one must use the attribute [@@no desc]
to prevent the generation of the view, or [@abstract] if one wants to make the type abstract.

Reifying Classes Currently, classes are reified as abstract datatypes, the class representation (low level
view) must be written by hand. In that case, one must use the attribute [@@no desc].

F. Balestrieri & M. Mauny 23

Extensible Type-Indexed Functions There is currently no syntax support for creating and extending
type-indexed functions. Extending by hand the low level view desc with a case for btree requires the
following boiler plate:

ext (Btree Any) { f = fun (type a) (ty : a ty) → (match ty with

| Btree a → Variant {name = "btree" ; module path = ["Example"] ; cons = cons btree a}
| _ → assert false : a Desc.t)

};

cons btree was defined above, p. 19.

3 Boilerplateless Generic Traversals

The examples in this chapters are adapted from Mitchell [25]. Consider a simple expression language
with constants, negation, addition, substraction, variables, and bindings.

type expr = Cst of int | Neg of expr | Add of expr × expr| Sub of expr × expr
| Var of string | Let of string × expr × expr [@@reify]

Let us compute the list of all constants occurring in an expression:

let rec constants = function

| Cst x → [x]
| Neg x → constants x
| Add (x , y) → constants x @ constants y
| Sub (x , y) → constants x @ constants y
| Var n → []
| Let (n , x , y) → constants x @ constants y

This definition has the three characteristics of a boilerplate problem: (1) adding a constructor to the type
would require adding a new case to the function. (2) most cases are repetitive and systematic, only one
case here—Cst—is really specific. (3) the code is tied to a particular operation and cannot be shared.

In real world compilers, AST have many more constructors and those issues become all the more
frustrating. Generic traversals are the answer.

With a generic function family : α ty → α → α list that returns the list of all the subexpressions of
an expression, the previous example may be written:

let is cst = function

| Cst k → [k]
| _ → []

let constants e = List.concat (List.map is cst (family Expr e))

Notice that (1) is cst only mentions the constructor Cst, therefore adding new constructors to the type
wouldn’t break the behaviour of constants, (2) the repetitive cases have disappeared, (3) the traversal
code is shared in the library function family.

A few libraries for Haskell offer a similar functionality, of which Uniplate and Multiplate were our
main inspiration.

24 Generic Programming in OCaml

3.1 Uniplate

The whole Uniplate library2 relies on a single generic function scrap which may easily be implemented
using the spine view, or the list-of-constructors view.

val scrap : α ty → β → β list × (β list → α)

scrap a b returns the list of children of a value of type a and a function to replace the children. By
children, we mean the maximal substructures of the same type. For instance, the tail of a list is the only
child of a non-empty list.

3.1.1 Children, Descendents, Family

From scrap we can of course derive children and replace children which are simply the first and second
components of the result:

val children : α ty → β → β list
val replace children : α ty → α → α list → α

Note that replace children expects a list of the same size as the one returned by children, that property is
only checked at runtime.

Let us define a descendent of a value as either the value itself or a descendent of one of its children.
The family is the set of all the descendents of a value.

let rec family a x = x :: List.concat (List.map (family a) (children a x))

Most applications of family consist in filtering the descendents and extracting some information.

3.1.2 Transformation and Queries

A transformation is modifying a value and has some type α → α , whereas a query is a extracting some
information: its type is α → β . The generic traversals in Uniplate are higher-order functions that take
a transformation or a query to compute a more complex transformation or query. For instance, one can
define a non-recursive transformation to rename a variable and use the combinator map family to apply
it recursively on an AST, with the effect of changing every variable of an expression.

3.1.3 Paramorphisms

A paramorphism is a bottom-up recursive function whose inductive step may also depend on the initial
value in addition to the recursive results [24]. Accordingly, we express the inductive step of our para
operator as a function with type α → ρ list → ρ , that takes the initial value and the list of the children’s
results. The para combinator then recursively applies the inductive step to compute a result for the whole
expression.

val para : α ty → (α → ρ list → ρ) → α → ρ

let rec para a f x = f x (List.map (para a f) (children a x))

As an example, the family function could be expressed as a paramorphism:

let family a = para a @@ fun x xs → x :: List.concat xs

2The combinators have been renamed for consistency with the Multiplate library, a correspondence is given in section 5.

F. Balestrieri & M. Mauny 25

The height function from the introduction may also be computed directly as a paramorphism:

let height a = para a @@ fun _ children heights →

match children heights with

| [] → 0
| h :: hs → 1 + List.fold left max h hs

3.1.4 Top-Down Transformations

map children rewrites each child of the root using a given transformation.

let map children : α ty → (α → α) → (α → α)
= fun a f x → let (children, replace) = scrap a x

in replace (List.map f children)

Let us define substitution for our expressions. First we define a finite map for our environments:

module Env = Map.Make (struct type t = string; ; let compare = Pervasives.compare end)
type env = expr Env.t

Substitution is only really concerned with two cases, Let and Var, the rest of the cases involve recursing
on the children (and rebuilding the term).

let rec subst : env → expr → expr
= fun env → let open Env in function

| Let (n , x , y) → let env ' = �lter (fun n ' _ → n ≠ n ') env
in Let (n , subst env x , subst env ' y)

| Var n when mem n env → �nd n env
| x → map children Expr (subst env) x

3.1.5 Bottom-Up Transformations

map family recursively applies a transformation in a bottom-up traversal.

val map family : α ty → (α → α) → (α → α)

For instance, on a list [x ; y ; z] the transformation is applied along the spine of the list.

map family (List a) f [x ; y ; z] ≡ f (x :: f (y :: f (z :: f [])))

The families of the children are transformed before the value itself:

let rec map family a f x = f (map children a (map family a f) x)

For instance, we may remove double negations. The one-step transformation is applied bottom-up,
ensuring that all double negations are removed.

let simplify = map family Expr @@ function

| Neg (Neg x) → x
| x → x

We may implement constant folding, i.e. evaluate the subexpressions involving only constants:

26 Generic Programming in OCaml

let const fold = map family Expr @@ function

| Add (Cst x , Cst y) → Cst (x + y)
| Sub (Cst x , Cst y) → Cst (x − y)
| Neg (Cst x) → Cst (−x)
| x → x

3.1.6 Normal Forms

In some cases, we want to apply a rewriting rule exhaustively until a normal form is reached. The
rewriting rule is given as a function of type α → α option which returns None when its argument is in
normal form and otherwise performs one reduction step.

val reduce family : α ty → (α → α option) → α → α

reduce family applies the rewriting rule until it returns None for all the descendents of the result.

let rec reduce family a f x =
let rec g x = match f x with None → x | Some y → map family a g y
in map family a g x

We may extend our previous example with another rewrite rule to remove the use of substraction from
our expressions:

let simplify more = reduce family Expr @@ function

| Neg (Neg x) → Some x
| Sub (x , y) → Some (Add (x , Neg y))
| _ → None

The rewrite rule for Sub introduces a Neg constructor, which is itself on the left hand side of a rewrite rule,
this may create a new rewriting opportunity: for instance Sub x (Neg y) rewrites to Add (x , Neg (Neg y
)) which in turns rewrites to Add (x ,y). Using reduce family ensures that no rewriting opportunity is
missed.

3.1.7 Effectful Transformations

Finally, all the traversals combinators have an effectful counterpart that threads the effects of an effectful
transformation. We used the encoding of higher-kinded polymorphism explained earlier p. 7 to parame-
terise the functions over applicative functors and monads.

val traverse children : φ applicative → α ty → (α → (α , φ) app) → (α → (α , φ) app)
val traverse family : φ monad → α ty → (α → (α , φ) app) → (α → (α , φ) app)
val mreduce family : φ monad → α ty → (α → (α option, φ) app) → (α → (α , φ) app)

We will show later how one could use traverse family with a state monad to rename each variable to be
unique. Beforehand, we must introduce some definitions.

Functors, Applicative, Monad, Monoid Using our encoding of higher-kinded polymorphism, we
define the operations of functorial, applicative and monadic types. We assume the reader knows about
those operations, they have been extensively discussed in the literature [31, 23]

F. Balestrieri & M. Mauny 27

type φ functorial =
{ fmap : α β . (α → β) → (α , φ) app → (β , φ) app
}

type φ applicative =
{ pure : α . α → (α ,φ) app
; apply : α β . (α → β , φ) app → (α , φ) app → (β , φ) app
}

type φ monad =
{ return : α . α → (α ,φ) app
; bind : α β . (α , φ) app → (α → (β , φ) app) → (β , φ) app
}

Applicative functors and monads are functors:

val fun of app : α applicative → α functorial
val fun of mon : α monad → α functorial
let fun of app {pure; apply} =
{fmap = fun f → apply (pure f)}

let fun of mon {return; bind} =
{fmap = fun f kx → bind kx (fun x → return (f x))}

Monads are applicative functors:

val app of mon : α monad → α applicative
let app of mon ({return; bind} as m) =

{ pure = return
; apply = fun kf kx → bind kf (fun f → (fun of mon m).fmap f kx)
}

Pure functions may be lifted to an applicative functor or a monad, with functions liftA,..liftA4, and liftM
variants. For instance, liftA2 lifts a binary function:

val liftA2 : φ applicative → (α → β → γ) →
(α , φ) app → (β , φ) app → (γ , φ) app

We may traverse a list, executing an effectful function on each element.

val traverse : φ applicative → (α → (β , φ) app) → α list → (β list, φ) app
let rec traverse a f = function

| [] → a .pure []
| h :: t → liftA2 a cons (f h) (traverse a f t)

A specific case of traversing is when the list contains effectful elements. We may sequence the effects
of the element and obtain an effectful list of pure elements. The list functor and the applicative functor
commute.

val sequence : φ applicative → (α , φ) app list → (α list, φ) app
let sequence a = traverse a (fun x → x)

We may derive monadic versions of traverse and sequence:

let traverseM m = traverse (app of mon m)
let sequenceM m = sequence (app of mon m)

28 Generic Programming in OCaml

Reader Monad The reader monad is parameterised by the type of an environment β which may be
read as a side effect of a monadic computation. A value in the reader monad is a function β → α from
the environment to a result.

type β reader = READER
type (_,_) app += Reader : (β → α) → (α , β reader) app
let run reader = function

| Reader f → f
| _ → assert false

return brings a pure value into the reader monad, the environment is ignored. bind x f passes the envi-
ronment to both x and f .

let reader =
{ return = (fun x → Reader (fun env → x))
; bind = (fun x f →

Reader (fun env →
let y = run reader x env
in run reader (f y) env))

}

In addition to the monad primitives, the reader monad has a primitive ask to access the environment and
local to run a reader action in a modified environment.

val ask : (α , α reader) app
val local : (α → β) → (γ , β reader) app → (γ , α reader) app
let ask = Reader (fun x → x)
let local modify r = Reader (fun env → run reader r (modify env))

State Monad The state monad is parameterised by the type of a state β and allows the threading of
a state as a side effect of a monadic computation. A value in the state monad is a function β → α × β

from an initial state to a result and a new state.

type β state = STATE
type (_,_) app += State : (β → α × β) → (α , β state) app
let runState = function

| State f → f
| _ → assert false

return brings a pure value into the state monad. The state is left untouched. bind x f runs the stateful x
with a state s obtaining a result y and a new state s '; then f is applied to y yielding a stateful computation
which is run in the new state s '.

let state =
{ return = (fun x → State (fun s → (x , s)))
; bind = (fun x f →

State (fun s →
let (y , s ') = runState x s
in runState (f y) s '))

}

F. Balestrieri & M. Mauny 29

In addition to the monad primitives, the state monad has a primitive get to access the state and set to
replace the state with a new one.

val get : (α , α state) app
val put : α → (unit, α state) app
let get = State (fun s → (s , s))
let put s = State (fun _ → ((), s))

Abstracting over Constants Consider the task of replacing all constants in an expression with unique
variables. We will use the state monad to hold a counter. Let us write a function that increments the
counter and returns the last value:

val incr : (int, int state) app
let incr = let (>>=) = state.bind and return = state.return in

get >>= fun i →
put (i+1) >>= fun () →
return i

The core of the program uses the effectful traversal combinator traverse family to recursively apply the
transformation in a bottom-up traversal of the expression.

let abstract state = traverse family state Expr @@ function

| Cst _ → liftM state (fun i → Var ("x" ^ string of int i)) incr
| x → state.return x

The main function runs the stateful action with an initial counter value.

val abstract : expr → expr
let abstract x = run state (abstract state x) 0

Free Variables3 To collect the free variables of an expression, we will use the reader monad to keep
track of the variables in scope. The reader environment is the list of variables in scope.

type scoped = string list reader

We may define the function in_scope that checks if a variable is in the environment:

let in scope n = Reader (List.mem n)

We also need to extend the scope with a new bound variable. extend scope n c runs the scoped compu-
tation c in the scope extended with n .

val extend scope : string → (α , scoped) app → (α , scoped) app
let extend scope n = local (fun ns → n :: ns)

The function free vars is run in an initially empty scope:

val free vars : expr → string list
let free vars x = run reader (free vars scoped x) []

3This example is adapted from Sebastian Fischer’s blogpost http://www-ps.informatik.uni-kiel.de/~sebf/

projects/traversal.html

http://www-ps.informatik.uni-kiel.de/~sebf/projects/traversal.html
http://www-ps.informatik.uni-kiel.de/~sebf/projects/traversal.html

30 Generic Programming in OCaml

The core of the algorithm uses the fold combinator to recursively apply an inductive step. The step takes
a list of scoped lists of free variables rs which are sequenced and concatenated into a scoped list of free
variables r . Only two cases are significant: when the expression is a variable, we check if it is bound or
free before returning either the empty list or a singleton; when an expression is a let binding, we run the
scoped result in an extended scope including the new bound variable.

val free vars scoped : expr → (string list, scoped) app
let free vars scoped = para Expr @@ fun expr rs →

let r = liftM reader List.concat (sequenceM reader rs)
in match expr with

| Var n → reader.bind (in scope n) (fun is in scope →

reader.return (if is in scope then [] else [n]))
| Let (n , _, _) → extend scope n r
| _ → r

3.2 Multiplate

One of the design goal of the Uniplate library was the simplicity of its types [25]. However, this came at
the cost of a loss of generality: the traversals are only expressed in terms of a single recursive type. The
library had a slight generalisation to two mutually recursive types called biplate. However, yet another
generalisation called Multiplate made it possible to deal with any number of mutually defined types [27].

Multiplate is very similar to Uniplate, it has the same combinators that take a simple transformation
and apply it to the children or recursively to the whole family of descendents. However that transfor-
mation, rather than being on a single type α → α , is a type indexed transformation that can transform
any type ∀α . α ty → α → α . Accordingly, the notion of children in Multiplate is more general: now
children can have any type. The children of a variant value are all the arguments of its constructor. The
children of a record are all of its fields.

3.2.1 Deconstructing a value

Multiplate generalises the function scrap. Since the children have different types, we cannot use lists
anymore. The concrete type for the tuple of children is captured by the product GADT already seen in
p. 15.

type α scrapped = Scrapped : β product × β × (β → α) → α scrapped

The function scrap : α ty → α → α scrapped is quite simple to define using the list-of-constructors
view:

let scrap conlist : α Conlist.t → α → α scrapped
= fun cs x → match Conlist.conap cs x with

| Conap (c , y) → Scrapped (product c , y , c .embed)
let scrap : α ty → α → α scrapped

= fun t x → match Conlist.view t with

| [] → Scrapped (Nil, (), const x)
| cs → scrap conlist cs x

where product : (β , α) con → β product.

F. Balestrieri & M. Mauny 31

3.2.2 Plates

In Multiplate terminology, an effectful transformation is called a plate

type φ plate = {plate : ∀α . α ty → α → (α ,φ) app} (∗ for some applicative functor φ ∗)

We also specialise plate for the identity and the constant functors, obtaining the types of pure transfor-
mations and queries:

type id plate = {id plate : ∀α . α ty → α → α}
type β const plate = {const plate : ∀α . α ty → α → β}

3.2.3 Applying an Effectful Transformation to the Children

All of Multiplate’s combinators may be derived from a single combinator, called Multiplate in the origi-
nal article [27] but that we renamed traverse children for consistency with our presentation of Uniplate.

val traverse children p : φ applicative → φ plate → φ plate

Thinking about the corresponding Uniplate function, traverse children p modifies the children of a value
using a given effectful transformation. We also provide a version where the plate is inlined:

val traverse children : φ applicative → φ plate → α ty → α → (α , φ) app

The implementation is strikingly similar to the Uniplate version.

let traverse children p a f = {plate = fun t x →
let Scrapped (p , cs , rep) = scrap t x
in (fun of app a).fmap rep (traverse a f p cs)}

let traverse children a f = (traverse children p a f).plate

The function traverse used above generalises the homonymous function on lists (p. 27) to tuples. It
applies an effectful transformation to each component of a tuple from left to right, returning the modified
tuple in an effectful context.

val traverse : φ applicative → φ plate → α product → α → (α , φ) app
let traverse a {plate} p x

= let rec go : type p . p product × p → (p , φ) app
= let open Product in function

| Nil , () → a .pure ()
| Cons (t , ts) , (x , xs) →

let pair a b = (a , b) in
liftA2 a pair (plate t x) (go (ts , xs))

in go (p ,x)

3.2.4 Module Interface

All the Uniplate functions can be generalised. Their type signature in Multiplate are:

val children : α ty → α → dyn list
val family : α ty → α → dyn list

32 Generic Programming in OCaml

val traverse children p : φ applicative → φ plate → φ plate
val map children p : id plate → id plate
val fold children p : τ monoid → τ const plate → τ const plate

val traverse family p : φ monad → φ plate → φ plate
val map family p : id plate → id plate
val pre fold p : τ monoid → τ const plate → τ const plate
val post fold p : τ monoid → τ const plate → τ const plate

val para p : (ρ list → ρ) const plate → ρ const plate

They all have variants with the result plate inlined. that map_ functions, are specialisations of the corre-
sponding traverse_ functions to the identity functor. fold children is a specialisation of traverse children
to the constant functor.

3.2.5 Open Recursion

In the OCAML compiler libraries, one can find the modules Ast mapper and Ast iterator whose purpose
is to ease the definition of traversals over the Parsetree mutually defined types. Both Ast mapper and
Ast iterator implement open recursion which takes the form of a large record mapper (resp. iterator)
where each field corresponds to one of the mutually defined type and is a function that takes a mapper
(resp. iterator) a value of the corresponding type, and outputs a value of the same type (resp. unit).
Defining mappers (resp. iterators) is usually done by modifying a default record implementing the iden-
tity (resp. a traversal of the tree without side effect). Only specific fields of interests need to be modified,
the rest being taken care of by the default behaviour.

The behaviour of Ast mapper and Ast iterator can be implemented using Multiplate by defining a
recursive type:

type φ openrec = { run : φ openrec → φ plate }

The default records of Ast mapper and Ast iterator correspond to the openrec function default which
uses the openrec parameter to continue the recursion below the immediate children of a value.

let default a = { run = fun r → traverse children p a (r .run r) }

Ast mapper corresponds to the specialisation of openrec to the identity functor, while Ast mapper cor-
responds to a use of openrec with the IO monad to embed OCAML effectful computations:

type io
val io : io monad

Effectful computations may be embedded in the IO monad with embed io. They are functions from unit
to some result type [’a] which may carry side effects when evaluated.

val embed io : (unit → α) → (α , io) app

IO computations may be executed with [run_io].

val run io : (α , io) app → α

F. Balestrieri & M. Mauny 33

Discussion Ast mapper and Ast iterator are long pieces of boilerplate that cannot be reused for other
AST types, and do not allow easy extension or addition of new operations. In contrast, Multiplate
implements the same functionality (and more) in a concise implementation that exploits the theorical
properties of applicative functors and monads. Built on top of the generic library, Multiplate may be
used with any type with no boilerplate.

4 A Case Study: Safe Deserialization

Serialization and deserialization in OCAML are provided by the standard library module Marshal. They
are generic functions defined in C that rely on the concrete structure of the runtime values of OCAML

programs. There is a serious safety issue with the use of the deserialization primitive: since it must be
able to reconstruct values of any type from an input channel, it is polymorphic in its return type:

val from channel : in channel → α

This may easily cause a segmentation fault if the deserialized value is used with the wrong type. This
problem may be solved using the generic library: the return type may be constrained by its witness:

val from channel : α ty → in channel → α

The low level generic view gives us the type structure to guide the deserialization process.

4.1 Outline of the Algorithm

The algorithm follows the same approach as the work of Henry [7] to check that the result of the standard
deserialization function is compatible with a given type. A substantial difference is that our implementa-
tion also deals with abstract types. This involves converting the abstract values to a public representation
before serialization, and converting back the representation to the abstract type after deserialization.
Therefore, the heart of the program is a function convert that not only deals with such conversions but
also does the compatibility check. convert takes a direction argument (to or from the public representa-
tion), a type witness and converts directly the runtime values using the Obj module, which gives an API
to the memory representation of OCAML values.

type direction = To | From
val convert : direction → α ty → obj → obj

convert is private to the module, the type obj is not shown to the user of the library. The module exports
type safe functions that call convert internally.

to string : α ty → α → string
from string : α ty → string → α

from string can safely cast the result of convert from obj to α , because the compatibility check ensures
that the value of type obj is also a valid value of type α .

4.2 Type Compatibility

OCAML runtime values are either immediate values taking a word of memory minus one bit, or a pointer
to a block of memory allocated in the heap, which has a header containing the size of the block and a tag
indicating how the block is structured. Our goal is to check that such a runtime value is compatible with

34 Generic Programming in OCaml

a certain type. The structure of runtime values is accessible throught the standard module Obj and the
structure of the type is described by the low-level generic view desc presented in section 2.3.4.

The algorithm is recursive. The base cases are immediate values: to check that a value is compatible
with an int value for instance, we simply check that it is an immediate value. Checking a record involves
checking that the value is a block of tag 0, that it has a number of fields corresponding to that of the record
type, and recursively that each field is compatible with its corresponding type. To check that a value is
compatible with a variant type, we must check that: either it is an immediate value and corresponds
to one of the constant constructors, or it is a block whose tag corresponds to one of the non-constant
constructors and the fields must be recursively checked with the types of the constructor arguments.

4.3 Sharing and Cycles

The structure of runtime values is a directed graph where the vertices are memory blocks and the edges
are the pointers that may be stored in the fields of a block. Sharing and cycles in the graph raise two
questions: (1) could we avoid checking again a value that has already been checked? (2) how do we
ensure that the algorithm terminates? In a monomorphic setting, both questions may be answered by
storing the addresses of blocks together with the witness of their expected type when they are visited for
the first time, and upon subsequent visits, simply check that the new witness is equal to the stored one.
However both sharing and cycles can be polymorphic. Here is a contrived example of an infinite tree
with polymorphic recursion, whose representation is a (finite) cyclic graph:

type α t = Leaf of int | Node of α t × (α × α) t
let poly cycle = let rec go : ∀α . α t = Node (Leaf 0, go) in go

The type parameter of the tree is not ever used, which makes it a bit pointless but this illustrates perfectly
the sort of complex situations that our compatibility checker must deal with. In this context, the previous
solution does’t work anymore. Non-termination becomes an issue because the number of types to check
is infinite.

If an OCAML value admits many types, then they must all be instances of a more general type
scheme. In the previous example, the value go admits the types

∀α . α t
∀α . (α × α) t
∀α . ((α × α) × (α × α)) t
. . .

and so on, of which the first is the most general.
The anti-unifier of a set of types is the type that is minimally most general than any of them.

For instance, the anti-unifier of int and bool is ∀α . α , and the anti-unifier of int list and bool list is
∀α . α list.

Now, we may keep track of the anti-unifier so far associated with a block. The sequence of updated
anti-unifiers is sure to reach a fixed-point in which case we no longer need to visit that block. When
checking the poly cycle example, the first visit would already be checking go with its most general type
∀α . α , hence no other visit would be performed.

Now the algorithm terminates, but it may be improved: when there is no cycle, it is faster to traverse
the graph in topological order. During the traversal, all the expected types of a block may be collected
before that block is visited. The anti-unifier of a block’s set of expected types may then be computed and
the block needs only be visited once. In the presence of cycles, one may still apply that strategy on the

F. Balestrieri & M. Mauny 35

strongly connected components of a graph and compute a lower bound for the anti-unifier of the roots of
each strongly connected component before traversing it.

The interested reader is referred to Henry [7] for the theoretical background and justifications.

4.4 Abstract types

The standard (de)-serialization functions from the module Marshal break type abstraction since it be-
comes possible to inspect a value that has been serialized and to cast a value to an abstract type. In order
to resolve that issue and respect the abstraction, we must serialize a public representation of the abstract
value. This is the purpose of the datatype repr given in section 2.3.7. convert To uses the field to repr to
serialize the representation, while convert From uses the field from repr on the deserialized value.

Abstract types introduce some complexity. Instead of check : α ty → obj → bool that returns a
boolean when a value is compatible with a type, we define convert : direction → α ty → obj → obj
that computes a new value where all the blocks of abstract types have been converted (in one direction or
the other). convert may fail with an exception is the input value is not compatible with the type witness.

Note that when we serialize a value, we first convert it by recursively computing the representations
of the abstract values are in its memory graph. The result of that conversion usually does not have a
corresponding OCAML type in the program. However when converting back after deserializing a value,
we rebuild a value of a valid type by recursively computing the abstract values.

The main challenge is that the conversion should preserve the graph structure yet recursively trans-
form its subgraphs.

Sharing Sharing in an acyclic graph does not cause too much trouble. In addition to keeping track of
visited blocks and their most general type so far, we also memoize the function convert. The result of
converting a block are stored, so that when the same block is visited again and the expected type is not
more general, the previous result may be retrieved directly.

Cycles Cycles in memory graphs on the other hand require a lot of care. When visiting a block, the
presence of cycles means that we will visit the same block again even before the first visit is completed,
therefore before we have been able to store the converted block.

One direction is easy: when serializing a value we must first convert abstract values using to repr,
obtaining the public representation wich may then be recursively converted. The solution is to introduce
an indirection, an obj option ref which is set to None upon visiting a block for the first time, and updated
with the result when the function returns. If during the visit, the same block is tried, the reference
is already known even if the content is not. In a final traversal of the graph, we may remove all the
indirections.

We might be tempted to do the same thing during a deserialization, however that approach fails
because the order of the transformation is reversed: now we must first recursively convert the serial-
ized value to obtain the public representation which may then be converted to the abstract type using
from repr. During the recursion, other occurences of from repr will be called, but the cyclic input that
we must give them is not fully computed yet. In order to fix that, we use the default abstract value pro-
vided by the repr view (section 2.3.7). When visiting a block for the first time, its default value is stored
as a temporary result. Therefore the recursive calls visiting the same block will use that default value.
The cycle has been broken and must be restored. This involves keeping track of all the pointers to the
block so that they may be updated to point to the new block. And finally, since the public representations
have changed, we use the update function from the repr view to update the corresponding abstract values.

36 Generic Programming in OCaml

5 Other Works

Generic programming is a very rich topic that we have barely touched in this article, the reader may
consult the following tutorials for a deeper understanding [16, 10, 9]. Generic libraries have blossomed
in the past twenty years, and the many different approaches have been compared extensively [29, 11, 13].

Our design with separate type witnesses and generic view was directly influenced by Hinze and
Löh [13].

5.1 Views

The open design of the library enables the user to define his own views. In addition to the low level view,
we have included the sum of product view underlying the LIGD library [4] and Instant-Generics [3, 22],
the spine view underlying the SYB library [14] and the list-of-constructors view underlying RepLib [33].

Adapting other libraries is possible when their underlying type representation is first order—where
closed types are reflected.

5.2 Type Representation

The SYB library relies on a type reflection using a non-parameterised type TypRep and an unsafe coer-
cion operation [19]. In contrast, our type witness GADT reflecting its type parameter makes it possible
to define a safe coerce (section 2.2.4).

TypRep is similar to our α ty in that it captures an open universe of types. However, α ty does
so with an extensible variant ensuring strong type guarantees, whereas TypRep does so with a unique
integer tag.

LIGD [4] and Replib [33] use a GADT for type representation in the same way as we did with α ty,
however their representation is closed and is fused with the view. Note that open variants are not natively
supported in Haskell.

With TypeCase [28], a GADT is made implicit through by using typeclasses to implement catamor-
phisms over the GADT. That technique may be used to make a Haskell-98 compatible library, since
GADT are not valid Haskell-98. LIGD and PolyP have been adapted using TypeCase.

In Instant-Generics [3], the representation is given by a type family—a GHC extension which allows
to define type functions.

5.3 Higher-Order Kinded Types

The choice of a type representation determines the universe of types that can be represented. Our library
represents types with first-order kind.

In a first order representation, the list type constructor is represented as a data constructor of arity
one:

List : α ty → α list ty

Whereas in a second order type representation, it would be represented as a constant data constructor:

List : list' ty'

Where «list’» corresponds to the unapplied list constructor in our encoding of higher-order kinded type
variables.

F. Balestrieri & M. Mauny 37

The latter approach allows us to define generic functions that work on type constructors, like a generic
map:

val gmap : φ ty' → (α → β) → (α , φ) app → (β , φ) app

Ours was a choice of simplicity since OCAML does not have a native support for higher order kind
type variables. A higher order kind generic library is possible in OCAML using the encoding presented
in this article. More flexibility is obtained at the cost of more complexity.

In Haskell, representing higher kinded types is possible [13]. For instance, PolyP [15] and its li-
brary implementation [26] represent parameterised datatypes as fixed-points of functors. Generic De-
riving [21], another Haskell library and GHC extensions, allows users to define generic instances of
type-classes. It has two type representations: one for closed types and one for parametric types (of one
parameter). More representations could be defined in the same way, and would allow users to derive
class-instances for types of the corresponding kind.

5.4 Type Indexed Functions

The first version of SYB relied on operations mkT, extT, mkQ, extQ, mkM, extM to define extensible
type-indexed functions. Their implemention suffered from the same shortcomings as the simple imple-
mentation given in section 2.2.2, and furthermore once a generic function was defined, no more ad-hoc
cases could be added. A latter version of SYB [18] resolved this issue with a clever use of type-classes,
requiring some extensions to the class system. With our explicit use of a type witness to define type-
indexed functions, we face no such difficulties.

Most Haskell generic libraries rely on the powerful type-class system to implement type-indexed
functions. Usually, they have a Rep class that builds the representation. A generic function is usually
implemented by a class with a default instance depending on a Rep constraint to implement the generic
behaviour. Ad-hoc behaviour may be defined by implementing instances of the class for specific types.

5.5 Language Extensions

Library implementations of genericity must fight with the limits set by the programming language. Ex-
tending the language with direct support for generic programming through a dedicated syntax and se-
mantics gives much more freedom to the designer.

PolyP [15] represent parameterised datatypes as fixed-points of functors, which makes it possible to
define a generic map. That extension initially implemented as a preprocessor was subsequently imple-
mented as a library using extensions to the typeclass system [26].

Generic Haskell [10] is the most expressive of all generic systems so far. In Generic Haskell the type
contains types of any kinds. Functions defined by induction on the structure of types have a type that is
defined by induction on the structure of kinds. This allows a truly generic map that works on types of
any kinds.

The level of expressivity of generic haskell may be achieved by a library in OCAML, but at such a
cost in readability that one may wonder if that would be useful.

5.6 Generic Traversals

Our implementation of Uniplate and Multiplate follows directly from the work on the homonymous
Haskell libraries [25, 27], but also on Fischer’s implementation of Uniplate for his naming convention.
The use of applicative functors for generic traversals has a small history [23, 6, 2, 27].

38 Generic Programming in OCaml

Other approaches to generic traversals include Compos [2] and SYB [19] which are equivalent to
Multiplate in expressivity. The fundamental mechanism underlying Compos and Multiplate is the same.
They differ in their Haskell embodiment by the way that type-classes are used. In our OCAML imple-
mentation, the type-classes are replaced with explicit type-indexed functions. In fact, the missing link
between SYB, Compos and Multiplate, is yet another variation called Traverse-with-class [5]. It is the
closest to what we have implemented: in essence, our single type-indexed function traverse children
corresponds to his single type-class Gtraverse:

class Gtraverse where

gtraverse :: Applicative c => (forall d . GTraversable d => d → c d) → a → c a

The SYB primitive gfold corresponds to a catamorphism over the spine view [14].
Compos, Uniplate, Multiplate, and Traverse-with-class are independent on a particular type represen-

tation, their necessary class instances may be either written manually or derived using Template Haskell
or using a Generic Deriving mechanism, or using the SYB Typeable or even Data class.

5.7 Generic Libraries and Extensions in ML

Generics for the Working ML’er [17] is a library for SML implementing Generics for the Mass [8] which
is a variation of LIGD that uses a type-class instead of a GADT for the type representation. In the SML
implementation, a module is used instead.

module type Rep = sig

type α ty
val int : int ty
val list : α ty → α list ty
...

end

Generic functions are all modules of the same signature, whose functions correspond to the constructors
of the GADT, and in the context of the library, they correspond to the type representation constructors.
For instance, let us write a generic show function:

module Show : Rep = struct

type α ty = α → string
let int = string of int
let list = fun show x xs → "[" ^ String.concat "; " (List.map show x xs) ^ "]"
...

end

There is an inherent problem with this approach: the type representations are not unique as they must be
instanciated with the module of the generic function that is called.

Deriving [35] is an extension to OCAML implemented using the preprocessor camlp4. Generic
functions are defined over the structure of types definitions, using a special syntax. The extension is used
to implement a safe deserialization function which supports sharing and cycles, and allows the user to
override the default behaviour for specific types.

SYB was implemented in MetaOcaml extended with modular implicits and was shown to perform
on par with manually written traversals [36]. The implementation uses an extensible GADT for type
witness, like in our library. There is no support for extensible type indexed functions. The spine view

F. Balestrieri & M. Mauny 39

is implicit much like in the Haskell implementation. The Haskell Typeable and Data type classes are
directly translated as a modules, using the correspondance explained in modular implicit [34].

The addition of GADTs to OCAML made it possible to reflect types as a basis for generic program-
ming.

6 Conclusion

We have presented our library for generic programming in OCAML, it is built modularly around three
main ingredients: (1) an extensible GADT that reflects the names of types; (2) an implementation of
extensible type-indexed functions, suitable to define ad-hoc polymorphic functions; (3) generic views
which reflect the structure of types. Views are implemented as type-indexed functions, and new views
can be added by the user. The built-in view is automatically derived by a PPX for the types marked with
an attribute reify. Abstract types are supported by means of a public representation.

On top of the library, we implemented a library for generic traversal that removes a lot of the boiler-
plate normally associated with the functions on mutually defined recursive types with a large number of
constructors. The library was seamlessly adapted from a Haskell library.

Finally we presented a complex generic function that fixed some of the shortcomings of the built-
in deserialization: not only is our function type-safe, it also respects abstract types by serializing their
public representation.

References

[1] Patrick Bahr & Tom Hvitved (2011): Compositional Data Types. In: Proceedings of the Seventh ACM
SIGPLAN Workshop on Generic Programming, WGP ’11, ACM, New York, NY, USA, pp. 83–94,
doi:10.1145/2036918.2036930. Available at http://doi.acm.org/10.1145/2036918.2036930.

[2] Björn Bringert & Aarne Ranta (2006): A Pattern for Almost Compositional Functions. SIGPLAN Not. 41(9),
pp. 216–226, doi:10.1145/1160074.1159834. Available at http://doi.acm.org/10.1145/1160074.

1159834.

[3] Manuel M. T. Chakravarty, Gabriel C. Ditu & Roman Leshchinskiy (2009): Instant Generics: Fast and Easy.

[4] James Cheney & Ralf Hinze (2002): A Lightweight Implementation of Generics and Dynamics. In: Pro-
ceedings of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell ’02, ACM, New York, NY, USA, pp.
90–104, doi:10.1145/581690.581698. Available at http://doi.acm.org/10.1145/581690.581698.

[5] Roman Cheplyaka (2013): Generalizing generic fold. https://ro-che.info/

articles/2013-03-11-generalizing-gfoldl http://hackage.haskell.org/package/

traverse-with-class.

[6] Jeremy Gibbons & Bruno César dos Santos Oliveira (2009): The Essence of the Iterator Pattern. Journal
of Functional Programming 19(34), pp. 377–402, doi:10.1017/S0956796809007291. Available at http:
//www.comlab.ox.ac.uk/jeremy.gibbons/publications/iterator.pdf. Revised version of [6].

[7] Grégoire Henry, Michel Mauny, Emmanuel Chailloux & Pascal Manoury (2012): Typing Unmarshalling
Without Marshalling Types. In: Proceedings of the 17th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP ’12, ACM, New York, NY, USA, pp. 287–298, doi:10.1145/2364527.2364569.
Available at http://doi.acm.org/10.1145/2364527.2364569.

[8] Ralf Hinze (2004): Generics for the masses. In Kathleen Fisher, editor: Proceedings of the ninth ACM
SIGPLAN international conference on Functional Programming (ICFP ’04), New York, NY, USA, pp. 236–
243, doi:10.1145/1016850.1016882.

http://dx.doi.org/10.1145/2036918.2036930
http://doi.acm.org/10.1145/2036918.2036930
http://dx.doi.org/10.1145/1160074.1159834
http://doi.acm.org/10.1145/1160074.1159834
http://doi.acm.org/10.1145/1160074.1159834
http://dx.doi.org/10.1145/581690.581698
http://doi.acm.org/10.1145/581690.581698
https://ro-che.info/articles/2013-03-11-generalizing-gfoldl
https://ro-che.info/articles/2013-03-11-generalizing-gfoldl
http://hackage.haskell.org/package/traverse-with-class
http://hackage.haskell.org/package/traverse-with-class
http://dx.doi.org/10.1017/S0956796809007291
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/iterator.pdf
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/iterator.pdf
http://dx.doi.org/10.1145/2364527.2364569
http://doi.acm.org/10.1145/2364527.2364569
http://dx.doi.org/10.1145/1016850.1016882

40 Generic Programming in OCaml

[9] Ralf Hinze & Johan Jeuring (2003): Generic Haskell: Applications. In Roland Backhouse & Jeremy Gib-
bons, editors: Generic Programming: Advanced Lectures, 2793, Springer Berlin / Heidelberg, pp. 57–96,
doi:10.1007/978-3-540-45191-4_2.

[10] Ralf Hinze & Johan Jeuring (2003): Generic Haskell: Practice and Theory. In: In Generic Programming,
Advanced Lectures, volume 2793 of LNCS, Springer-Verlag, pp. 1–56.

[11] Ralf Hinze, Johan Jeuring & Andres Löh (2007): Comparing Approaches to Generic Programming in
Haskell. In: Proceedings of the 2006 International Conference on Datatype-generic Programming, SS-
DGP’06, Springer-Verlag, Berlin, Heidelberg, pp. 72–149. Available at http://dl.acm.org/citation.
cfm?id=1782894.1782896.

[12] Ralf Hinze & Andres Löh (2006): “Scrap Your Boilerplate” Revolutions. In: Proceedings of the 8th Interna-
tional Conference on Mathematics of Program Construction, MPC’06, Springer-Verlag, Berlin, Heidelberg,
pp. 180–208, doi:10.1007/11783596_13. Available at http://dx.doi.org/10.1007/11783596_13.

[13] Ralf Hinze & Andres Löh (2009): Generic Programming in 3D. Science of Computer Programming 74(8),
pp. 590–628, doi:10.1016/j.scico.2007.10.006.

[14] Ralf Hinze, Andres Löh & Bruno C.d.S. Oliveira (2006): “Scrap Your Boilerplate” Reloaded. In Masami
Hagiya & Philip Wadler, editors: Proceedings of the Eighth International Symposium on Functional and
Logic Programming (FLOPS 2006), 3945, Springer Berlin / Heidelberg, pp. 13–29, doi:10.1007/11737414_-
3.

[15] Patrik Jansson & Johan Jeuring (1997): PolyP&Mdash;a Polytypic Programming Language Extension. In:
Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’97, ACM, New York, NY, USA, pp. 470–482, doi:10.1145/263699.263763. Available at http:
//doi.acm.org/10.1145/263699.263763.

[16] Patrik Jansson, Johan Jeuring & Lambert Meertens (1999): Generic programming: An introduction. In: 3rd
International Summer School on Advanced Functional Programming, Springer-Verlag, pp. 28–115.

[17] Vesa A.J. Karvonen (2007): Generics for the Working ML’Er. In: Proceedings of the 2007 Workshop on
Workshop on ML, ML ’07, ACM, New York, NY, USA, pp. 71–82, doi:10.1145/1292535.1292547. Available
at http://doi.acm.org/10.1145/1292535.1292547.

[18] Ralf Lämmel & Simon Peyton Jones (2005): Scrap Your Boilerplate with Class: Extensible Generic Func-
tions. SIGPLAN Not. 40(9), pp. 204–215, doi:10.1145/1090189.1086391. Available at http://doi.acm.
org/10.1145/1090189.1086391.

[19] Ralf Lämmel & Simon Peyton Jones (2003): Scrap Your Boilerplate: A Practical Design Pattern for Generic
Programming. In: Proceedings of the 2003 ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation, TLDI ’03, ACM, New York, NY, USA, pp. 26–37, doi:10.1145/604174.604179.
Available at http://doi.acm.org/10.1145/604174.604179.

[20] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy & Jérôme Vouillon (2016):
The OCaml system, release 4.04, Documentation and user’s manual, section 7.19: Extension nodes. INRIA.
Available at http://caml.inria.fr/pub/docs/manual-ocaml/extn.html#sec248.

[21] José Pedro Magalhães, Atze Dijkstra, Johan Jeuring & Andres Löh (2010): A Generic Deriving Mechanism
for Haskell. In: Proceedings of the Third ACM Haskell Symposium on Haskell, Haskell ’10, ACM, New
York, NY, USA, pp. 37–48, doi:10.1145/1863523.1863529. Available at http://doi.acm.org/10.1145/
1863523.1863529.

[22] José Pedro Magalhães & Johan Jeuring (2011): Generic Programming for Indexed Datatypes. In: Proceed-
ings of the Seventh ACM SIGPLAN Workshop on Generic Programming, WGP ’11, ACM, New York, NY,
USA, pp. 37–46, doi:10.1145/2036918.2036924. Available at http://doi.acm.org/10.1145/2036918.
2036924.

[23] Conor Mcbride & Ross Paterson (2008): Applicative Programming with Effects. J. Funct. Pro-
gram. 18(1), pp. 1–13, doi:10.1017/S0956796807006326. Available at http://dx.doi.org/10.1017/
S0956796807006326.

http://dx.doi.org/10.1007/978-3-540-45191-4_2
http://dl.acm.org/citation.cfm?id=1782894.1782896
http://dl.acm.org/citation.cfm?id=1782894.1782896
http://dx.doi.org/10.1007/11783596_13
http://dx.doi.org/10.1007/11783596_13
http://dx.doi.org/10.1016/j.scico.2007.10.006
http://dx.doi.org/10.1007/11737414_3
http://dx.doi.org/10.1007/11737414_3
http://dx.doi.org/10.1145/263699.263763
http://doi.acm.org/10.1145/263699.263763
http://doi.acm.org/10.1145/263699.263763
http://dx.doi.org/10.1145/1292535.1292547
http://doi.acm.org/10.1145/1292535.1292547
http://dx.doi.org/10.1145/1090189.1086391
http://doi.acm.org/10.1145/1090189.1086391
http://doi.acm.org/10.1145/1090189.1086391
http://dx.doi.org/10.1145/604174.604179
http://doi.acm.org/10.1145/604174.604179
http://caml.inria.fr/pub/docs/manual-ocaml/extn.html#sec248
http://dx.doi.org/10.1145/1863523.1863529
http://doi.acm.org/10.1145/1863523.1863529
http://doi.acm.org/10.1145/1863523.1863529
http://dx.doi.org/10.1145/2036918.2036924
http://doi.acm.org/10.1145/2036918.2036924
http://doi.acm.org/10.1145/2036918.2036924
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326

F. Balestrieri & M. Mauny 41

[24] Lambert Meertens (1992): Paramorphisms. Formal Aspects of Computing 4(5), pp. 413–424,
doi:10.1007/BF01211391. Available at http://dx.doi.org/10.1007/BF01211391.

[25] Neil Mitchell & Colin Runciman (2007): Uniform Boilerplate and List Processing. In: Proceedings of the
ACM SIGPLAN Workshop on Haskell Workshop, Haskell ’07, ACM, New York, NY, USA, pp. 49–60,
doi:10.1145/1291201.1291208. Available at http://doi.acm.org/10.1145/1291201.1291208.

[26] Ulf Norell & Patrik Jansson (2004): Polytypic Programming in Haskell. In: Proceedings of the 15th In-
ternational Conference on Implementation of Functional Languages, IFL’03, Springer-Verlag, Berlin, Hei-
delberg, pp. 168–184, doi:10.1007/978-3-540-27861-0_11. Available at http://dx.doi.org/10.1007/
978-3-540-27861-0_11.

[27] Russell O’Connor (2011): Functor is to Lens as Applicative is to Biplate: Introducing Multiplate. CoRR
abs/1103.2841. Available at http://arxiv.org/abs/1103.2841.

[28] Bruno C. d. S. Oliveira & Jeremy Gibbons (2005): TypeCase: A Design Pattern for Type-indexed Func-
tions. In: Proceedings of the 2005 ACM SIGPLAN Workshop on Haskell, Haskell ’05, ACM, New York,
NY, USA, pp. 98–109, doi:10.1145/1088348.1088358. Available at http://doi.acm.org/10.1145/

1088348.1088358.
[29] Alexey Rodriguez, Johan Jeuring, Patrik Jansson, Alex Gerdes, Oleg Kiselyov & Bruno C. d. S. Oliveira

(2008): Comparing Libraries for Generic Programming in Haskell. SIGPLAN Not. 44(2), pp. 111–122,
doi:10.1145/1543134.1411301. Available at http://doi.acm.org/10.1145/1543134.1411301.

[30] Wouter Swierstra (2008): Data types à la carte. J. Funct. Program. 18(4), pp. 423–436. Available at http:
//dx.doi.org/10.1017/S0956796808006758.

[31] Philip Wadler (1992): The Essence of Functional Programming. In: Proceedings of the 19th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’92, ACM, New York,
NY, USA, pp. 1–14, doi:10.1145/143165.143169. Available at http://doi.acm.org/10.1145/143165.
143169.

[32] Philip Wadler (1998): The expression problem. Posted on the Java Genericity mailing list. Available at
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt.

[33] Stephanie Weirich (2006): RepLib: A Library for Derivable Type Classes. In: Proceedings of the
2006 ACM SIGPLAN Workshop on Haskell, Haskell ’06, ACM, New York, NY, USA, pp. 1–12,
doi:10.1145/1159842.1159844. Available at http://doi.acm.org/10.1145/1159842.1159844.

[34] Leo White, Frédéric Bour & Jeremy Yallop (2014): Modular implicits. In: Proceedings ML Family/OCaml
Users and Developers workshops, ML/OCaml 2014, Gothenburg, Sweden, September 4-5, 2014., pp. 22–63,
doi:10.4204/EPTCS.198.2. Available at http://dx.doi.org/10.4204/EPTCS.198.2.

[35] Jeremy Yallop (2007): Practical Generic Programming in OCaml. In: Proceedings of the 2007 Workshop on
Workshop on ML, ML ’07, ACM, New York, NY, USA, pp. 83–94, doi:10.1145/1292535.1292548. Available
at http://doi.acm.org/10.1145/1292535.1292548.

[36] Jeremy Yallop (2016): Staging Generic Programming. In: Proceedings of the 2016 ACM SIGPLAN Work-
shop on Partial Evaluation and Program Manipulation, PEPM ’16, ACM, New York, NY, USA, pp. 85–96,
doi:10.1145/2847538.2847546. Available at http://doi.acm.org/10.1145/2847538.2847546.

[37] Jeremy Yallop & Leo White (2014): Functional and Logic Programming: 12th International Symposium,
FLOPS 2014, Kanazawa, Japan, June 4-6, 2014. Proceedings, chapter Lightweight Higher-Kinded Polymor-
phism, pp. 119–135. Springer International Publishing, Cham, doi:10.1007/978-3-319-07151-0_8. Available
at http://dx.doi.org/10.1007/978-3-319-07151-0_8.

http://dx.doi.org/10.1007/BF01211391
http://dx.doi.org/10.1007/BF01211391
http://dx.doi.org/10.1145/1291201.1291208
http://doi.acm.org/10.1145/1291201.1291208
http://dx.doi.org/10.1007/978-3-540-27861-0_11
http://dx.doi.org/10.1007/978-3-540-27861-0_11
http://dx.doi.org/10.1007/978-3-540-27861-0_11
http://arxiv.org/abs/1103.2841
http://dx.doi.org/10.1145/1088348.1088358
http://doi.acm.org/10.1145/1088348.1088358
http://doi.acm.org/10.1145/1088348.1088358
http://dx.doi.org/10.1145/1543134.1411301
http://doi.acm.org/10.1145/1543134.1411301
http://dx.doi.org/10.1017/S0956796808006758
http://dx.doi.org/10.1017/S0956796808006758
http://dx.doi.org/10.1145/143165.143169
http://doi.acm.org/10.1145/143165.143169
http://doi.acm.org/10.1145/143165.143169
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://dx.doi.org/10.1145/1159842.1159844
http://doi.acm.org/10.1145/1159842.1159844
http://dx.doi.org/10.4204/EPTCS.198.2
http://dx.doi.org/10.4204/EPTCS.198.2
http://dx.doi.org/10.1145/1292535.1292548
http://doi.acm.org/10.1145/1292535.1292548
http://dx.doi.org/10.1145/2847538.2847546
http://doi.acm.org/10.1145/2847538.2847546
http://dx.doi.org/10.1007/978-3-319-07151-0_8
http://dx.doi.org/10.1007/978-3-319-07151-0_8

	Introduction
	A Motivating Example
	A Case for Generic Programming
	Overview of the article

	The Three Elements of Generic Programming
	Type Reflexion
	Open Types

	Type-Indexed Functions
	Extensible Functions
	A Simple Implementation of Extensible Functions
	A Generic, Efficient and Robust Implementation of Extensible Functions
	Type Equality and Safe Coercion

	Generic Views
	What is a View?
	Sum of Products
	Spine
	Low Level View
	Objects and Polymorphic Variants
	List of Constructors
	Abstract Types

	Syntax Extensions

	Boilerplateless Generic Traversals
	Uniplate
	Children, Descendents, Family
	Transformation and Queries
	Paramorphisms
	Top-Down Transformations
	Bottom-Up Transformations
	Normal Forms
	Effectful Transformations

	Multiplate
	Deconstructing a value
	Plates
	Applying an Effectful Transformation to the Children
	Module Interface
	Open Recursion

	A Case Study: Safe Deserialization
	Outline of the Algorithm
	Type Compatibility
	Sharing and Cycles
	Abstract types

	Other Works
	Views
	Type Representation
	Higher-Order Kinded Types
	Type Indexed Functions
	Language Extensions
	Generic Traversals
	Generic Libraries and Extensions in ML

	Conclusion

