A. Saltelli, K. Chan, and E. M. Scott, Sensitivity analysis, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00386559

A. K. Bardsiri and S. M. Hashemi, A Comparative Study on Seven Static Mapping Heuristics for Grid Scheduling Problem, International Journal of Software Engineering and Its Applications, vol.6, issue.4, pp.247-256, 2012.

T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran et al., A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems, Journal of Parallel and Distributed Computing, vol.61, issue.6, pp.810-837, 2001.
DOI : 10.1006/jpdc.2000.1714

C. O. Diaz, J. E. Pecero, and P. Bouvry, Scalable, low complexity, and fast greedy scheduling heuristics for highly heterogeneous distributed computing systems, The Journal of Supercomputing, vol.3, issue.3, pp.837-853, 2014.
DOI : 10.1109/2.214443

URL : http://sameekhan.org/pub/D_K_2012_SCALCOM.pdf

P. Luo, K. Lü, and Z. Shi, A revisit of fast greedy heuristics for mapping a class of independent tasks onto heterogeneous computing systems, Journal of Parallel and Distributed Computing, vol.67, issue.6, pp.695-714, 2007.
DOI : 10.1016/j.jpdc.2007.03.003

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. Kan, Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey, Annals of Discrete Mathematics, vol.5, pp.287-326, 1979.
DOI : 10.1016/S0167-5060(08)70356-X

S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali, Representing task and machine heterogeneities for heterogeneous computing systems, Tamkang Journal of Science and Engineering, vol.3, issue.3, pp.195-208, 2000.

S. Ali, H. J. Siegel, M. Maheswaran, and D. Hensgen, Task execution time modeling for heterogeneous computing systems, Proceedings 9th Heterogeneous Computing Workshop (HCW 2000) (Cat. No.PR00556), pp.185-199, 2000.
DOI : 10.1109/HCW.2000.843743

L. Canon and L. Philippe, Code for On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms, 2015.

R. K. Armstrong-jr, Investigation of effect of different run-time distributions on SmartNet performance, DTIC Document, Tech. Rep, 1997.

S. Ali, A comparative study of dynamic mapping heuristics for a class of independent tasks onto heterogeneous computing systems, 1999.

A. M. Al-qawasmeh, A. A. Maciejewski, H. Wang, J. Smith, H. J. Siegel et al., Statistical measures for quantifying task and machine heterogeneities, The Journal of Supercomputing, vol.4, issue.2, pp.34-50, 2011.
DOI : 10.1023/A:1011408729750

URL : http://www.engr.colostate.edu/%7Eaam/pdf/journals/63.pdf

A. M. Al-qawasmeh, A. A. Maciejewski, and H. J. Siegel, Characterizing heterogeneous computing environments using singular value decomposition, 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)
DOI : 10.1109/IPDPSW.2010.5470875

URL : http://www.engr.colostate.edu/%7Eaam/pdf/conferences/124.pdf

A. M. Al-qawasmeh, A. A. Maciejewski, R. G. Roberts, and H. J. Siegel, Characterizing Task-Machine Affinity in Heterogeneous Computing Environments, 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum
DOI : 10.1109/IPDPS.2011.125

URL : http://www.engr.colostate.edu/%7Eaam/pdf/conferences/136.pdf

R. Friese, B. Khemka, A. A. Maciejewski, H. J. Siegel, G. A. Koenig et al., An analysis framework for investigating the tradeoffs between system performance and energy consumption in a heterogeneous computing environment, International Parallel & Distributed Processing Symposium Workshops and Phd Forum (IPDPSW). IEEE, pp.19-30, 2013.

A. M. Al-qawasmeh, S. Pasricha, A. A. Maciejewski, and H. J. Siegel, Power and Thermal-Aware Workload Allocation in Heterogeneous Data Centers, IEEE Transactions on Computers, vol.64, issue.2, pp.477-491, 2013.
DOI : 10.1109/TC.2013.116

URL : http://www.engr.colostate.edu/%7Esudeep/pubs/publications/2013-TC-AbdulPasricha.pdf

B. Khemka, R. Friese, S. Pasricha, A. A. Maciejewski, H. J. Siegel et al., Utility maximizing dynamic resource management in an oversubscribed energy-constrained heterogeneous computing system, Sustainable Computing: Informatics and Systems, pp.14-30, 2014.
DOI : 10.1016/j.suscom.2014.08.001

S. Ghosh and S. G. Henderson, Behavior of the NORTA method for correlated random vector generation as the dimension increases, ACM Transactions on Modeling and Computer Simulation, vol.13, issue.3, pp.276-294, 2003.
DOI : 10.1145/937332.937336

M. Cryan, M. Dyer, L. A. Goldberg, M. Jerrum, and R. Martin, Rapidly Mixing Markov Chains for Sampling Contingency Tables with a Constant Number of Rows, SIAM Journal on Computing, vol.36, issue.1, pp.247-278, 2006.
DOI : 10.1137/S0097539703434243

H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, Heuristics for scheduling parameter sweep applications in grid environments, Proceedings 9th Heterogeneous Computing Workshop (HCW 2000) (Cat. No.PR00556)
DOI : 10.1109/HCW.2000.843757

URL : https://hal.archives-ouvertes.fr/hal-00748942

H. Topcuoglu, S. Hariri, and M. Wu, Performance-effective and low-complexity task scheduling for heterogeneous computing, IEEE transactions on parallel and distributed systems, pp.260-274, 2002.
DOI : 10.1109/71.993206

URL : http://meseec.ce.rit.edu/eecc722-fall2002/papers/hc/5/l0260.pdf

R. L. Graham, Bounds on Multiprocessing Timing Anomalies, SIAM Journal on Applied Mathematics, vol.17, issue.2, pp.416-429, 1969.
DOI : 10.1137/0117039