
HAL Id: hal-01665255
https://inria.hal.science/hal-01665255

Submitted on 15 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asaga: Asynchronous Parallel Saga
Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien

To cite this version:
Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien. Asaga: Asynchronous Parallel Saga. 20th
International Conference on Artificial Intelligence and Statistics (AISTATS) 2017, Apr 2017, Fort
Lauderdale, Florida, United States. �hal-01665255�

https://inria.hal.science/hal-01665255
https://hal.archives-ouvertes.fr

Asaga: Asynchronous Parallel Saga

Rémi Leblond Fabian Pedregosa Simon Lacoste-Julien
INRIA - Sierra Project-team

École normale supérieure, Paris
INRIA - Sierra Project-team

École normale supérieure, Paris
Department of CS & OR (DIRO)
Université de Montréal, Montréal

Abstract

We describe Asaga, an asynchronous parallel
version of the incremental gradient algorithm
Saga that enjoys fast linear convergence rates.
Through a novel perspective, we revisit and
clarify a subtle but important technical is-
sue present in a large fraction of the recent
convergence rate proofs for asynchronous par-
allel optimization algorithms, and propose a
simplification of the recently introduced “per-
turbed iterate” framework that resolves it.
We thereby prove that Asaga can obtain a
theoretical linear speedup on multi-core sys-
tems even without sparsity assumptions. We
present results of an implementation on a
40-core architecture illustrating the practical
speedup as well as the hardware overhead.

1 Introduction

We consider the unconstrained optimization problem
of minimizing a finite sum of smooth convex functions:

min
x∈Rd

f(x), f(x) :=
1

n

n∑
i=1

fi(x), (1)

where each fi is assumed to be convex with L-Lipschitz
continuous gradient, f is µ-strongly convex and n is
large (for example, the number of data points in a regu-
larized empirical risk minimization setting). We define
a condition number for this problem as κ := L/µ. A
flurry of randomized incremental algorithms (which at
each iteration select i at random and process only one
gradient f ′i) have recently been proposed to solve (1)
with a fast1 linear convergence rate, such as Sag (Le

1Their complexity in terms of gradient evaluations to
reach an accuracy of ε is O((n+ κ) log(1/ε)), in contrast to
O(nκ log(1/ε)) for batch gradient descent in the worst case.

Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copyright
2017 by the author(s).

Roux et al., 2012), Sdca (Shalev-Shwartz and Zhang,
2013), Svrg (Johnson and Zhang, 2013) and Saga (De-
fazio et al., 2014). These algorithms can be interpreted
as variance reduced versions of the stochastic gradient
descent (Sgd) algorithm, and they have demonstrated
both theoretical and practical improvements over Sgd
(for the finite sum optimization problem (1)).

In order to take advantage of the multi-core architecture
of modern computers, the aforementioned optimization
algorithms need to be adapted to the asynchronous par-
allel setting, where multiple threads work concurrently.
Much work has been devoted recently in proposing and
analyzing asynchronous parallel variants of algorithms
such as Sgd (Niu et al., 2011), Sdca (Hsieh et al.,
2015) and Svrg (Reddi et al., 2015; Mania et al., 2015;
Zhao and Li, 2016). Among the incremental gradient
algorithms with fast linear convergence rates that can
optimize (1) in its general form, only Svrg has had an
asynchronous parallel version proposed.2 No such adap-
tation has been attempted yet for Saga, even though
one could argue that it is a more natural candidate as,
contrarily to Svrg, it is not epoch-based and thus has
no synchronization barriers at all.

Contributions. In Section 2, we present a novel
sparse variant of Saga that is more adapted to the
parallel setting than the original Saga algorithm. In
Section 3, we present Asaga, a lock-free asynchronous
parallel version of Sparse Saga that does not require
consistent reads. We propose a simplification of the
“perturbed iterate” framework from Mania et al. (2015)
as a basis for our convergence analysis. At the same
time, through a novel perspective, we revisit and clar-
ify a technical problem present in a large fraction of
the literature on randomized asynchronous parallel al-
gorithms (with the exception of Mania et al. (2015),
which also highlights this issue): namely, they all as-
sume unbiased gradient estimates, an assumption that
is inconsistent with their proof technique without fur-

2We note that Sdca requires the knowledge of an explicit
µ-strongly convex regularizer in (1), whereas Sag / Saga
are adaptive to any local strong convexity of f (Schmidt
et al., 2016; Defazio et al., 2014). This is also true for a
variant of Svrg (Hofmann et al., 2015).

Asaga: Asynchronous Parallel Saga

ther synchronization assumptions. In Section 3.3, we
present a tailored convergence analysis for Asaga. Our
main result states that Asaga obtains the same ge-
ometric convergence rate per update as Saga when
the overlap bound τ (which scales with the number of
cores) satisfies τ ≤ O(n) and τ ≤ O(1√

∆
max{1, nκ}),

where ∆ ≤ 1 is a measure of the sparsity of the problem,
notably implying that a linear speedup is theoretically
possible even without sparsity in the well-conditioned
regime where n� κ. In Section 4, we provide a practi-
cal implementation of Asaga and illustrate its perfor-
mance on a 40-core architecture, showing improvements
compared to asynchronous variants of Svrg and Sgd.

Related Work. The seminal textbook of Bertsekas
and Tsitsiklis (1989) provides most of the foundational
work for parallel and distributed optimization algo-
rithms. An asynchronous variant of Sgd with con-
stant step size called Hogwild was presented by Niu
et al. (2011); part of their framework of analysis was
re-used and inspired most of the recent literature on
asynchronous parallel optimization algorithms with
convergence rates, including asynchronous variants of
coordinate descent (Liu et al., 2015), Sdca (Hsieh
et al., 2015), Sgd for non-convex problems (De Sa
et al., 2015; Lian et al., 2015), Sgd for stochastic opti-
mization (Duchi et al., 2015) and Svrg (Reddi et al.,
2015; Zhao and Li, 2016). These papers make use of
an unbiased gradient assumption that is not consis-
tent with the proof technique, and thus suffers from
technical problems3 that we highlight in Section 3.2.

The “perturbed iterate” framework presented in Ma-
nia et al. (2015) is to the best of our knowledge the
only one that does not suffer from this problem, and
our convergence analysis builds heavily from their ap-
proach, while simplifying it. In particular, the authors
assumed that f was both strongly convex and had a
bound on the gradient, two inconsistent assumptions
in the unconstrained setting that they analyzed. We
overcome these difficulties by using tighter inequalities
that remove the requirement of a bound on the gradient.
We also propose a more convenient way to label the
iterates (see Section 3.2). The sparse version of Saga
that we propose is also inspired from the sparse ver-
sion of Svrg proposed by Mania et al. (2015). Reddi
et al. (2015) presents a hybrid algorithm called Hsag
that includes Saga and Svrg as special cases. Their
asynchronous analysis is epoch-based though, and thus
does not handle a fully asynchronous version of Saga
as we do. Moreover, they require consistent reads and
do not propose an efficient sparse implementation for
Saga, in contrast to Asaga.

3Except Duchi et al. (2015) that can be easily fixed by
incrementing their global counter before sampling.

Notation. We denote by E a full expectation with
respect to all the randomness, and by E the conditional
expectation of a random i (the index of the factor fi
chosen in Sgd-like algorithms), conditioned on all the
past, where “past” will be clear from the context. [x]v is
the coordinate v of the vector x ∈ Rd. x+ represents the
updated parameter vector after one algorithm iteration.

2 Sparse Saga
Borrowing our notation from Hofmann et al. (2015),
we first present the original Saga algorithm and then
describe a novel sparse variant that is more appropriate
for a parallel implementation.

Original Saga Algorithm. The standard Saga
algorithm (Defazio et al., 2014) maintains two moving
quantities to optimize (1): the current iterate x and
a table (memory) of historical gradients (αi)

n
i=1.4 At

every iteration, the Saga algorithm samples uniformly
at random an index i ∈ {1, . . . , n}, and then executes
the following update on x and α (for the unconstrained
optimization version):

x+ = x− γ
(
f ′i(x)− αi + ᾱ

)
; α+

i = f ′i(x), (2)

where γ is the step size and ᾱ := 1/n
∑n
i=1 αi can

be updated efficiently in an online fashion. Crucially,
Eαi = ᾱ and thus the update direction is unbiased
(Ex+ = x − γf ′(x)). Furthermore, it can be proven
(see Defazio et al. (2014)) that under a reasonable
condition on γ, the update has vanishing variance,
which enables the algorithm to converge linearly with
a constant step size.

Motivation for a Variant. In its current form, ev-
ery Saga update is dense even if the individual gradi-
ents are sparse due to the historical gradient (ᾱ) term.
Schmidt et al. (2016) introduced a special implemen-
tation with lagged updates where every iteration has
a cost proportional to the size of the support of f ′i(x).
However, this subtle technique is not easily adaptable
to the parallel setting (see App. F.2). We therefore
introduce Sparse Saga, a novel variant which explicitly
takes sparsity into account and is easily parallelizable.

Sparse Saga Algorithm. As in the Sparse Svrg
algorithm proposed in Mania et al. (2015), we obtain
Sparse Saga by a simple modification of the parameter
update rule in (2) where ᾱ is replaced by a sparse
version equivalent in expectation:

x+ = x− γ(f ′i(x)− αi +Diᾱ), (3)

where Di is a diagonal matrix that makes a weighted
projection on the support of f ′i . More precisely, let Si

4For linear predictor models, the memory α0
i can be

stored as a scalar. Following Hofmann et al. (2015), α0
i can

be initialized to any convenient value (typically 0), unlike
the prescribed f ′i(x0) analyzed in Defazio et al. (2014).

Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien

be the support of the gradient f ′i function (i.e., the set
of coordinates where f ′i can be nonzero). Let D be a
d×d diagonal reweighting matrix, with coefficients 1/pv
on the diagonal, where pv is the probability that di-
mension v belongs to Si when i is sampled uniformly
at random in {1, ..., n}. We then define Di := PSi

D,
where PSi is the projection onto Si. The normalization
from D ensures that EDiᾱ = ᾱ, and thus that the
update is still unbiased despite the projection.

Convergence Result for (Serial) Sparse Saga.
For clarity of exposition, we model our convergence
result after the simple form of Hofmann et al. (2015,
Corollary 3) (note that the rate for Sparse Saga is the
same as Saga). The proof is given in Appendix B.
Theorem 1. Let γ = a

5L for any a ≤ 1. Then
Sparse Saga converges geometrically in expectation
with a rate factor of at least ρ(a) = 1

5 min
{

1
n , a

1
κ

}
,

i.e., for xt obtained after t updates, we have
E‖xt − x∗‖2 ≤ (1− ρ)

t
C0, where C0 := ‖x0 − x∗‖2 +

1
5L2

∑n
i=1 ‖α0

i − f ′i(x∗)‖2.

Comparison with Lagged Updates. The lagged
updates technique in Saga is based on the observation
that the updates for component [x]v can be delayed
until this coefficient is next accessed. Interestingly, the
expected number of iterations between two steps where
a given dimension v is involved in the partial gradient
is p−1

v , where pv is the probability that v is involved.
p−1
v is precisely the term which we use to multiply the
update to [x]v in Sparse Saga. Therefore one may
view the Sparse Saga updates as anticipated Saga
updates, whereas those in the Schmidt et al. (2016)
implementation are lagged.

Although Sparse Saga requires the computation of the
pv probabilities, this can be done during a first pass
through the data (during which constant step size Sgd
may be used) at a negligible cost. In our experiments,
both Sparse Saga and Saga with lagged updates had
similar convergence in terms of number of iterations,
with the Sparse Saga scheme being slightly faster in
terms of runtime. We refer the reader to Schmidt et al.
(2016) and Appendix F for more details.

3 Asynchronous Parallel Sparse Saga

As most recent parallel optimization contributions, we
use a similar hardware model to Niu et al. (2011).
We have multiple cores which all have read and write
access to a shared memory. They update a central
parameter vector in an asynchronous and lock-free
fashion. Unlike Niu et al. (2011), we do not assume
that the vector reads are consistent: multiple cores
can read and write different coordinates of the shared
vector at the same time. This means that a full vector
read for a core might not correspond to any consistent

state in the shared memory at any specific point in
time.

3.1 Perturbed Iterate Framework

We first review the “perturbed iterate” framework re-
cently introduced by Mania et al. (2015) which will
form the basis of our analysis. In the sequential set-
ting, stochastic gradient descent and its variants can
be characterized by the following update rule:

xt+1 = xt − γg(xt, it), (4)

where it is a random variable independent from xt
and we have the unbiasedness condition Eg(xt, it) =
f ′(xt) (recall that E is the relevant-past conditional
expectation with respect to it).

Unfortunately, in the parallel setting, we manipulate
stale, inconsistent reads of shared parameters and thus
we do not have such a straightforward relationship.
Instead, Mania et al. (2015) proposed to separate x̂t,
the actual value read by a core to compute an update,
with xt, a “virtual iterate” that we can analyze and is
defined by the update equation: xt+1 := xt−γg(x̂t, it).
We can thus interpret x̂t as a noisy (perturbed) version
of xt due to the effect of asynchrony. In the specific
case of (Sparse) Saga, we have to add the additional
read memory argument α̂t to our update:

xt+1 := xt − γg(x̂t, α̂
t, it);

g(x̂t, α̂
t, it) := f ′it(x̂t)− α̂

t
it +Dit (1/n

∑n
i=1 α̂

t
i) .

(5)

We formalize the precise meaning of xt and x̂t in the
next section. We first note that all the papers men-
tioned in the related work section that analyzed asyn-
chronous parallel randomized algorithms assumed that
the following unbiasedness condition holds:[

unbiasedness
condition

]
E[g(x̂t, it)|x̂t] = f ′(x̂t). (6)

This condition is at the heart of most convergence
proofs for randomized optimization methods.5 Mania
et al. (2015) correctly pointed out that most of the
literature thus made the often implicit assumption
that it is independent of x̂t. But as we explain below,
this assumption is incompatible with a non-uniform
asynchronous model in the analysis approach used in
most of the recent literature.

3.2 On the Difficulty of Labeling the Iterates

Formalizing the meaning of xt and x̂t highlights a
subtle but important difficulty arising when analyzing

5A notable exception is Sag (Le Roux et al., 2012)
which has biased updates, yielding a significantly more
complex convergence proof. Making Sag unbiased leads to
Saga (Defazio et al., 2014) and a much simpler proof.

Asaga: Asynchronous Parallel Saga

randomized parallel algorithms: what is the meaning
of t? This is the problem of labeling the iterates for
the purpose of the analysis, and this labeling can have
randomness itself that needs to be taken in consider-
ation when interpreting the meaning of an expression
like E[xt]. In this section, we contrast three different
approaches in a unified framework. We notably clarify
the dependency issues that the labeling from Mania
et al. (2015) resolves and propose a new, simpler la-
beling which allows for much simpler proof techniques.
We consider algorithms that execute in parallel the
following four steps, where t is a global labeling that
needs to be defined:

1. Read the information in shared memory (x̂t).
2. Sample it.
3. Perform some computations using (x̂t, it).
4. Write an update to shared memory.

(7)

The “After Write” Approach. We call the “after
write” approach the standard global labeling scheme
used in Niu et al. (2011) and re-used in all the later pa-
pers that we mentioned in the related work section, with
the notable exceptions of Mania et al. (2015) and Duchi
et al. (2015). In this approach, t is a (virtual) global
counter recording the number of successful writes to the
shared memory x (incremented after step 4 in (7)); xt
thus represents the (true) content of the shared memory
after t updates. The interpretation of the crucial equa-
tion (5) then means that x̂t represents the (delayed)
local copy value of the core that made the (t + 1)th

successful update; it represents the factor sampled by
this core for this update. Notice that in this framework,
the value of x̂t and it is unknown at “time t”; we have
to wait to the later time when the next core writes to
memory to finally determine that its local variables are
the ones labeled by t. We thus see that here x̂t and it
are not necessarily independent – they share depen-
dence through the t label assignment. In particular, if
some values of it yield faster updates than others, it
will influence the label assignment defining x̂t. We il-
lustrate this point with a concrete problematic example
in Appendix A that shows that in order to preserve the
unbiasedness condition (6), the “after write” framework
makes the implicit assumption that the computation
time for the algorithm running on a core is independent
of the sample i chosen. This assumption seems overly
strong in the context of potentially heterogeneous fac-
tors fi’s, and is thus a fundamental flaw for analyzing
non-uniform asynchronous computation.

The “Before Read” Approach. Mania et al.
(2015) addresses this issue by proposing instead to
increment the global t counter just before a new core
starts to read the shared memory (before step 1 in (7)).
In their framework, x̂t represents the (inconsistent)
read that was made by this core in this computational

block, and it represents the picked sample. The update
rule (5) represents a definition of the meaning of xt,
which is now a “virtual iterate” as it does not neces-
sarily correspond to the content of the shared memory
at any point. The real quantities manipulated by the
algorithm in this approach are the x̂t’s, whereas xt is
used only for the analysis – the critical quantity we
want to see vanish is E‖x̂t − x∗‖2. The independence
of it with x̂t can be simply enforced in this approach
by making sure that the way the shared memory x
is read does not depend on it (e.g. by reading all its
coordinates in a fixed order). Note that this means
that we have to read all of x’s coordinates, regardless
of the size of fit ’s support. This is a much weaker con-
dition than the assumption that all the computation in
a block does not depend on it as required by the “after
write” approach, and is thus more reasonable.

A New Global Ordering: the “After Read” Ap-
proach. The “before read” approach gives rise to the
following complication in the analysis: x̂t can depend
on ir for r > t. This is because t is a global time
ordering only on the assignment of computation to a
core, not on when x̂t was finished to be read. This
means that we need to consider both the “future” and
the “past” when analyzing xt. To simplify the analysis
(which proved crucial for our Asaga proof), we thus
propose a third way to label the iterates: x̂t represents
the (t+ 1)th fully completed read (t incremented after
step 1 in (7)). As in the “before read” approach, we
can ensure that it is independent of x̂t by ensuring
that how we read does not depend on it. But unlike
in the “before read” approach, t here now does repre-
sent a global ordering on the x̂t iterates – and thus
we have that ir is independent of x̂t for r > t. Again
using (5) as the definition of the virtual iterate xt as
in the perturbed iterate framework, we then have a
very simple form for the value of xt and x̂t (assuming
atomic writes, see Property 3 below):

xt = x0 − γ
t−1∑
u=0

g(x̂u, α̂
u, iu) ;

[x̂t]v = [x0]v − γ
t−1∑
u=0

u s.t. coordinate v was written
for u before t

[g(x̂u, α̂
u, iu)]v .

(8)

The main idea of the perturbed iterate framework is to
use this handle on x̂t − xt to analyze the convergence
for xt. In this paper, we can instead give directly the
convergence of x̂t, and so unlike in Mania et al. (2015),
we do not require that there exists a T such that xT
lives in shared memory.

3.3 Analysis setup

We describe Asaga, a sparse asynchronous parallel
implementation of Sparse Saga, in Algorithm 1 in the

Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien

Algorithm 1 Asaga (analyzed algorithm)

1: Initialize shared variables x and (αi)
n
i=1

2: keep doing in parallel
3: x̂ = inconsistent read of x
4: ∀j, α̂j = inconsistent read of αj
5: Sample i uniformly at random in {1, ..., n}
6: Let Si be fi’s support
7: [ᾱ]Si

= 1/n
∑n
k=1[α̂k]Si

8: [δx]Si = −γ(f ′i(x̂)− α̂i +Di[ᾱ]Si)
9:

10: for v in Si do
11: [x]v ← [x]v + [δx]v // atomic
12: [αi]v ← [f ′i(x̂)]v
13: // (‘←’ denotes a shared memory update.)
14: end for
15: end parallel loop

Algorithm 2 Asaga (implementation)

1: Initialize shared variables x, (αi)
n
i=1 and ᾱ

2: keep doing in parallel
3: Sample i uniformly at random in {1, ..., n}
4: Let Si be fi’s support
5: [x̂]Si = inconsistent read of x on Si
6: α̂i = inconsistent read of αi
7: [ᾱ]Si

= inconsistent read of ᾱ on Si
8: [δα]Si = f ′i([x̂]Si)− α̂i
9: [δx]Si

= −γ([δα]Si
+Di[ᾱ]Si

)
10: for v in Si do
11: [x]v ← [x]v + [δx]v // atomic
12: [αi]v ← [αi]v + [δα]v // atomic
13: [ᾱ]v ← [ᾱ]v + 1/n[δα]v // atomic
14: end for
15: end parallel loop

theoretical form that we analyze, and in Algorithm 2
as its practical implementation. Before stating its con-
vergence, we highlight some properties of Algorithm 1
and make one central assumption.

Property 1 (independence). Given the “after read”
global ordering, ir is independent of x̂t ∀r ≥ t.
We enforce the independence for r = t in Algorithm 1
by having the core read all the shared data parameters
and historical gradients before starting their iterations.
Although this is too expensive to be practical if the data
is sparse, this is required by the theoretical Algorithm 1
that we can analyze. As Mania et al. (2015) stress,
this independence property is assumed in most of the
parallel optimization literature. The independence for
r > t is a consequence of using the “after read” global
ordering instead of the “before read” one.

Property 2 (Unbiased estimator). The update, gt :=
g(x̂t, α̂

t, it), is an unbiased estimator of the true gradi-
ent at x̂t (i.e. (5) yields (6) in conditional expectation).

This property is crucial for the analysis, as in most
related literature. It follows by the independence of it
with x̂t and from the computation of ᾱ on line 7 of Algo-
rithm 1, which ensures that Eα̂i = 1/n

∑n
k=1[α̂k]Si

=
[ᾱ]Si , making the update unbiased. In practice, recom-
puting ᾱ is not optimal, but storing it instead intro-
duces potential bias issues in the proof (as detailed in
Appendix G.3).

Property 3 (atomicity). The shared parameter coor-
dinate update of [x]v on line 11 is atomic.

Since our updates are additions, this means that there
are no overwrites, even when several cores compete
for the same resources. In practice, this is enforced
by using compare-and-swap semantics, which are heav-
ily optimized at the processor level and have minimal
overhead. Our experiments with non-thread safe al-
gorithms (i.e. where this property is not verified, see
Figure 6 of Appendix G) show that compare-and-swap

is necessary to optimize to high accuracy.

Finally, as is standard in the literature, we make an
assumption on the maximum delay that asynchrony
can cause – this is the partially asynchronous setting
as defined in Bertsekas and Tsitsiklis (1989):
Assumption 1 (bounded overlaps). We assume that
there exists a uniform bound, called τ , on the maximum
number of iterations that can overlap together. We say
that iterations r and t overlap if at some point they are
processed concurrently. One iteration is being processed
from the start of the reading of the shared parameters
to the end of the writing of its update. The bound τ
means that iterations r cannot overlap with iteration t
for r ≥ t+ τ + 1, and thus that every coordinate update
from iteration t is successfully written to memory before
the iteration t+ τ + 1 starts.

Our result will give us conditions on τ subject to which
we have linear speedups. τ is usually seen as a proxy
for p, the number of cores (which lowerbounds it).
However, though τ appears to depend linearly on p,
it actually depends on several other factors (notably
the data sparsity distribution) and can be orders of
magnitude bigger than p in real-life experiments. We
can upper bound τ by (p− 1)R, where R is the ratio of
the maximum over the minimum iteration time (which
encompasses theoretical aspects as well as hardware
overhead). More details can be found in Appendix E.

Explicit effect of asynchrony. By using the over-
lap Assumption 1 in the expression (8) for the iterates,
we obtain the following explicit effect of asynchrony
that is crucially used in our proof:

x̂t − xt = γ

t−1∑
u=(t−τ)+

Stug(x̂u, α̂
u, iu), (9)

where Stu are d × d diagonal matrices with terms in
{0,+1}. We know from our definition of t and xt that

Asaga: Asynchronous Parallel Saga

every update in x̂t is already in xt – this is the 0 case.
Conversely, some updates might be late: this is the
+1 case. x̂t may be lacking some updates from the
“past" in some sense, whereas given our global ordering
definition, it cannot contain updates from the “future".

3.4 Convergence and speedup results

We now state our main theoretical results. We give an
outline of the proof in Section 3.5 and its full details
in Appendix C. We first define a notion of problem
sparsity, as it will appear in our results.
Definition 1 (Sparsity). As in Niu et al. (2011), we
introduce ∆r := maxv=1..d |{i : v ∈ Si}|. ∆r is the
maximum right-degree in the bipartite graph of the fac-
tors and the dimensions, i.e., the maximum number of
data points with a specific feature. For succinctness,
we also define ∆ := ∆r/n. We have 1 ≤ ∆r ≤ n, and
hence 1/n ≤ ∆ ≤ 1.
Theorem 2 (Convergence guarantee and rate of
Asaga). Suppose τ < n/10.6 Let

a∗(τ) :=
1

32
(

1 + τ
√

∆
)
ξ(κ,∆, τ)

where ξ(κ,∆, τ) :=

√
1 +

1

8κ
min{ 1√

∆
, τ}

(note that ξ(κ,∆, τ) ≈ 1 unless κ < 1/
√

∆ (≤
√
n)).

(10)

For any step size γ = a
L with a ≤ a∗(τ), the inconsis-

tent read iterates of Algorithm 1 converge in expectation
at a geometric rate of at least: ρ(a) = 1

5 min
{

1
n , a

1
κ

}
,

i.e., Ef(x̂t)− f(x∗) ≤ (1− ρ)t C̃0, where C̃0 is a con-
stant independent of t (≈ n

γC0 with C0 as defined in
Theorem 1).
This result is very close to Saga’s original convergence
theorem, but with the maximum step size divided by
an extra 1 + τ

√
∆ factor. Referring to Hofmann et al.

(2015) and our own Theorem 1, the rate factor for Saga
is min{1/n, 1/κ} up to a constant factor. Comparing
this rate with Theorem 2 and inferring the conditions
on the maximum step size a∗(τ), we get the following
conditions on the overlap τ for Asaga to have the
same rate as Saga (comparing upper bounds).
Corollary 3 (Speedup condition). Suppose τ ≤ O(n)
and τ ≤ O(1√

∆
max{1, nκ}). Then using the step size

γ = a∗(τ)/L from (10), Asaga converges geometrically
with rate factor Ω(min{ 1

n ,
1
κ}) (similar to Saga), and

is thus linearly faster than its sequential counterpart up
to a constant factor. Moreover, if τ ≤ O(1√

∆
), then a

universal step size of Θ(1
L) can be used for Asaga to

be adaptive to local strong convexity with a similar rate
to Saga (i.e., knowledge of κ is not required).

6Asaga can actually converge for any τ , but the maxi-
mum step size then has a term of exp(τ/n) in the denomi-
nator with much worse constants. See Appendix C.8.

Interestingly, in the well-conditioned regime (n > κ,
where Saga enjoys a range of stepsizes which all give
the same contraction ratio), Asaga can get the same
rate as Saga even in the non-sparse regime (∆ = 1)
for τ < O(n/κ). This is in contrast to the previous
work on asynchronous incremental gradient methods
which required some kind of sparsity to get a theoretical
linear speedup over their sequential counterpart (Niu
et al., 2011; Mania et al., 2015). In the ill-conditioned
regime (κ > n), sparsity is required for a linear speedup,
with a bound on τ of O(

√
n) in the best-case (though

degenerate) scenario where ∆ = 1/n.

Comparison to related work.
• We give the first convergence analysis for an asyn-

chronous parallel version of Saga (note that Reddi
et al. (2015) only covers an epoch based version of
Saga with random stopping times, a fairly different
algorithm).

• Theorem 2 can be directly extended to a paral-
lel extension of the Svrg version from Hofmann
et al. (2015), which is adaptive to the local strong
convexity with similar rates (see Appendix C.2).

• In contrast to the parallel Svrg analysis from Reddi
et al. (2015, Thm. 2), our proof technique handles
inconsistent reads and a non-uniform processing
speed across fi’s. Our bounds are similar (noting
that ∆ is equivalent to theirs), except for the adap-
tivity to local strong convexity: Asaga does not
need to know κ for optimal performance, contrary
to parallel Svrg (see App. C.2 for more details).

• In contrast to the Svrg analysis from Mania et al.
(2015, Thm. 14), we obtain a better dependence on
the condition number in our rate (1/κ vs. 1/κ2 for
them) and on the sparsity (they get τ ≤ O(∆−1/3)),
while we remove their gradient bound assumption.
We also give our convergence guarantee on x̂t during
the algorithm, whereas they only bound the error
for the “last” iterate xT .

3.5 Proof outline

We give here the outline of our proof. Its full details
can be found in Appendix C.

Let gt := g(x̂t, α̂
t, it). By expanding the update equa-

tion (5) defining the virtual iterate xt+1 and introduc-
ing x̂t in the inner product term, we get:

‖xt+1 − x∗‖2 = ‖xt − x∗‖2 − 2γ〈x̂t − x∗, gt〉
+ 2γ〈x̂t − xt, gt〉+ γ2‖gt‖2.

(11)

In the sequential setting, we require it to be inde-
pendent of xt to get unbiasedness. In the perturbed
iterate framework, we instead require that it is inde-
pendent of x̂t (see Property 1). This crucial property
enables us to use the unbiasedness condition (6) to
write: E〈x̂t − x∗, gt〉 = E〈x̂t − x∗, f ′(x̂t)〉. We thus

Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien

take the expectation of (11) that allows us to use the
µ-strong convexity of f :7

〈x̂t − x∗, f ′(x̂t)〉 ≥ f(x̂t)− f(x∗) +
µ

2
‖x̂t − x∗‖2.

With further manipulations on the expectation of (11),
including the use of the standard inequality ‖a+ b‖2 ≤
2‖a‖2 + 2‖b‖2 (see Section C.3), we obtain our basic
recursive contraction inequality:

at+1 ≤(1− γµ

2
)at + γ2E‖gt‖2 − 2γet

+γµE‖x̂t − xt‖2 + 2γE〈x̂t − xt, gt〉︸ ︷︷ ︸
additional asynchrony terms

, (12)

where at := E‖xt − x∗‖2 and et := Ef(x̂t)− f(x∗).

In the sequential setting, one crucially uses the negative
suboptimality term −2γet to cancel the variance term
γ2E‖gt‖2 (thus deriving a condition on γ). Here, we
need to bound the additional asynchrony terms using
the same negative suboptimality in order to prove con-
vergence and speedup for our parallel algorithm – thus
getting stronger constraints on the maximum step size.

The rest of the proof then proceeds as follows:
• Lemma 1: we first bound the additional asyn-
chrony terms in (12) in terms of past updates
(E‖gu‖2, u ≤ t). We achieve this by crucially us-
ing the expansion (9) for xt − x̂t, together with
the sparsity inequality (44) (which is derived from
Cauchy-Schwartz, see Appendix C.4).

• Lemma 2: we then bound the updates E‖gu‖2 with
respect to past suboptimalities (ev)v≤u. From our
analysis of Sparse Saga in the sequential case:

E‖gt‖2 ≤ 2E‖f ′it(x̂t)−f
′
it(x

∗)‖2+2E‖α̂tit−f
′
it(x

∗)‖2

We bound the first term by 4Let using Hofmann
et al. (2015, Equation (8)). To express the second
term in terms of past suboptimalities, we note that
it can be seen as an expectation of past first terms
with an adequate probability distribution which we
derive and bound.

• By substituting Lemma 2 into Lemma 1, we get a
master contraction inequality (28) in terms of at+1,
at and eu, u ≤ t.

• We define a novel Lyapunov function Lt =∑t
u=0(1 − ρ)t−uau and manipulate the master in-

equality to show that Lt is bounded by a contrac-
tion, subject to a maximum step size condition on γ
(given in Lemma 3, see Appendix C.1).
• Finally, we unroll the Lyapunov inequality to get

the convergence Theorem 2.
7Here is our departure point with Mania et al. (2015)

who replaced the f(x̂t)− f(x∗) term with the lower bound
µ
2
‖x̂t − x∗‖2 in this relationship (see their Equation (2.4)),

yielding an inequality too loose to get fast rates for Svrg.

4 Empirical results
We now present the main results of our empirical com-
parison of asynchronous Saga, Svrg and Hogwild.
Additional results, including convergence and speedup
figures with respect to the number of iteration and mea-
sures on the τ constant are available in the appendix.

4.1 Experimental setup

Models. Although Asaga can be applied more
broadly, we focus on logistic regression, a model
of particular practical importance. The associ-
ated objective function takes the following form:
1
n

∑n
i=1 log

(
1 + exp(−biaᵀi x)

)
+ λ

2 ‖x‖
2, where ai ∈ Rp

and bi ∈ {−1,+1} are the data samples.

Datasets. We consider two sparse datasets:
RCV1 (Lewis et al., 2004) and URL (Ma et al., 2009);
and a dense one, Covtype (Collobert et al., 2002), with
statistics listed in the table below. As in Le Roux et al.
(2012), Covtype is standardized, thus 100% dense. ∆
is O(1) in all datasets, hence not very insightful when
relating it to our theoretical results. Deriving a less
coarse sparsity bound remains an open problem.

n d density L

RCV1 697,641 47,236 0.15% 0.25
URL 2,396,130 3,231,961 0.004% 128.4
Covtype 581,012 54 100% 48428

Hardware and software. Experiments were run on a
40-core machine with 384GB of memory. All algorithms
were implemented in Scala. We chose this high-level
language despite its typical 20x slowdown compared to
C (when using standard libraries, see Appendix G.2)
because our primary concern was that the code may
easily be reused and extended for research purposes
(to this end, we have made all our code available at
https://github.com/RemiLeblond/ASAGA).

4.2 Implementation details

Exact regularization. Following Schmidt et al.
(2016), the amount of regularization used was set to
λ = 1/n. In each update, we project the gradient of
the regularization term (we multiply it by Di as we
also do with the vector ᾱ) to preserve the sparsity
pattern while maintaining an unbiased estimate of the
gradient. For squared `2, the Sparse Saga updates
becomes: x+ = x− γ(f ′i(x)− αi +Diᾱ+ λDix).

Comparison with the theoretical algorithm.
The algorithm we used in the experiments is fully
detailed in Algorithm 2. There are two differences
with Algorithm 1. First, in the implementation we
pick it at random before we read data. This enables
us to only read the necessary data for a given iter-
ation (i.e. [x̂t]Si

, [α̂ti], [ᾱ
t]Si

). Although this violates

https://github.com/RemiLeblond/ASAGA

Asaga: Asynchronous Parallel Saga

(a) Suboptimality as a function of time. (b) Speedup as a function of the number of cores

Figure 1: Convergence and speedup for asynchronous stochastic gradient descent methods. We
display results for RCV1 and URL. Results for Covtype can be found in Appendix D.2.

Property 1, it still performs well in practice.

Second, we maintain ᾱt in memory. This saves the cost
of recomputing it at every iteration (which we can no
longer do since we only read a subset data). Again,
in practice the implemented algorithm enjoys good
performance. But this design choice raises a subtle
point: the update is not guaranteed to be unbiased in
this setup (see Appendix G.3 for more details).

4.3 Results

We first compare three different asynchronous variants
of stochastic gradient methods on the aforementioned
datasets: Asaga, presented in this work, Kromagnon,
the asynchronous sparse Svrg method described in Ma-
nia et al. (2015) and Hogwild (Niu et al., 2011). Each
method had its step size chosen so as to give the fastest
convergence (up to 10−3 in the special case of Hog-
wild). The results can be seen in Figure 1a: for each
method we consider its asynchronous version with both
one (hence sequential) and ten processors. This figure
reveals that the asynchronous version offers a significant
speedup over its sequential counterpart.

We then examine the speedup relative to the increase
in the number of cores. The speedup is measured
as time to achieve a suboptimality of 10−5 (10−3 for
Hogwild) with one core divided by time to achieve the
same suboptimality with several cores, averaged over
3 runs. Again, we choose step size leading to fastest
convergence (see Appendix G.2 for information about
the step sizes). Results are displayed in Figure 1b.

As predicted by our theory, we observe linear “theoret-
ical” speedups (i.e. in terms of number of iterations,
see Appendix D.2). However, with respect to running
time, the speedups seem to taper off after 20 cores.
This phenomenon can be explained by the fact that
our hardware model is by necessity a simplification of
reality. As noted in Duchi et al. (2015), in a modern
machine there is no such thing as shared memory. Each

core has its own levels of cache (L1, L2, L3) in addition
to RAM. The more cores are used, the lower in the
memory stack information goes and the slower it gets.
More experimentation is needed to quantify that effect
and potentially increase performance.

5 Conclusions and future work
We have described Asaga, a novel sparse and fully
asynchronous variant of the incremental gradient al-
gorithm Saga. Building on the recently proposed
“perturbed iterate” framework, we have introduced a
novel analysis of the algorithm and proven that under
mild conditions Asaga is linearly faster than Saga.
Our empirical benchmarks confirm speedups up to 10x.

Our proof technique accommodates more realistic set-
tings than is usually the case in the literature (e.g.
inconsistent reads/writes and an unbounded gradient);
we obtain tighter conditions than in previous work. In
particular, we show that sparsity is not always necessary
to get linear speedups. Further, we have proposed a
novel perspective to clarify an important technical issue
present in most of the recent convergence rate proofs
for asynchronous parallel optimization algorithms.

Schmidt et al. (2016) have shown that Sag enjoys
much improved performance when combined with non-
uniform sampling and line-search. We have also noticed
that our ∆r constant (being essentially a maximum)
sometimes fails to accurately represent the full sparsity
distribution of our datasets. Finally, while our algo-
rithm can be directly ported to a distributed master-
worker architecture, its communication pattern would
have to be optimized to avoid prohibitive costs. Limit-
ing communications can be interpreted as artificially
increasing the delay, yielding an interesting trade-off
between delay influence and communication costs.

A final interesting direction for future analysis is the
further exploration of the τ term, which we have shown
encompasses more complexity than previously thought.

Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien

Acknowledgments

We would like to thank Xinghao Pan for sharing with
us their implementation of Kromagnon. This work
was partially supported by a Google Research Award
and the MSR-Inria Joint Center. FP acknowledges
financial support from from the chaire Économie des
nouvelles données with the data science joint research
initiative with the fonds AXA pour la recherche.

References
D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Dis-
tributed Computation: Numerical Methods. Prentice
Hall, 1989.

R. Collobert, S. Bengio, and Y. Bengio. A parallel
mixture of svms for very large scale problems. Neural
Comput., 14:1105–1114, 2002.

C. De Sa, C. Zhang, K. Olukotun, and C. Ré. Tam-
ing the wild: a unified analysis of Hogwild!-style
algorithms. In NIPS, 2015.

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A
fast incremental gradient method with support for
non-strongly convex composite objectives. In NIPS,
2014.

J. C. Duchi, S. Chaturapruek, and C. Ré. Asynchronous
stochastic convex optimization. In NIPS, 2015.

T. Hofmann, A. Lucchi, S. Lacoste-Julien, and
B. McWilliams. Variance reduced stochastic gra-
dient descent with neighbors. In NIPS, 2015.

C.-J. Hsieh, H.-F. Yu, and I. Dhillon. PASSCoDe:
Parallel ASynchronous Stochastic dual Co-ordinate
Descent. In ICML, 2015.

R. Johnson and T. Zhang. Accelerating stochastic
gradient descent using predictive variance reduction.
In NIPS, 2013.

J. Konecny and P. Richtarik. Semi-stochastic gradient
descent methods. arXiv:1312.1666, 2013.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic
gradient method with an exponential convergence
rate for finite training sets. In NIPS, 2012.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1:
A new benchmark collection for text categorization
research. JMLR, 5:361–397, 2004.

X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous
parallel stochastic gradient for nonconvex optimiza-
tion. In NIPS, 2015.

J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Srid-
har. An asynchronous parallel stochastic coordinate
descent algorithm. JMLR, 16:285–322, 2015.

C. Ma, V. Smith, M. Jaggi, M. I. Jordan, P. Richtarik,
and M. Takac. Adding vs. averaging in distributed
primal-dual optimization. In ICML, 2015.

J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identi-
fying suspicious URLs: an application of large-scale
online learning. In ICML, 2009.

H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ram-
chandran, and M. I. Jordan. Perturbed iterate
analysis for asynchronous stochastic optimization.
arXiv:1507.06970v2, 2015.

F. Niu, B. Recht, C. Re, and S. Wright. Hogwild: a
lock-free approach to parallelizing stochastic gradient
descent. In NIPS, 2011.

S. J. Reddi, A. Hefny, S. Sra, B. Póczos, and A. Smola.
On variance reduction in stochastic gradient descent
and its asynchronous variants. In NIPS, 2015.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing
finite sums with the stochastic average gradient. F.
Math. Program., 2016.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coor-
dinate ascent methods for regularized loss. JMLR,
14:567–599, 2013.

S.-Y. Zhao and W.-J. Li. Fast asynchronous parallel
stochastic gradient descent. In AAAI, 2016.

	Introduction
	Sparse Saga
	Asynchronous Parallel Sparse Saga
	Perturbed Iterate Framework
	On the Difficulty of Labeling the Iterates
	Analysis setup
	Convergence and speedup results
	Proof outline

	Empirical results
	Experimental setup
	Implementation details
	Results

	Conclusions and future work
	Problematic Example for the ``After Write'' Approach
	Proof of Theorem 1
	Proof of Theorem 2 and Corollary 3
	Detailed outline
	Extension to Svrg
	Initial recursive inequality derivation
	Proof of Lemma 1
	Proof of Lemma 2
	Master inequality derivation
	Lyapunov function and associated recursive inequality
	Proof of Lemma 3
	Proof of Theorem 2
	Proof of Corollary 3 (speedup regimes)

	Additional experimental results
	Effect of sparsity
	Theoretical speedups

	A closer look at the constant
	Theory
	Experimental results

	Lagged updates and Sparsity
	Comparison with Lagged Updates in the sequential case
	On the difficulty of parallel lagged updates

	Additional empirical details
	Detailed description of datasets
	Implementation details
	Biased update in the implementation

