L. Canon, P. Héam, and P. L. , Controlling and Assessing Correlations of Cost Matrices in Heterogeneous Scheduling, Euro-Par, vol.59, issue.2, pp.133-145, 2016.
DOI : 10.1006/jpdc.1999.1581

URL : https://hal.archives-ouvertes.fr/hal-01664639

M. Maheswaran, S. Ali, H. Siegel, D. Hensgen, and R. Freund, Dynamic Mapping of a Class of Independent Tasks onto Heterogeneous Computing Systems, Journal of Parallel and Distributed Computing, vol.59, issue.2, pp.107-131, 1999.
DOI : 10.1006/jpdc.1999.1581

P. Luo, K. Lü, and Z. Shi, A revisit of fast greedy heuristics for mapping a class of independent tasks onto heterogeneous computing systems, Journal of Parallel and Distributed Computing, vol.67, issue.6, pp.695-714, 2007.
DOI : 10.1016/j.jpdc.2007.03.003

E. Munir, J. Li, S. Shi, Z. Zou, and D. Yang, MaxStd: A Task Scheduling Heuristic for Heterogeneous Computing Environment, Information Technology Journal, vol.7, issue.4, pp.679-683, 2008.
DOI : 10.3923/itj.2008.679.683

J. Ko?odziej and F. Xhafa, Enhancing the genetic-based scheduling in computational grids by a structured hierarchical population, Future Generation Computer Systems, vol.27, issue.8, pp.1035-1046, 2011.
DOI : 10.1016/j.future.2011.04.011

C. Diaz, J. Pecero, and P. Bouvry, Scalable, low complexity, and fast greedy scheduling heuristics for highly heterogeneous distributed computing systems, The Journal of Supercomputing, vol.3, issue.3, pp.837-853, 2014.
DOI : 10.1109/2.214443

URL : http://sameekhan.org/pub/D_K_2012_SCALCOM.pdf

V. Stodden, F. Leisch, and R. Peng, Implementing reproducible research, 2014.

S. Ali, H. Siegel, M. Maheswaran, D. Hensgen, and A. S. , Representing task and machine heterogeneities for heterogeneous computing systems, Tamkang Journal of Science and Engineering, vol.3, issue.3, pp.195-208, 2000.

L. Canon and P. L. , On the Heterogeneity Bias of Cost Matrices for Assessing Scheduling Algorithms, IEEE Transactions on Parallel and Distributed Systems, vol.28, issue.6, 2016.
DOI : 10.1109/TPDS.2016.2629503

URL : https://hal.archives-ouvertes.fr/hal-01664636

E. Agullo, O. Beaumont, L. Eyraud-dubois, J. Herrmann, S. Kumar et al., Bridging the Gap between Performance and Bounds of Cholesky Factorization on Heterogeneous Platforms, 2015 IEEE International Parallel and Distributed Processing Symposium Workshop, pp.34-45, 2015.
DOI : 10.1109/IPDPSW.2015.35

URL : https://hal.archives-ouvertes.fr/hal-01120507

D. Thain, T. Tannenbaum, and M. Livny, Distributed computing in practice: the condor experience Concurrency and Computation: Practice and Experience, pp.2-4323, 2005.
DOI : 10.1002/cpe.938

URL : http://www.cs.wisc.edu/~thain/library/condor-practice.pdf

G. Caruana, M. Li, M. Qi, M. Khan, and R. O. , gSched: a resource aware Hadoop scheduler for heterogeneous cloud computing environments, Concurrency and Computation: Practice and Experience, vol.43, issue.44, 2016.
DOI : 10.1007/s11227-014-1335-2

D. Anderson, BOINC: A System for Public-Resource Computing and Storage, Fifth IEEE/ACM International Workshop on Grid Computing, pp.4-10, 2004.
DOI : 10.1109/GRID.2004.14

URL : http://boinc.berkeley.edu/grid_paper_04.pdf

R. Graham, E. Lawler, J. Lenstra, and A. Kan, Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey, Annals of Discrete Mathematics, vol.5, pp.287-326, 1979.
DOI : 10.1016/S0167-5060(08)70356-X

A. Al-qawasmeh, A. Maciejewski, H. Wang, J. Smith, H. Siegel et al., Statistical measures for quantifying task and machine heterogeneities, The Journal of Supercomputing, vol.4, issue.2, pp.34-50, 2011.
DOI : 10.1023/A:1011408729750

URL : http://www.engr.colostate.edu/%7Eaam/pdf/journals/63.pdf

L. Canon, P. Héam, and P. L. , Controlling and Assessing Correlations of Cost Matrices in Heterogeneous Scheduling Feb, 2016.

L. Canon, P. Héam, and P. L. , Controlling and Assessing Correlations of Cost Matrices in Heterogeneous Scheduling, 2016.
DOI : 10.1006/jpdc.1999.1581

URL : https://hal.archives-ouvertes.fr/hal-01664639

S. Ali, H. Siegel, M. Maheswaran, and D. Hensgen, Task execution time modeling for heterogeneous computing systems, Proceedings 9th Heterogeneous Computing Workshop (HCW 2000) (Cat. No.PR00556), pp.185-199, 2000.
DOI : 10.1109/HCW.2000.843743

L. Canon and P. L. , On the Heterogeneity Bias of Cost Matrices When Assessing Scheduling Algorithms, Euro- Par, pp.109-121, 2015.
DOI : 10.1007/978-3-662-48096-0_9

A. Al-qawasmeh, A. Maciejewski, and H. Siegel, Characterizing heterogeneous computing environments using singular value decomposition. International Parallel & Distributed Processing Symposium Workshops and Phd Forum, pp.1-9, 2010.
DOI : 10.1109/ipdpsw.2010.5470875

URL : http://www.engr.colostate.edu/%7Eaam/pdf/conferences/124.pdf

A. Al-qawasmeh, A. Maciejewski, R. Roberts, and H. Siegel, Characterizing Task-Machine Affinity in Heterogeneous Computing Environments, 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum, pp.34-44, 2011.
DOI : 10.1109/IPDPS.2011.125

URL : http://www.engr.colostate.edu/%7Eaam/pdf/conferences/136.pdf

B. Khemka, R. Friese, S. Pasricha, A. Maciejewski, H. Siegel et al., Utility maximizing dynamic resource management in an oversubscribed energy-constrained heterogeneous computing system, Sustainable Computing: Informatics and Systems, vol.5, pp.14-30, 2014.
DOI : 10.1016/j.suscom.2014.08.001

A. Al-qawasmeh, S. Pasricha, A. Maciejewski, and H. Siegel, Power and Thermal-Aware Workload Allocation in Heterogeneous Data Centers, IEEE Transactions on Computers, vol.64, issue.2, pp.477-491, 2013.
DOI : 10.1109/TC.2013.116

URL : http://www.engr.colostate.edu/%7Esudeep/pubs/publications/2013-TC-AbdulPasricha.pdf

E. Scheuer and D. Stoller, On the Generation of Normal Random Vectors, Technometrics, vol.6, issue.3, pp.278-281, 1962.
DOI : 10.1214/aoms/1177706645

M. Cario and B. Nelson, Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix, 1997.

S. Ghosh and S. Henderson, Behavior of the NORTA method for correlated random vector generation as the dimension increases, ACM Transactions on Modeling and Computer Simulation, vol.13, issue.3, pp.276-294, 2003.
DOI : 10.1145/937332.937336

D. Lewandowski, D. Kurowicka, and H. Joe, Generating random correlation matrices based on vines and extended onion method, Journal of Multivariate Analysis, vol.100, issue.9, pp.1989-2001, 2009.
DOI : 10.1016/j.jmva.2009.04.008

URL : https://doi.org/10.1016/j.jmva.2009.04.008

I. Yang, Simulation-based estimation for correlated cost elements, International Journal of Project Management, vol.23, issue.4, pp.275-282, 2005.
DOI : 10.1016/j.ijproman.2004.12.002

URL :[8] 2005-Simulated-based estimation for correlated cost elements.pdf

J. Macke, P. Berens, A. Ecker, A. Tolias, and M. Bethge, Generating Spike Trains with Specified Correlation Coefficients, Neural Computation, vol.23, issue.37, pp.397-423, 2009.
DOI : 10.1038/370140a0

U. Lublin and D. Feitelson, The workload on parallel supercomputers: modeling the characteristics of rigid jobs, Journal of Parallel and Distributed Computing, vol.63, issue.11, pp.1105-1122, 2003.
DOI : 10.1016/S0743-7315(03)00108-4

D. Feitelson, Workload modeling for computer systems performance evaluation. Book Draft, Version 1.0, pp.1-601, 2014.
DOI : 10.1017/cbo9781139939690

URL : http://www.cs.huji.ac.il/~feit/wlmod/wlmod.pdf

M. Gary and D. Johnson, Computers and intractability: A guide to the theory of np-completeness, 1979.

O. Ibarra and C. Kim, Heuristic Algorithms for Scheduling Independent Tasks on Nonidentical Processors, Journal of the ACM, vol.24, issue.2, pp.280-289, 1977.
DOI : 10.1145/322003.322011

URL : http://www.rspq.org/pubs/ibarra.pdf

R. Freund, M. Gherrity, A. S. Campbell, M. Halderman, M. Hensgen et al., Scheduling resources in multi-user, heterogeneous, computing environments with SmartNet, Proceedings Seventh Heterogeneous Computing Workshop (HCW'98), pp.184-199, 1998.
DOI : 10.1109/HCW.1998.666558

URL : http://www.cisr.us/projects/downloads/MSHN/smartnet_hcw98.pdf

L. Canon and P. L. , On the Heterogeneity Bias of Cost Matrices When Assessing Scheduling Algorithms, 2015.
DOI : 10.1007/978-3-662-48096-0_9

R. Graham, Bounds on Multiprocessing Timing Anomalies, SIAM Journal on Applied Mathematics, vol.17, issue.2, pp.416-429, 1969.
DOI : 10.1137/0117039

H. Topcuoglu, S. Hariri, and W. My, Performance-effective and low-complexity task scheduling for heterogeneous computing, IEEE Transactions on Parallel and Distributed Systems, vol.13, issue.3, pp.260-274, 2002.
DOI : 10.1109/71.993206

URL : http://meseec.ce.rit.edu/eecc722-fall2002/papers/hc/5/l0260.pdf