. Tuncer-can-aysal, A. D. Mehmet-ercan-yildiz, A. Sarwate, and . Scaglione, Broadcast Gossip Algorithms for Consensus, IEEE Transactions on Signal Processing, vol.57, issue.7, pp.2748-2761, 2009.
DOI : 10.1109/TSP.2009.2016247

R. Bassily, A. D. Smith, and A. Thakurta, Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, 2014.
DOI : 10.1109/FOCS.2014.56

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized gossip algorithms, IEEE Transactions on Information Theory, vol.52, issue.6, pp.2508-2530, 2006.
DOI : 10.1109/TIT.2006.874516

K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, Differentially private empirical risk minimization, Journal of Machine Learning Research, vol.12, pp.1069-1109, 2011.

I. Colin, A. Bellet, J. Salmon, and S. Clémençon, Gossip Dual Averaging for Decentralized Optimization of Pairwise Functions, ICML, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01329315

C. John, M. I. Duchi, M. J. Jordan, and . Wainwright, Privacy Aware Learning, NIPS, 2012.

C. Dwork, Differential Privacy, ICALP, 2006.
DOI : 10.1007/11787006_1

C. Dwork, F. Mcsherry, K. Nissim, and A. Smith, Calibrating Noise to Sensitivity in Private Data Analysis, TCC, 2006.
DOI : 10.1007/11681878_14

C. Dwork and A. Roth, The Algorithmic Foundations of Differential Privacy, Foundations and Trends?? in Theoretical Computer Science, vol.9, issue.3-4, pp.3-4211, 2014.
DOI : 10.1561/0400000042

C. Dwork, G. N. Rothblum, and S. Vadhan, Boosting and Differential Privacy, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, 2010.
DOI : 10.1109/FOCS.2010.12

URL : http://www.mit.edu/~rothblum/papers/pboosting.pdf

T. Evgeniou and M. Pontil, Regularized multi--task learning, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '04, 2004.
DOI : 10.1145/1014052.1014067

J. Hamm, Y. Cao, and M. Belkin, Learning privately from multiparty data, ICML, 2016.

Z. Huang, S. Mitra, and N. Vaidya, Differentially Private Distributed Optimization, Proceedings of the 2015 International Conference on Distributed Computing and Networking, ICDCN '15
DOI : 10.1007/s10957-010-9737-7

URL : http://arxiv.org/pdf/1401.2596

P. Kairouz, S. Oh, and P. Viswanath, The Composition Theorem for Differential Privacy, ICML, 2015.
DOI : 10.1109/TIT.2017.2685505

P. Kairouz, S. Oh, and P. Viswanath, Extremal mechanisms for local differential privacy, Journal of Machine Learning Research, vol.17, pp.1-51, 2016.

X. Lian, C. Zhang, H. Zhang, C. Hsieh, W. Zhang et al., Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent, NIPS, 2017.

A. Mcgregor, I. Mironov, and T. Pitassi, Omer Reingold, Kunal Talwar, and Salil Vadhan. The limits of two-party differential privacy, FOCS, 2010.

A. Nedic, Asynchronous Broadcast-Based Convex Optimization Over a Network, IEEE Transactions on Automatic Control, vol.56, issue.6, pp.1337-1351, 2011.
DOI : 10.1109/TAC.2010.2079650

URL : http://www.ifp.illinois.edu/%7Eangelia/broadcast_revised_submit2.pdf

A. Nedic and A. E. Ozdaglar, Distributed Subgradient Methods for Multi-Agent Optimization, IEEE Transactions on Automatic Control, vol.54, issue.1, pp.48-61, 2009.
DOI : 10.1109/TAC.2008.2009515

A. Manas, S. Pathak, B. Rane, and . Raj, Multiparty differential privacy via aggregation of locally trained classifiers, NIPS, 2010.

A. Rajkumar and S. Agarwal, A differentially private stochastic gradient descent algorithm for multiparty classification, AISTATS, 2012.

S. Sundhar-ram, A. Nedic, and V. V. Veeravalli, Distributed Stochastic Subgradient Projection Algorithms for??Convex Optimization, Journal of Optimization Theory and Applications, vol.9, issue.3, pp.516-545, 2010.
DOI : 10.1515/9781400873173

R. Shokri and V. Shmatikov, Privacy-preserving deep learning, CCS, 2015.
DOI : 10.1145/2810103.2813687

S. Song, K. Chaudhuri, and A. D. Sarwate, Stochastic gradient descent with differentially private updates, 2013 IEEE Global Conference on Signal and Information Processing, 2013.
DOI : 10.1109/GlobalSIP.2013.6736861

URL : http://www.ece.rutgers.edu/%7Easarwate/pdfs/SongCS13sgd.pdf

P. Vanhaesebrouck, A. Bellet, and M. Tommasi, Decentralized Collaborative Learning of Personalized Models over Networks, AISTATS, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01383544

E. Wei and A. E. Ozdaglar, Distributed Alternating Direction Method of Multipliers, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012.
DOI : 10.1109/CDC.2012.6425904

E. Wei and A. E. Ozdaglar, On the O(1=k) convergence of asynchronous distributed alternating Direction Method of Multipliers, 2013 IEEE Global Conference on Signal and Information Processing, 2013.
DOI : 10.1109/GlobalSIP.2013.6736937

J. Stephen and . Wright, Coordinate descent algorithms, Mathematical Programming, vol.151, issue.1, pp.3-34, 2015.