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On the Heterogeneity Bias of Cost Matrices for
Assessing Scheduling Algorithms

Louis-Claude Canon and Laurent Philippe

Abstract—Assessing the performance of scheduling heuristics through simulation requires one to generate synthetic instances of tasks
and machines with well-identified properties. Carefully controlling these properties is mandatory to avoid any bias. We consider the
scheduling problem consisting of allocating independent sequential tasks on unrelated machines while minimizing the maximum
execution time. In this problem, the instance is a cost matrix that specifies the execution cost of any task on any machine. This article
proposes two measures for quantifying the heterogeneity properties of a cost matrix. An analysis of two classical methods used in the
literature reveals a bias in previous studies. We propose new methods to generate instances with given heterogeneity properties and we
show that heterogeneity has a significant impact on twelve heuristics.

Index Terms—scheduling, cost matrix, heterogeneity, bias, parallelism, unrelated, measure
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1 Introduction

Leveraging the parallelism of multi-core distributed
platforms involves efficiently scheduling applications on

several machines [1]. Current studies rely on performance
evaluation to determine the best solution for any underlying
problem. This process can be divided into distinct categories:
formal analysis, experiments, simulations, etc. In the case
of simulations, a scheduling strategy is tested in a virtual
environment with a given workload. This paper focuses on the
generation of synthetic instances.

Synthetic instances of workload allow a more general
evaluation than with specific traces. They are particularly
useful for sensitivity analysis [2], which consists in assessing the
impact of the instance properties on the algorithms. However,
the lack of control on the instance properties makes it difficult
to confront the results of independent studies. For instance,
although many papers have compared several scheduling
heuristics [3], [4], [5], [6], predicting their performance is still an
issue. These problems can be tackled by carefully controlling
the instance properties.

Specifically, we consider the scheduling problem noted
R||Cmax in α|β|γ notation [7]. It consists in scheduling n
independent sequential tasks on m unrelated machines. All
tasks are available simultaneously and preemption is not
possible. The instance is a cost matrix where each element ei,j
is a positive integer that represents the execution cost of
task i on machine j. The objective is to allocate each task
to a machine such that the maximum execution time on any
machine is minimized. More formally, we want to minimize
max(

∑
π(i, j) × ei,j) where π(i, j) is equal to one if task i is

scheduled on machine j and zero otherwise.
This problem corresponds to numerous practical situations

where a set of tasks, either identical or heterogeneous, must be
distributed on platforms ranging from grids to homogeneous
clusters and including semi-heterogeneous platforms such as
CPU/GPU platforms. This is the case of a master/slave
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application that is publicly distributed. To efficiently run on
several platforms the master must include a component that
chooses where to run each task. The choice of the scheduling
algorithm is a key point for the software performance.

To reflect the diversity of heterogeneous platforms, a fair
comparison of scheduling heuristics must rely on a set of
cost matrices that have distinct properties. Controlling the
generation of synthetic random cost matrix in this context
enables an assessment on a panel of instances that is sufficiently
large to encompass practical settings that are currently existing
or yet to come. In this generation, it is therefore crucial
to identify and control the properties that impact the most
critically the performance such as the heterogeneity.

For this problem, the range-based and CVB (Coefficient of
Variation Based) methods proposed in [8], [9] are currently the
standard methods used in the literature to generate instances.
However, the properties of the matrices generated with these
methods have never been formally analyzed and previous
studies may thus be exposed to a bias.

This paper provides the following contributions:1

• a statistical description of the use of the range-based and
CVB methods in the literature (Section 3);

• a study of how to quantify the heterogeneity properties of
a cost matrix (Section 4);

• a formal analysis of the range-based and CVB methods
and the identification of a bias that impacts several studies
(Section 4);
• a new method with control over heterogeneity properties
(Section 5);
• and, an assessment of the impact of these properties on
twelve heuristics (Section 6).

2 Related Work
The concept of heterogeneity was first introduced in the
context of cost matrix by Armstrong [13]. He described the

1. The related code, data and analysis are available in [10]. Most of
these results are also available in the companion research report [11]
and in a conference paper [12].
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heterogeneity quadrant in which cost matrices are divided into
four categories depending on their heterogeneity properties
regarding tasks and machines: low/low, low/high, high/low,
and high/high. For instance low/high refers to low task
heterogeneity and high machine heterogeneity. However, no
method for generating such matrices was proposed.

The range-based and CVB methods were first proposed
to fill this gap in [14] and then in [8], [9]. However, task
and machine heterogeneities were not formally defined and
analyzed. The methods were assumed to generate matrices
with the expected properties and only validated through some
examples.

The limits of these methods were later acknowledged in [15],
which proposed to consider the average coefficient of variation2,
skewness and kurtosis of the costs for each task and for each
machine. The proposed scheme (based on decision trees) uses
these additional information to predict scheduling heuristic
performance. Despite a wide experimentation plan, the study
lacks discussion and interpretation in particular on the relative
importance of the considered measures. Additionally, no formal
analysis was provided. The exhibited decision trees suggest
that the average coefficient of variation plays a significant role
and our proposed measures rely on this coefficient.

The MPH (Machine Performance Homogeneity) is intro-
duced in [16] for capturing the heterogeneity between the
machines while its counterpart for the tasks, the TDH (Task
Difficulty Homogeneity), appears in [17]. We discuss them more
extensively in Section 4. In addition, the TMA (Task-Machine
Affinity) is also defined in [16]: it quantifies the specialisation
of the system (i.e., whether some machines are particularly
efficient for some specific tasks). Although the three measures
are applied to a real benchmark, no method is proposed for
generating matrices with given MPH, TDH and TMA. It is
thus unclear what is the impact of the proposed measures on
heuristic performance. Finally, they show that the range-based
and CVB methods do not cover the entire range of possible
values for the MPH and the TMA, which is consistent with the
conclusion of Section 4.

Friese et al. [18] present a method for adding tasks in a
given cost matrix while preserving some statistical properties
on the costs of each machine (mean, coefficient of variation,
skewness and kurtosis). It ignores the properties of the costs of
each task however.

A method for generating matrices with varying affinities
(similar to the TMA) is proposed in [19]. It is similar to the
noise-based method described in Section 5, but no formal
analysis is provided.

Khemka et al. [20] propose a method for changing the
TMA of an existing matrix while keeping the same MPH and
TDH. TMA is mentioned to be related to the correlation.
Investigating the correlation properties is left for future work.
There is also another body of literature dedicated to the
generation of matrices with given correlation and covariance
matrices [21].

Finally, the problem of generating contingency tables is
close to our problem. The objective is to generate a uniform
matrix with given row and column sums (we consider average
in our problem instead). One significant approach consists
in using Markov chain Monte Carlo (MCMC) methods [22].

2. Ratio of the standard deviation to the mean.

ALGORITHM 1: Range-based cost matrix generation
with the uniform distribution

Input: n, m, Rtask, Rmach
Output: a n×m cost matrix
1: for all 1 ≤ i ≤ n do {Generate each row}
2: τ [i]← U(1, Rtask)
3: for all 1 ≤ j ≤ m do {Generate each value of the row}
4: ei,j ← τ [i]× U(1, Rmach)
5: end for
6: end for
7: return {ei,j}1≤i≤n,1≤j≤m

However, when used directly, such methods introduce a large
variance in the costs, which hides the effect of the heterogeneity.
The shuffling method we introduce below has similarities with
MCMC methods but limits the introduced variance.

3 Matrix Generation Methods
The most used methods for generating cost matrices are the
range-based and the CVB (Coefficient of Variation Based)
methods [8], [9], [14]. Table 1 summarizes the most frequent
notations.

Table 1: List of notations

Symbol Definition

i index of the tasks
j index of the machines
n number of tasks
m number of machines

ei,j execution cost of task i on machine j
wi weight of task i
bj inverse speed of machine j

U(A,B) uniform distribution between A and B
G(α, β) gamma distribution with shape α and scale β

Rtask parameter for the range-based method
Rmach parameter for the range-based method

Vtask
parameter for the CVB, shuffling and
noise-based methods

Vmach
parameter for the CVB, shuffling and
noise-based methods

Vnoise parameter for the noise-based method
a fraction of the consistent rows
b fraction of the consistent columns

V µtask first measure of task heterogeneity
V µmach first measure of machine heterogeneity
µVtask second measure of task heterogeneity
µVmach second measure of machine heterogeneity

3.1 Range-Based Method
The range-based method generates n vectors of m values
that follow a uniform distribution in the range [1, Rmach]
(see Algorithm 1). Each row is then multiplied by a random
value that follows a uniform distribution in the range [1, Rtask]
(Line 2). The resulting cost matrix is similar to the following
(where τ is a vector of n uniform values in [1, Rtask]):τ [1]U(1, Rmach) · · · τ [1]U(1, Rmach)

...
. . .

...
τ [n]U(1, Rmach) · · · τ [n]U(1, Rmach)
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ALGORITHM 2: CVB cost matrix generation with
the gamma distribution

Input: n, m, Vtask, Vmach, µtask
Output: a n×m cost matrix
1: αtask ← 1/V 2

task
2: αmach ← 1/V 2

mach
3: βtask ← µtask/αtask
4: for all 1 ≤ i ≤ n do
5: q[i]← G(αtask, βtask)
6: βmach[i]← q[i]/αmach
7: for all 1 ≤ j ≤ m do
8: ei,j ← G(αmach, βmach[i])
9: end for

10: end for
11: return {ei,j}1≤i≤n,1≤j≤m

Proposition 1. When used with parameters Rtask and Rmach,
the range-based method generates costs with expected value
1
4 (Rtask + 1)(Rmach + 1) and standard deviation 1

12 [(Rtask −
1)2(Rmach − 1)2 + 3(Rmach − 1)2(Rtask + 1)2 + 3(Rtask −
1)2(Rmach + 1)2]1/2.

Proof. Each cost is the product of τ [i], which follows a uniform
law in the range [1, Rtask], and a random variable that follows
a uniform law in the range [1, Rmach]. Therefore, the expected
value of the costs is the product of the expected values of both
distributions, namely (Rtask + 1)/2 and (Rmach + 1)/2.

The standard deviation of the product of two random
variables with means µ1 and µ2, and standard deviations σ1
and σ2 is

√
σ2

1σ
2
2 + µ2

1σ
2
2 + σ2

1µ
2
2. With a similar argument as

for the expected value, we can derive the standard deviation of
the costs.

Table 2 summarizes the properties of this method. Except
for low values of Rtask and Rmach, the CV (Coefficient of
Variation) remains close to a constant. For instance, when
Rtask = Rmach = 100, then the CV is around 0.86. As shown
in Section 4, this method is not well-suited to control the
heterogeneity of the resulting cost matrix. Also, given that
this method is asymmetric, it may be expected to handle task
heterogeneity differently from machine heterogeneity.

3.2 CVB Method
The CVB method is based on the same principle except it uses
parameters that are distinct from the underlying distribution
parameters. In particular, it requires two CV (Vtask for the
tasks and Vmach for the machines) and one mean (µtask for the
tasks). The random values follow a gamma distribution whose
parameters are computed such that the provided CV and mean
are respected.

Proposition 2. When used with parameters Vtask, Vmach and
µtask, the CVB method generates costs with expected value µtask
and coefficient of variation

√
V 2

taskV
2

mach + V 2
task + V 2

mach.

Proof. In order to apply the same analysis as in the proof of
Proposition 1, we need to prove that any cost is the product of
two gamma distributions. More precisely, we need to prove that
the random generation on Line 8 is equivalent to multiplying
q[i] by a gamma law with mean one and CV Vmach.

Each cost ei,j is a random variable that follows a gamma
distribution with mean q[i] and CV Vmach. The probability
that ei,j is no more than x is given by 1

Γ(α)γ(α, xβ ) where
α = 1/V 2

mach, β = q[i]/α, Γ(α) is the gamma function and
Γ(α, xβ ) is the lower incomplete gamma function.

By contrast, let X be a random variable that follows a
gamma distribution with mean one and CV Vmach. Then, the
probability that q[i]X is no more than x is the probability that
X is no more than x/q[i]: 1

Γ(α)γ(α, x/q[i]β ) where α = 1/V 2
mach

and β = 1/α. It is thus the same as for ei,j .
Thus, Line 8 can be replaced by the product of q[i] by

a gamma law with mean one and CV Vmach (i.e., ei,j ←
q[i]G(αmach, 1/αmach)), which is the product of two gamma
distributions.

The proof is then analogous to the proof of Proposition 1.

Table 3 summarizes the properties of this method, which is
more adapted to control the heterogeneity of the resulting cost
matrix. However, it is still asymmetric. Note that the CV is the
same as with the range-based method when we replace Vtask
by the CV of the first uniform law,

√
12
6

Rtask−1
Rtask+1 , and Vmach by

the CV of the second uniform law,
√

12
6

Rmach−1
Rmach+1 .

3.3 Consistency Extension
Both the previous methods produce cost matrices that may
not be representative of realistic settings. For instance, the
costs of a given task is not correlated to the costs of another
task, which may often be the case in practice. The consistency
extension consists in reordering the costs in the generated
matrix to have an instance that is closer to the uniform case.
Specifically, the rows of a submatrix of an rows and bm columns
are sorted. Thus, a machine that is faster for a given task than
another machine will likely be also faster for another task.
Inconsistent matrices have a = b = 0 while consistent matrices
have a = b = 1 (other matrices are either called semiconsistent
or partially consistent).

3.4 Usage in the Literature
We covered the English articles that cite at least one of the
references in which the methods were initially presented and
that were freely available. For each reference, we extracted all
the distinct sets of parameters. Additionally, we differentiated
between example cost matrices that illustrate the generation
methods from cost matrices that are used in actual sets of
experiments to study scheduling algorithms. However, the size
was ignored as we only consider asymptotic properties (the
impact of the size is assessed in [11, Section 4.6]).

Some data were not specifically provided. The parameters
that could be directly inferred from the article or from similar
works are emphasized: this concerns mostly missing parameters
for the consistency extension (the ones from the cited article
were taken). Otherwise, they are treated as missing values
(denoted by NA). Some articles lack enough information, which
prevented any parameter extraction.

On the 160 analyzed articles, 78 provide exploitable in-
formation on the cost matrix instances. The rest consists of
40 articles with no description, but which refer to instances
described in other articles and 42 articles with unclear de-
scriptions or approaches that do not fit the current study.
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Table 2: Summary of the cost matrix properties with the range-based method. Asymptotic values are when both Rtask and
Rmach are large.

Property Value

Expected value 1
4 (Rtask + 1)(Rmach + 1)

Standard deviation 1
12

√
(Rtask − 1)2(Rmach − 1)2 + 3(Rmach − 1)2(Rtask + 1)2+

3(Rtask − 1)2(Rmach + 1)2

CV 1
3

√
(Rtask−1)2(Rmach−1)2

(Rtask+1)2(Rmach+1)2 + 3 (Rtask−1)2

(Rtask+1)2 + 3 (Rmach−1)2

(Rmach+1)2

Distribution Product of two uniform laws

Asymptotic expected value 1
4RtaskRmach

Asymptotic standard deviation
√

7
12 RtaskRmach

Asymptotic CV
√

7
3 ≈ 0.88

Table 3: Summary of the cost matrix properties with the CVB
method.

Property Value

Expected value µtask

CV
√
V 2

taskV
2

mach + V 2
task + V 2

mach
Distribution Product of two gamma laws

The extracted data are available in [10], [11, Appendix B]
and summarized below. While most articles fail to precisely
describe the used method, only the range and CV parameters
are crucial for reproducing similar instances. In the end, 342
sets of parameters were extracted in 78 articles for a total of
210 unique settings: 37 for the range-based method and 173 for
the CVB one.

Figure 1 depicts the values used with both methods. Al-
though there is no clear agreement on which precise parameters
are the most relevant, there are some common tendencies.
Values for low heterogeneity are usually 10 and 100 for the
range-based method and .1, .25 and .3 for the CVB method.
Values for high heterogeneity are usually 100, 1e3, 3e3 and 1e5
for the range-based method and .3, .35, .4, .5, .6, .7, .9, 1 and 2
for the CVB method.

4 Heterogeneity Measures
Assessing the impact of heterogeneity on heuristic performance
requires a method for quantifying the heterogeneity of the
generated cost matrices.

4.1 TDH and MPH
The closest related measures are the TDH (Task Difficulty Ho-
mogeneity) and the MPH (Machine Performance Homogeneity)
[16], [17]. The TDH computation is described in Algorithm 3.
The value TD[i] represents the difficulty of task i, namely
whether it has small costs. After the ordering, the final sum
computes the average ratio between similar tasks in terms of
difficulty (which lies in the interval (0, 1]). If this average is
one, then tasks are all similar. If it is close to zero, then the
task heterogeneity is large.

The MPH computation is analogous except that the sum
on Line 2 is performed on each row instead of each column.
This results in a measure of the machine heterogeneity.

These measures have three major shortcomings (as men-
tioned in Section 2). First, they are not intuitive (they require

ALGORITHM 3: TDH computation
Input: a n×m cost matrix
Output: the TDH of this matrix
1: for all 1 ≤ i ≤ n do
2: TD[i]←

∑m
j=1

1
ei,j

3: end for
4: sort TD in ascending order
5: return 1

n−1
∑n−1

i=1
TD[i]
TD[i+1]

to invert costs, to order sums and to average ratios). Also,
they do not rely on classical statistical measures, which
makes deriving formal results more difficult. In particular,
the ordering on Line 4 complicates formal analysis. A last
notable problem is that the resulting values depend on the
size of the matrix. In particular, it is close to one when
the matrix is large (even if it is generated with the same
parameters and has, intuitively, the same characteristics).
For instance, if we consider only one machine, the following
matrices (cost vectors in this case) have the same TDH: [1, 2]
and [0.125, 0.25, 0.5, 1, 2, 4]. The second vector, however, seems
more heterogeneous. As another example, let the minimum
TD be 1 and the maximum TD be 100. Given Proposition 3,
the TDH is always greater than 0.60 when there are 10 tasks
and it is always greater than 0.95 when there are 100 tasks.
This measure is thus relevant only for comparing small cost
matrices with similar sizes.

Proposition 3. The TDH cannot be lower
than elog

(
min(T D)
max(T D)

)
/(n−1).

Proof. The minimum TDH is achieved when the sum∑n−1
i=1

ai

ai+1
where ai = TD[i] is minimum. Let f :

[a1, an]n−2 → (0,∞) be the corresponding multivariate func-
tion with a1 and an being constant. Each value ai for 1 < i < n
is greater than or equal to a1 because the ai are ordered. As
a1 represents an average cost and is thus strictly greater than
zero, all nominators and all denominators are strictly greater
than zero. Therefore, f is a continuous function from the
compact [a1, an]n−2. The extreme value theorem states that
a continuous function from a non-empty compact space to a
subset of the real numbers attains a maximum and a minimum.
This proves the existence of a minimum.

We now show by contradiction that this minimum is
achieved when the ratios ai

ai+1
are all equal for 1 ≤ i < n.

Assume it is not the case and let i be the lowest value for
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Figure 1: Parameters used in the literature. Three points are not shown for the CVB method: (1.4, 0.4), (1.8, 0.4) and (0.1, 2).

which ai

ai+1
6= ai+1

ai+2
, which can be rewritten as ai+1 6=

√
aiai+2.

A lower value is attained when ai+1 = √aiai+2 because the
partial derivate of f with respect to ai+1 (i.e., −ai−1

a2
i

+ 1
ai+1

)
is zero with this value. Therefore, the minimum is achieved
when all ratios ai

ai+1
are equal. This is the case when ai =

e
log(TD[1])+ i−1

n−1 log
(

an
a1

)
for 1 ≤ i ≤ n.

When replacing ai by TD[i], the TDH simplifies as
e

log
(

T D[1]
T D[n]

)
/(n−1) or elog

(
min(T D)
max(T D)

)
/(n−1) if the vector TD is

not sorted.

4.2 Intuitive Measures of Heterogeneity
We propose below two intuitive measures of task and machine
heterogeneity that rely on classic properties:
• Assuming that the mean of each row represents a task
weight, the task heterogeneity may be defined as the CV
(Coefficient of Variation) of the means of the rows (noted
V µtask). Analogously, the machine heterogeneity may be
measured as the CV of the means of the columns (noted
V µmach).

CV


µ1
...
µn

 e1,1 · · · e1,m
...

. . .
...

en,1 · · · en,m


• Alternatively, the CV of one column may represent the
task heterogeneity for a given machine. Therefore, the
mean of the CV of the columns may measure the task
heterogeneity (noted µVtask) while the mean of the CV of
the rows may measure the machine heterogeneity (noted
µVmach).
The first measure of task and machine heterogeneity has

been criticized for small instances [17]. The MPH is argued

to outperform the CV as it is less sensitive to outliers. In this
situation, the CV can be replaced by the quartile coefficient of
dispersion, which is a similar standard statistical measure but
is more difficult to formally analyze. Finally, the decision trees
in [15] suggest that varying this measure has an impact on the
heuristic performance and is thus significant.

With both measures, it is possible to use the standard
deviation instead of the CV. However, the CV provides a
relative measure that is independent from the cost mean. If
an absolute measure is deemed more meaningful, the proposed
measures can be adapted by using the standard deviation.

4.3 Coherence with the Uniform Model
The previous measures do not only rely on intuition, they are
also consistent with the expectation when we consider the
uniform model. In this model, the cost of executing a task i
on a machine j is given by the product of the task weight,
wi, and the machine cycle time, bj . The concept of task and
machine heterogeneity is easy to grasp in the uniform model:
it is given by the statistical dispersion of the weights and the
speeds, respectively. We assume that the CV of the weights,
noted CVtask, is a relevant measure of the task heterogeneity.
Analogously, the CV of the speeds, noted CVmach, represents
the machine heterogeneity.

It is possible to convert an instance of the uniform model
to the unrelated model because this last model is more
general. The cost matrix is generated by combining both
vectors {wi}1≤i≤n and {bj}1≤j≤m such that ei,j = wibj . As
we know the heterogeneity properties of a uniform instance, we
expect our proposed measures for the unrelated model to be
consistent when applied on the converted instance.

Proposition 4. Let U = ({wi}1≤i≤n, {bj}1≤j≤m) be a uni-
form instance and E = {ei,j}1≤i≤n,1≤j≤m be the corre-
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sponding unrelated instance such that ei,j = wibj. Then,
CVtask(U) = V µtask(E) = µVtask(E) and CVmach(U) =
V µmach(E) = µVmach(E).

Proof. By definition, CVtask(U) =
√∑n

i=1
w2

i
/n−(

∑n

i=1
wi/n)2∑n

i=1
wi/n

whereas V µtask(E) is the CV of the means of the rows.
The mean of row i is

∑m
j=1 ei,j/m = wi/m

∑m
j=1 bj . Then,

V µtask(E) =
√∑n

i=1
(wiφ)2/n−(

∑n

i=1
wiφ/n)2∑n

i=1
wiφ/n

where φ =∑m
j=1 bj/m is the mean of the inverse speeds. Therefore,

V µtask(E) = CVtask(U).
Remember that µVtask(E) is the mean of the CV of the

columns. The CV of column j, CVj is

CVj =

√∑n
i=1 e

2
i,j/n− (

∑n
i=1 ei,j/n)2∑n

i=1 ei,j/n

=
√∑n

i=1(wibj)2/n− (
∑n

i=1(wibj)/n)2∑n
i=1(wibj)/n

= CVtask(U)

The mean of these CV is thus also CVtask(U).
The demonstration is analogous for the machine hetero-

geneity measures.

Proposition 4 shows that our proposed measures are
consistent with the intuition on uniform instances.

4.4 Heterogeneity of the Range-Based and CVBMethods
We analyze the asymptotic heterogeneity properties of the
CVB method with the proposed measures depending on the
parameters Vtask and Vmach. An estimator T converges to θ
when the expected value of T tends to θ as the number of
samples (n and m in our case) tends to∞.

Proposition 5. The measure V µtask of a cost matrix gener-
ated using the CVB method with the parameters Vtask and Vmach
converges to Vtask as n→∞ and m→∞.

Proof. This proof assumes that the mean of a set of n samples
(called the sample mean) of a random variable with mean µ
and standard deviation σ is a random variable with mean µ
and standard deviation σ√

n
. Moreover, the CV of a set of n

samples (called the sample CV) of a random variable with CV
V converges to V as n→∞.

Let µi be the sample mean of the costs on row i. This row
is the product of q[i], which is a random variable that follows a
distribution with mean µtask and CV Vtask, and m values that
follow a distribution with mean one and CV Vmach. µi is thus
also the product of the first random variable and the sample
mean of the other m values, which follows a random variable
with mean one and CV Vmach√

m
. Therefore, the mean of µi is

µtask and its CV is
√
V 2

task
V 2

mach
m + V 2

mach
m + V 2

task, which tends
to Vtask asm→∞. The consistency properties have no impact
on µi because only values on the same row are ordered.

Proposition 6. The measure V µmach of a cost matrix gen-
erated using the CVB method with the parameters Vtask and
Vmach converges to a

√
bVmach as n→∞ and m→∞.

Proof. Let µj be the sample mean of the costs on column j. The
measure V µmach is the ratio of the sample standard deviation

of all µj , noted σµmach, to the sample mean of all µj , noted
µµmach.

Let’s distinguish the columns where the costs are consistent
(1 ≤ j ≤ bm) from the inconsistent columns (bm < j ≤ m).
For the inconsistent columns, µj is the sample mean of n
values that follow a product between a distribution with mean
µtask and CV Vtask, and a distribution with mean one and CV
Vmach. Thus, µj follows a distribution with mean µtask and
CV

√
V 2

taskV
2

mach+V 2
task+V 2

mach
n for bm < j ≤ m. Therefore, the

sample mean of µj converges to µtask and its sample standard
deviation converges to zero as n→∞ for bm < j ≤ m.

For the consistent columns, a× n rows are sorted. Let qp
denotes the p-quantile of a distribution with mean one and
CV Vmach (it is the value x for which F (x) = p where F is the
cumulative distribution function). Note that ei,j → q[i]qj/(bm)
as m → ∞ for 1 ≤ i ≤ an and 1 ≤ j ≤ bm. Therefore, µj
can be decomposed as a weighted sum of sample means (one
for the sorted rows and another for the last rows): the first
sample mean follows a distribution with mean µtaskqj/(bm) and
CV Vtask√

an
while the second follows a distribution with mean

µtask and CV
√

V 2
taskV

2
mach+V 2

task+V 2
mach

(1−a)n . Therefore, the sample
mean of µj converges to aµtaskqj/(bm) + (1 − a)µtask and its
sample standard deviation converges to zero as n → ∞ for
1 ≤ j ≤ bm.

On one hand, µµmach = 1
m

∑m
j=1 µj =

1
m (
∑bm

j=1(aµtaskqj/(bm) + (1 − a)µtask) + (1 − b)mµtask) =
abµtask

1
bm

∑bm
j=1 qj/(bm) + (1 − a)bµtask + (1 − b)µtask as

n→∞. Note that 1
bm

∑bm
j=1 qj/(bm) =

´ 1
0 qpdp = 1 as m→∞.

Thus, µµmach = µtask as n → ∞ and m → ∞. On the other
hand, as n→∞ and m→∞:

σµmach =

√√√√ 1
m

m∑
j=1

µ2
j −

(
1
m

m∑
j=1

µj

)2

=

√√√√ 1
m

bm∑
j=1

µ2
j + 1

m

m∑
j=bm+1

µ2
j − µ2

task

=

√√√√ 1
m

bm∑
j=1

(aµtaskqj/(bm) + (1− a)µtask)2+

(1− b)µ2
task − µ2

task

= µtask

√√√√ 1
m

bm∑
j=1

(a2q2
j/(bm) + 2aqj/(bm)(1− a)+

(1− a)2)− b

= µtask

√√√√a2b
1
bm

bm∑
j=1

q2
j/(bm) + 2a(1− a)b 1

bm

bm∑
j=1

qj/(bm)+

(1− a)2b− b

= a
√
bµtask

√√√√ 1
bm

bm∑
j=1

q2
j/(bm) − 1

Note that 1
bm

∑bm
j=1 q

2
j/(bm) =

´ 1
0 q

2
pdp =

´∞
−∞ x2f(x)dx =

V 2
mach + 1 as m → ∞ with the substitution p = F (x) and
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Table 4: Summary of the heterogeneity properties of the CVB
method.

Measure Value

V µtask Vtask

µVtask

{
Φ =

√
V 2

taskV
2

mach + V 2
task + V 2

mach if a = 0
bVtask + (1− b)Φ if a = 1

V µmach a
√
bVmach

µVmach Vmach

dp = f(x)dx where f is the probability density function of
a distribution with mean one and CV Vmach. This requires
the distribution to be continuous, which is the case for the
gamma distribution. Therefore, σµmach = a

√
bµtaskVmach and

V µmach = a
√
bVmach as n→∞ and m→∞.

Proposition 7. The measure µVtask of a cost matrix gener-
ated using the CVB method with the parameters Vtask and
Vmach converges to

√
V 2

taskV
2

mach + V 2
task + V 2

mach as n →
∞ if the matrix is inconsistent and to bVtask + (1 −
b)
√
V 2

taskV
2

mach + V 2
task + V 2

mach as n → ∞ and m → ∞ if
a = 1.

Proof. Let Vj be the sample CV of column j. When a = 0, the
values on column j follow a distribution that is the product of a
distribution with mean µtask and CV Vtask, and a distribution
with mean one and CV Vmach. Therefore, Vj converges to√
V 2

taskV
2

mach + V 2
task + V 2

mach as n→∞. Since this value does
not depends on j, µVtask (the sample mean of these sample CV)
also converges to

√
V 2

taskV
2

mach + V 2
task + V 2

mach as n→∞.
When a = 1, Vj still converges to√
V 2

taskV
2

mach + V 2
task + V 2

mach as n → ∞ for bm < j ≤ m.
However, µj (the sample mean of column j) converges to
µtaskqj/(bm) as n → ∞ and m → ∞ while σj (the sample
standard deviation of column j) converges to µtaskVtaskqj/(bm)
as n→∞ and m→∞ for 1 ≤ j ≤ bm. Thus, Vj converges to
Vtask as n→∞ andm→∞ for 1 ≤ j ≤ bm. Therefore, µVtask
converges to bCVtask + (1− b)

√
V 2

taskV
2

mach + V 2
task + V 2

mach as
n→∞ and m→∞.

Proposition 8. The measure µVmach of a cost matrix gen-
erated using the CVB method with the parameters Vtask and
Vmach converges to Vmach as m→∞.

Proof. Let Vi be the sample CV of row i. The values on
row i follow a distribution that is the product of q[i] and
a distribution with mean one and CV Vmach. Therefore, Vi
converges to Vmach as m → ∞. Since this value does not
depend on i, µVmach (the sample mean of these sample CV)
also converges to Vmach as m→∞.

Table 4 synthesises the previous formal results. They can
be extended to the range-based method by replacing Vtask by
the CV of the first random variable (

√
12
6

Rtask−1
Rtask+1 ) and Vmach

by the CV of the second one (
√

12
6

Rmach−1
Rmach+1 ). Indeed, the proofs

only use the mean and the CV of the underlying distribu-
tions. Moreover, the uniform distribution is also continuous.
Although the formal analysis of µVtask for arbitrary values
of a was unsuccessful, the following formula provides a close
estimate: a2bVtask + (1− a2b)

√
V 2

taskV
2

mach + V 2
task + V 2

mach.
In the case of complete consistency (i.e., when a = b = 1),

V µtask = µVtask = Vtask and V µmach = µVmach = Vmach,

which supports the proposed heterogeneity measures. This
special case is due to the fact that consistent cost matrices are
closer to uniform instances than inconsistent ones and both
measures are equivalent for uniform instances.

However, the CVB method has two issues. As a conse-
quence of the asymmetry of the generation method, the task
heterogeneity is not symmetric to the machine heterogeneity.
For instance, we have µVtask =

√
V 2

taskV
2

mach + V 2
task + V 2

mach,
whereas V µmach = Vmach for inconsistent matrices. This makes
the generation method less direct as the parameters must be
chosen such as to circumvent this asymmetry. In particular,
if a high machine heterogeneity is required, then the task
heterogeneity will also be high.

The second issue is related to the impact of the consistency
parameters on the heterogeneity properties. It biases com-
parisons of scheduling methods when cost matrices are used
with different consistency settings because these matrices will
also have different heterogeneity properties. The range-based
method presents an even stronger bias as both Vtask and Vmach
tend to

√
12
6 as Rtask →∞ and Rmach →∞ (the heterogeneity

properties are thus often similar).

4.5 Task and Machine Heterogeneity in Previous Studies
For each of the instances summarized in Section 3, we
computed both heterogeneity measures using the formulas
of Table 4 and the input parameters: Rtask and Rmach for the
range-based method; Vtask and Vmach for the CVB method;
and the consistency parameters, a and b, for both methods.
For the case when 0 < a < 1, µVtask was measured on a single
1000 × 1000 cost matrix that was generated with the range-
based or the CVB method. When the consistency values are
missing, matrices are assumed to be inconsistent. Finally, the
mean is set to 1 when it is not given with the CVB method
because it has no impact on any measure.

Figures 2 and 3 depict the values for the measures proposed
above. The range-based method has a clear bias because
many heterogeneity values have never been obtained. Also,
the consistency parameters invalidate the claimed properties
of the cost matrices with respect to the heterogeneity quadrant
for both heterogeneity measures: some hihi instances have
the same machine heterogeneity as lolo instances on Figure 2,
whereas some lohi instances have the same task heterogeneity
as hilo instances on Figure 3.

This analysis is also consistent with the observation made
in [16] about the fact that the range-based and CVB methods
do not cover the entire range of possible values for the MPH.

As mentioned in Section 4.2, both proposed heterogeneity
measures are relative. This allows a direct comparison between
each heterogeneity value. Using the standard deviation instead
would require normalizing them for this analysis.

5 Controlling the Heterogeneity
We are interested in generating cost matrices that have specific
heterogeneity properties according to the measures introduced
in Section 4. We propose two methods that both alter a cost
matrix generated from uniform instances for which we control
the task and machine heterogeneities. These cost matrices
have specific properties in terms of consistency and correlation
between each row and each column, and the proposed methods
introduce some randomness in it. They both possess the same
time complexity (i.e., O(nm)).
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(b) CVB method

Figure 2: Heterogeneity properties (V µtask and V µmach) of cost matrices used in the literature. Two points are not shown for
the CVB method: (1.4, 0) and (1.8, 0).
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Figure 3: Heterogeneity properties (µVtask and µVmach) of cost matrices used in the literature. The x-scale is twice as large as in
Figure 2 for the CVB method because large values of Vmach tends to increase the measure µVtask. One point is not shown for the
CVB method: (2.01, 2).
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5.1 Shuffling Method
The first proposed method shuffles the costs in the matrix
that corresponds to a uniform instance (see Algorithm 4). It
first generates the task weights on Line 2 and the inverse of
the machine speeds on Line 5. The corresponding matrix is
computed on Line 9 before starting the shuffling part. For each
cost ei,j , another cost ei′,j′ is selected on a different row and
column (Lines 14 and 15). The same amount is then removed
from these costs and is added to two other costs, ei,j′ and ei′,j
(one that is on the same row as the first cost and on the same
column as the second, and another one that is on the same
row as the second cost and on the same column as the first).
This step (Lines 25 to 28) preserves the mean of each row and
the mean of each column. The heterogeneity properties thus
remain the same.

The transferred amount is the largest value (in absolute)
such that no cost among the four considered costs becomes
lower than the minimum one among them (this prevents costs
to be arbitrarily low). For instance, if ei,j is the minimum
cost (i.e., ei,j = min(ei,j , ei′,j , ei,j′ , ei′,j′)), there are two cases:
if ei,j′ < ei′,j , then ei,j′ becomes the new minimum and the
added value to ei,j and to ei′,j′ is ei,j′ − ei,j ; otherwise, it is
ei′,j − ei,j .

Maintaining both the minimum and the maximum cost
is not possible because the cost matrix is generated from a
uniform instance. This method focuses only on preventing costs
to be arbitrarily low because it is critical to guarantee positive
costs.

Proposition 9. When used with parameters Vtask and Vmach,
the shuffling method generates costs with expected value 1.

Proof. Costs in the matrix corresponding to the uniform
matrix follow a distribution that is the product of two
distributions with mean one. Therefore, the expected value
of the costs in the matrix before the shuffling step is also one.
The shuffling step does not change the expected value of the
costs because the amount that is taken on any cost is given to
another cost.

Proposition 10. The measure V µtask of a cost matrix gener-
ated using the shuffling method with the parameters Vtask and
Vmach converges to Vtask as n→∞.

Proof. Analogously to the proof of Proposition 9, the shuffling
step has no impact on the mean of each row and each column.
The measure V µtask is thus the same for the final cost matrix
as for the intermediate matrix that corresponds to a uniform
instance.

As a corollary of Proposition 4, the sample CV of the
sample means of all rows in this intermediate matrix is equal
to the sample CV of the vector {wi}1≤i≤n. This last sample
CV converges to Vtask as n→∞.

Proposition 11. The measure V µmach of a cost matrix
generated using the shuffling method with the parameters Vtask
and Vmach converges to Vmach as m→∞.

Proof. Due to the symmetry of the shuffling method, the proof
is analogous to the proof of Proposition 10.

Table 5 summarizes the formal results related to the
shuffling method.

ALGORITHM 4: Shuffling cost matrix generation with
gamma distribution

Input: n, m, Vtask, Vmach
Output: a n×m cost matrix
1: for all 1 ≤ i ≤ n do
2: wi ← G(1/V 2

task, V
2

task)
3: end for
4: for all 1 ≤ j ≤ m do
5: bj ← G(1/V 2

mach, V
2

mach)
6: end for
7: for all 1 ≤ i ≤ n do
8: for all 1 ≤ j ≤ m do
9: ei,j ← wibj

10: end for
11: end for
12: for all 1 ≤ i ≤ n do
13: for all 1 ≤ j ≤ m do
14: i′ ← (U(1, n− 1) + i− 1 mod n) + 1
15: j′ ← (U(1, n− 1) + j − 1 mod m) + 1
16: if ei,j = min(ei,j , ei′,j , ei,j′ , ei′,j′) then
17: d← min(ei′,j − ei,j , ei,j′ − ei,j)
18: else if ei′,j = min(ei′,j , ei,j′ , ei′,j′) then
19: d← −min(ei,j − ei′,j , ei′,j′ − ei′,j)
20: else if ei,j′ = min(ei,j′ , ei′,j′) then
21: d← −min(ei,j − ei,j′ , ei′,j′ − ei,j′)
22: else
23: d← min(ei′,j − ei′,j′ , ei,j′ − ei′,j′)
24: end if
25: ei,j ← ei,j + d
26: ei′,j ← ei′,j − d
27: ei,j′ ← ei,j′ − d
28: ei′,j′ ← ei′,j′ + d
29: end for
30: end for
31: return {ei,j}1≤i≤n,1≤j≤m

Table 5: Summary of the cost matrix properties with the
shuffling method.

Property Value

Expected value 1
V µtask Vtask
V µmach Vmach

5.2 Noise-Based Method
The second method, described in Algorithm 5, relies on a
simple idea, which was also used in [19]: each cost of a matrix,
which corresponds to a uniform instance, is multiplied by a
random variable with mean one (Line 9).

Proposition 12. When used with parameters
Vtask, Vmach and Vnoise, the noise-based method
generates costs with expected value one and CV√
V 2

taskV
2

machV
2

noise + V 2
taskV

2
mach + V 2

taskV
2

noise + V 2
machV

2
noise

+V 2
task + V 2

mach + V 2
noise.

Proof. Each cost is the product of three random variables
that have all the same mean one. Additionally, their CV (and
standard deviations in this case) are Vtask, Vmach and Vnoise.
The global CV can be derived by remarking that the CV of



10

ALGORITHM 5: Noise-based cost matrix generation
with gamma distribution

Input: n, m, Vtask, Vmach, Vnoise
Output: a n×m cost matrix
1: for all 1 ≤ i ≤ n do
2: wi ← G(1/V 2

task, V
2

task)
3: end for
4: for all 1 ≤ j ≤ m do
5: bj ← G(1/V 2

mach, V
2

mach)
6: end for
7: for all 1 ≤ i ≤ n do
8: for all 1 ≤ j ≤ m do
9: ei,j ← wibj ×G(1/V 2

noise, V
2

noise)
10: end for
11: end for
12: return {ei,j}1≤i≤n,1≤j≤m

the product of two random variables with CV V1 and V2 is√
V 2

1 V
2
2 + V 2

1 + V 2
2 .

Proposition 13. The measure V µtask of a cost matrix gen-
erated using the noise-based method with the parameters Vtask,
Vmach and Vnoise converges to Vtask as n→∞ and m→∞.

Proof. Let µi be the sample mean of row i. This row is
the product of wi, which follows a distribution with mean
one and CV Vtask, and m values that are each the product
of a random variable with mean one and CV Vmach and a
random variable with mean one and CV Vnoise. µi is thus
also the product of wi and the sample mean of the other
m values, which follows a random variable with mean one
and CV

√
V 2

machV
2

noise+V 2
mach+V 2

noise
m . Therefore, the mean of µi

is one and its CV is
√
V 2

task
V 2

machV
2

noise+V 2
mach+V 2

noise
m + V 2

task+
V 2

machV
2

noise+V 2
mach+V 2

noise
m , which tends to Vtask as m → ∞.

Therefore, the sample CV of all µi converges to Vtask as n→∞
and m→∞.

Proposition 14. The measure V µmach of a cost matrix
generated using the noise-based method with the parameters
Vtask, Vmach and Vnoise converges to Vmach as n → ∞ and
m→∞.

Proof. Due to the symmetry of the noise-based method, the
proof is analogous to the proof of Proposition 13.

Proposition 15. The measure µVtask of a cost matrix gener-
ated using the noise-based method with the parameters Vtask,
Vmach and Vnoise converges to

√
V 2

taskV
2

noise + V 2
task + V 2

noise as
n→∞.

Proof. Let Vj be the sample CV of column j. Each column is
the product of bj and n values that are each the product of a
random variable with mean one and CV Vtask and a random
variable with mean one and CV Vnoise. Thus, Vj converges
to the CV of this product (i.e.,

√
V 2

taskV
2

noise + V 2
task + V 2

noise)
as n → ∞. Therefore, the measure µVtask converges to√
V 2

taskV
2

noise + V 2
task + V 2

noise as n→∞.

Proposition 16. The measure µVmach of a cost matrix gen-
erated using the noise-based method with the parameters Vtask,

Table 6: Summary of the cost matrix properties with the noise-
based method.

Property Value

Expected
value 1

CV

√
V 2

taskV
2

machV
2

noise + V 2
taskV

2
mach + V 2

taskV
2

noise+
V 2

machV
2

noise + V 2
task + V 2

mach + V 2
noise

Distribu-
tion Product of three gamma laws
V µtask Vtask

µVtask
√
V 2

taskV
2

noise + V 2
task + V 2

noise
V µmach Vmach

µVmach
√
V 2

machV
2

noise + V 2
mach + V 2

noise

Vmach and Vnoise converges to
√
V 2

machV
2

noise + V 2
mach + V 2

noise
as m→∞.

Proof. Due to the symmetry of the noise-based method, the
proof is analogous to the proof of Proposition 15.

Table 6 summarizes the formal results related to the noise-
based method.

This method requires one additional parameter: Vnoise.
When the objective is to have cost matrices with specific values
of V µtask and V µmach (for large n and m), we propose to set
Vnoise to min(Vtask, Vmach). This limits the amount of noise in
the costs.

Contrary to the shuffling method, the noise-based method
can also generate cost matrices with specific values of µVtask
and µVmach (asymptotically). The parameters can be fixed
as follow: if µVtask < µVmach, then Vtask = 0, Vnoise =
µVtask and Vmach =

√
(µV 2

mach − µV 2
task)/(µV 2

task + 1); oth-
erwise, Vmach = 0, Vnoise = µVmach and Vtask =√

(µV 2
task − µV 2

mach)/(µV 2
mach + 1). This setting maximizes

the amount of noise.
Even though the shuffling method has less formal results

(probably due to its combinatoric operations), the noise-based
method has two drawbacks: the additional parameter is not
trivial to determine and the method introduces more variation
in the costs than the shuffling method. This makes this method
more complex to use.

6 Impact on Scheduling Heuristics
This section assesses the impact of the heterogeneity properties
defined in Section 4 on the relative performance of some classic
heuristics.

6.1 Scheduling Heuristics
Our intention here is not to find the best heuristic but rather
to show the impact of the cost matrix generation method
on the performance results. We use classical heuristics from
the literature summarized in Table 7. Most of them (OLB,
MET, MCT, Min-min, Max-min, HEFT, HLPT, Suff) are
list-based algorithms. The Genetic Algorithm (GA) relies on
an initial population containing a solution obtained with Min-
min. In addition to these classic heuristics, we added two
more elaborated methods (the Bal prefixed methods) that
try to reconsider an initial mapping obtained from MET
(Minimum Execution Time) mapping: any task is moved to the
machine that will finish it the earliest if it does not increase
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Table 7: Summary of the scheduling heuristics for the R||Cmax
problem.

Name Ref Complexity Remark

OLB [4] nm
Opportunistic Load
Balancing

MET [4] nm Minimum Execution Time

MCT [4] nm
Minimum Completion
Time

Min-min [4] n2m
Earliest finish time of
smallest task

Max-min [4] n2m
Earliest finish time of
largest task

Suff [23] n2m
Task that will suffer most
first

GA [4] – Genetic Algorithm

HEFT [24] nm+ n log(n) Heterogeneous
Earliest-Finish-Time

HLPT [25] nm+ n log(n) Heterogeneous version of
LPT

GreedySuff nm log(m) Greedy allocation based on
sufferage

BalSuff – Reconsider MET mapping
BalEFT – Reconsider MET mapping

the maximum completion time. These heuristics are described
in [11, Appendix C].

Getting relevant reference values (lower bounds on the
makespan) for our performance measures is not straightforward
in practice due to the heterogeneity of the problem. We thus
rely on a variation of the genetic algorithm to provide an
estimation of these values. The initial population is initialized,
in addition to other random individuals, with all the solutions
obtained by the other algorithms. The population evolution
is based on the algorithm description given in [4]. An elite
chromosome is maintained so that the resulting solution cannot
be worse than any of the initial solutions and thus the genetic
algorithm is no worse than any of the other algorithms.

6.2 Settings
Cost matrices are generated with three different methods:
the shuffling method and the noise-based method with two
approaches to set the noise (see Section 5.2). In all cases,
there are two parameters: V µtask and V µproc for the first
two methods and µVtask and µVproc for the last one. These
two parameters are distributed in the range [0.001, 10] with
30 equidistant values using a probit scale (i.e., 0.001, 0.0014,
0.0019, 0.0026, . . . , 5.3, 7.3, 10).

All methods rely on the gamma distribution. However,
when the CV is close to 10, it may generate zero values (it
occurs in 1.4% of all the generated costs) due to rounding.
The resulting cost matrix is altered to avoid this by setting
to 2.225074e-308 (this is the value of the smallest non-zero
normalized floating-point number, double.xmin, in R 3.3.0)
each zero value. Otherwise some tasks may have no weight,
which requires specific handling and is not realistic. The impact
is however marginal and concerns only matrices for which
Vtask > 2.8 or Vmach > 2.8.

For each pair of parameters, 200 cost matrices are gen-
erated with n = 100 tasks and m = 30 machines. For
each scenario, we compute the makespan of each heuristic.
We only consider the relative difference from the reference
makespan: |C − Cmin|/Cmin where C is the makespan of a
given heuristic and Cmin is the best makespan we obtained (the

genetic algorithm initialized with all the solutions obtained
by the other heuristics). The closer to zero, the better the
performance.

6.3 Results
Figure 4 contains heat maps of the relative performance for
each algorithm. On each figure, we use a logarithmic scale on
both axes: the x-axis gives the heterogeneity value for the tasks
(V µtask or µVtask) while the y-axis gives the heterogeneity value
for the machines (V µmach or µVmach). The bottom-left area
represents almost homogeneous instances (same cost for each
execution) while the top-right area is the most heterogeneous
one. The heterogeneity values covered by the range-based
and CVB methods in the literature are represented with dark
rectangles on each sub-figure.

The scales on each heat map start at 0.001. We consider
that an heterogeneity that is below this value is negligible
and that a heuristic that is closer to the reference makespan
than this value is good enough. For instance, BalSuff may be
considered near-optimal when the heterogeneity values are
below 1%.

Figure 4 uses the shuffling method with the heterogeneity
measure V µtask/V µmach. Similar figures can be obtained with
the noise-based method using either of the heterogeneity
measures [11, Figures 6 and 7].

Figure 5 plots the best heuristic depending on the hetero-
geneity properties. Contour lines show the number of heuristics
which performance is closer to the best heuristics than 0.001.
For instance, there are at least 5 heuristics whose relative
performances are almost equivalent when task heterogeneity is
high (i.e., if the best heuristic average relative difference from
the reference value is 0.004, then at least 5 other heuristics
have a relative difference lower than 0.005).

The heuristics are ordered by the number of instances for
which no other heuristic produces a better solution. When
several heuristics are equivalent for a given tile, the appearing
heuristic is the one that is the best the least often. This allows
one to see even the settings for which the worst heuristics may
be good.

6.4 Analysis
The settings cover a large part of the possible instances for
the R||Cmax problem. Specific scheduling problems may be
associated to some areas on the figures. Problems considering
homogeneous (i.e., identical) tasks are situated on the left
area: P |pi = p|Cmax (i.e., same machine speeds) in the
bottom corner and Q|pi = p|Cmax (i.e., distinct machine
speeds) for the above part. Inversely, problems considering
tasks with varying weights allocated to homogeneous machines,
the P ||Cmax problem, are situated on the bottom area. While
the first two problems can be solved in polynomial time, the
last problem is NP-complete.

The heat maps suggest that the area where the hetero-
geneity values are between 0.1 and 1 is more challenging for
most heuristics (areas in dark blue on the heat maps are
30% far from the reference). This is confirmed by Figure 5
where there is often a single best heuristic with these settings.
Oppositely, many heuristics are close to the best one when
the task heterogeneity is low or high, or when the machine
heterogeneity is high. On one hand, execution costs are similar
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Figure 4: Heuristic performance relatively to the best case with the shuffling method. Values below 0.001 are white and values
above 1 are black. Contour lines correspond to the levels in the legend (0.001, 0.003, . . . ). The rectangles correspond to the
properties covered by the range-based and CVB methods in the literature (see Figure 2).
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when the coefficient of variation is below 0.1. A non-optimal
allocation will thus have a lower impact than with higher
heterogeneity. On the other hand, most execution costs are
close to zero when the coefficient of variation is higher than
1 and bad allocations may be easy to avoid because there are
few allocations that are extremely critical while most of them
are not. It is thus easier to generate a reasonable schedule.

When the machine heterogeneity is low (with medium
task heterogeneity), there is often a single best heuristic. This
suggests that these settings leads to difficult instances. As
mentioned above, this is close to the P ||Cmax problem. We may
conclude that dealing with heterogeneous tasks is more difficult
than with heterogeneous machines, which is also supported by
the asymmetry of the heat maps.

Finally, Figure 5 shows the best heuristics: BalSuff when
both heterogeneity properties are comparable, BalEFT when
the machine heterogeneity is higher than the task heterogeneity
and HEFT/HLPT when the task heterogeneity is high.

Overall, we used two generation methods and two hetero-
geneity measures (one with the shuffling method and two with
the noise-based method) and this analysis stands in all cases.

The range-based and CVB generation methods used in the
literature could not provide these results due to two factors:
the heterogeneity properties of the generated instances have
a limited coverage (shown by the dark rectangles) and the
erroneous claimed properties of these matrices prevent an
unbiased analysis.

6.5 Discussion
This study focuses on the impact of some measures (either
V µtask and V µmach, or µVtask and µVmach) on the performance

of twelve heuristics. However, other properties could be
measured. If we consider the skewness and the kurtosis as
in [15], we can think of 4 × 4 measures for the rows and as
many for the columns. The main limitation of this study is to
ignore the effect of all these possible measures. In addition, this
study cannot be directly extended to assess all their possible
interactions.

Another limitation is related to the effect of outliers. For
large instances, the law of large number applies and the
measures proposed in Section 4 correspond to the charac-
teristics of the cost matrices. However, for small instances, we
suggest switching to robust measures such as the median, the
interquartile range and the quartile coefficient of dispersion
instead of the mean, the standard deviation and the CV,
respectively.

7 Conclusion
This study shows that the methods used in the literature for
generating cost matrices are biased: the claimed heterogeneity
properties of these instances are invalidated by the two
measures we proposed to quantify them. We also show that
the range of instances that has been used are restricted. It is
specifically the case for the range-based method that covers
only a minor fraction of all the possible settings in terms
of heterogeneity. By providing new cost matrix generation
methods, we show that heuristics for the R||Cmax problem
have interesting behavior outside this restriction. For instance,
BalEFT is the best heuristic when the task heterogeneity is
low and this could not have been shown with the instances
used in the literature. Overall, this study provides tools to help
the assessment of scheduling strategies.
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In addition to all the possible measures mentioned in
Section 6.5, we plan to analyze other properties, in particular
the correlation. It would also be interesting to see if the
conclusions hold for some variations of the R||Cmax problem
such as considering arrival times or online scheduling.
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