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Abstract

In this paper, we consider multicommodity flow problems, with unsplit-
table flows and piecewise linear routing costs. We first focus on the case
where the piecewise linear routing costs are convex. We show that this prob-
lem is NP-hard for the general case, but polynomially solvable when there
is only one commodity. We then propose a strengthened mixed-integer pro-
gramming formulation for the problem. We show that the linear relaxation of
this formulation always gives the optimal solution of the problem for the sin-
gle commodity case. We present a wide array of computational experiments,
showing this formulation also produces very tight linear programming bounds
for the multi-commodity case. Finally, we also adapt our formulation for the
non-convex case. Our experimental results imply that the linear program-
ming bounds for this case, are only slightly than the ones of state-of-the-art
models for the splittable flow version of the problem.
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1. Introduction

In this paper, we study unsplittable multicommodity flow problems with
piecewise linear cost functions. These fundamental problems often arise as
the backbone of other more intricate optimization problems, with applica-
tions in telecommunications, logistics and transportation. One such example
can be found in the recent work of Papadimitriou and Fortz [1, 2], in the con-
text of a complex multi-period design and routing problem. Lower bounds
resulting from the linear programming (LP) relaxation of the problem are
very weak, and part of this weakness is due to the piecewise linear objec-
tive function combined with single-path routing. However, to the best of our
knowledge, these basic - yet not trivial - problems have never been considered
by themselves. We hereby provide and compare mixed-integer programming
models for these problems. Stronger formulations provided in this paper
could be embedded in models, such as in [1, 2], to improve the lower bounds
and make the problems more tractable. We focus on the case where these
functions are convex. However, later, we also discuss the situation when the
cost functions are non-convex.

We begin by defining the convex unsplittable multicommodity flow (PUMF)
problem. Let G = (V,A) be a directed graph, with a set of nodes V , and a set
of arcs A. Consider as well a set of commodities K, where each commodity
k ∈ K has a given origin ok, a destination dk, and a demand ρk to be routed
from ok to dk.

Each arc a ∈ A has an associated cost function ga(la) of the load flowing
through the arc, la. This cost function is continuous, convex and piecewise
linear, with the segments being indexed by the finite set Sa = {1, 2, ..., |Sa|}.
Each segment s ∈ Sa has a lower and upper bound on the flow, represented
by the breakpoints bs−1

a and bsa. If finite, the breakpoint of the last segment of

each arc a ∈ A , b
|Sa|
a , can be interpreted as the capacity of the arc. However,

the case where b
|Sa|
a = ∞ also holds. A segment is also characterized by

a slope csa and an intercept f sa . In conclusion, the cost function ga is such
that ga(la) = f sa + csala if bs−1

a ≤ la ≤ bsa, for s ∈ Sa. Figure 1 illustrates
this notation. Since in the PUMF problem, the cost functions are convex,
these values must be such that c1

a ≥ 0, csa > cs−1
a and f sa ≤ 0, f sa < f s−1

a .
Moreover, as we consider the cost function to be continuous, we assume that
bsac

s
a+f sa = bsac

s+1
a +f s+1

a . We also assume that for every arc a ∈ A, ga(0) = 0,
and consequently, f 1

a = 0. The PUMF problem is to find a single path for
each commodity, such that the sum of the costs associated with the load of
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the arcs is minimized.

bs−1
a

bsa

f sa

csa

la

g a
(l
a
)

Figure 1: Notation for each segment of ga(la)

In the PUMF problem, the routing costs, given by the piecewise linear
functions, play a double role: they confine the load within the arcs’ capacities,
and at the same time, they help to avoid unnecessary detours in the network
- since the function is additive, solutions with short paths will be favored.
An example of such a cost function was proposed by Fortz and Thorup [3, 4]
and is illustrated in Figure 2.

In this function, the cost of sending flow is cheap for arcs with a small
utilization (ratio between the arc’s load and its capacity). However, the price
quickly rises when the utilization approaches the arc’s capacity. Even though
it is possible for the utilization to go above 100%, this is so heavily penalized
in the cost, that such a solution will likely be avoided.

Objective functions like this have been widely used in problems related
with Traffic Engineering (TE) in internet networks. One of the most im-
portant and well known of such objectives is the Kleinrock delay function
[5]:

F =
∑
a∈A

la
Ca − la

, (1)

where Ca denotes the capacity of link a ∈ A. The Kleinrock function helps
avoiding congestion by penalizing heavily loaded links. Observe that this
objective function is convex, and so it can be optimized using convex pro-
gramming methods [6]. Nevertheless, due to the discrete nature of the PUMF
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problem, it is convenient to approximate the Kleinrock function with a con-
vex piecewise linear function ([3, 4, 7]), leading to a mixed-integer linear
optimization problem, that can be solved with the powerful mixed-integer
programming solvers available today. Balon et al. [8] and Gourdin [9] discuss
various TE objective functions. These authors evaluate how well different ob-
jective functions meet TE requirements, and conclude that piecewise linear
objectives provide a good trade-off between different measures of quality of
service.

Many multicommodity flow problems have been considered in the litera-
ture, but the following two can be identified as more closely related to the
PUMF problem: the bandwidth packing (BP) problem, and the non-convex
piecewise linear multicommodity network flow (NCPMF) problem. We now
highlight the main similarities and differences between these two problems
and the PUMF problem.

The BP problem was first introduced by Cox et al. [10], and has also been
referred to as the origin-destination integer multicommodity flow problem
in [11], as the unsplittable multicommodity flow problem in [12] and as the
minimum cost multiple-source unsplittable flow problem in [13]. Other works
on exact methods to this problem include [14], [15] and [16]. This problem
shares with the PUMF problem the “unsplitability” of the flows. Nonetheless,
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Figure 2: Example of a convex piecewise linear cost function
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it differs in the two following ways: the flow costs are directly proportional to
the load on the arcs; and there are explicit capacity constraints on the amount
of flow traversing an arc, whereas in the PUMF problem this is somewhat
enforced by the piecewise linear cost functions (as explained above). Another
akin class of problems deals with the design of unsplittable multicommodity
networks with modular capacities on the arcs [17, 18]. In these problems,
the objective is to minimize the costs of the capacity modules; thus, the
cost functions are step-wise, rather than piecewise linear. Splittable flow
problems dealing with this type of cost functions have also been considered
in the literature (e.g. [19]).

The NCPMF problem, like the PUMF problem, also imposes costs on
the flow via piecewise linear functions. However, unlike the cost functions in
the PUMF problem, the piecewise linear functions in the NCPMF problem
are non-convex. Later we will consider a version of the PUMF problem
where the cost functions are also non-convex. Finally, the major difference
between the two problems is that the flows in the NCPMF problems are
splittable, i.e. this problem considers multipath routing. Croxton et al. [20]
review three formulations that had been previously used in the literature
for generic problems with non-convex piecewise linear costs. These three
formulations use integer variables to model the costs, and are shown to be
equivalent, with respect to their LP relaxation. In [21], the same authors
adapt the formulation with multiple choice constraints [22], to model the
NCPMF problem. Recently, Gendron and Gouveia [23] considered a version
of the NCPMF problem where the load on the arc must be integer; this is,
however, still a problem with splittable flows. Due to the common properties
of the two problems, these works provide an important basis for our work.

In Section 2, we discuss the complexity of the PUMF problem. In Section
3, we propose mixed-integer programming formulations that model the prob-
lem. In Section 4, we present the results of computational experiments, that
help us compare the performance of these formulations in solving instances
of the PUMF problem. Later, in Section 5 we study a variant of the PUMF
problem, where the cost functions are non-convex. Finally, in Section 6 we
draw conclusions on our work, and discuss future developments.

2. Problem complexity

In this section, we analyse the complexity of the PUMF problem.

Lemma 1. For |K| = 1, the PUMF problem is polynomially solvable.
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Proof. Let us consider an instance of PUMF given by a graph G = (V,A)
and a single commodity with origin o ∈ V , destination d ∈ V and demand
ρ. To each arc a ∈ A we associate a length wa, that represents the potential
cost of having the commodity flow through it, i.e. wa = f s̄aa + cs̄aa ρ, with s̄a
defined such that s̄a = {s : bs−1

a ≤ ρ ≤ bsa}; or wa = ∞ if ρ > b
|Sa|
a . Solving

the single-commodity PUMF problem on G is equivalent to identifying the
shortest path between o and d in G with respect to lengths wa.

Lemma 1 and its proof will be revisited later on, to show Theorem 5.

Lemma 2. For |K| > 1, the PUMF problem is NP-complete.

Proof. This can be shown by reducing the bin-packing problem to the PUMF
problem. Similar proofs are found in [18, 24] for capacitated unsplittable flow
problems; we hereby present a proof for the uncapacitated case.

Consider an instance of the bin-packing decision problem, with |A| bins
with capacity b̄, and |K| objects with size ρk ∈ N. Consider as well a di-
rected graph G = (V,A) with only two nodes, o and d, and |A| parallel arcs
connecting them. The flow cost of every arc a ∈ A is given by the same
piecewise linear function g(x), that has only two segments, separated by the
breakpoint b1 = b̄. The slope on the second segment is very steep, in such a
way that ga(b̄+1) >

∑
a′∈A ga′(b̄), a ∈ A. Finally, let K be a set of commodi-

ties, each k ∈ K with a given demand ρk, origin in o and destination in d.
The problem of determining if it is possible to fit the |K| objects in the |A|
bins, is equivalent to determining if all the commodities in K are routable
in G, with a cost not bigger than

∑
a∈A ga(b̄). As the bin-packing problem is

NP-complete [25], so is the PUMF problem.

3. Problem formulation

In this section, we consider three formulations for the PUMF problem
that were introduced in [26] and prove some fundamental properties of these
formulations. Let λki be such that λkok = 1, λkdk = −1, and λki = 0 for every
i 6= {ok, dk}. We define binary variables xka, with xka = 1 if arc a ∈ A is on the
unique path chosen to route commodity k ∈ K, and xka = 0 otherwise; and
ysa, with ysa = 1, if arc a ∈ A contains a non-zero flow on segment s ∈ Sa, and
ysa = 0 otherwise. For the sake of simplicity, if arc a contains a non-zero flow
on segment s ∈ Sa, we say that arc a is on segment s ∈ Sa. We also define
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continuous variables lsa, that indicate the load going through arc a ∈ A on
segment s ∈ Sa. The PUMF problem can be formulated with the following
mixed integer linear program (MIP), which we refer to as the Basic Model 1
(BM1).

The typical multicommodity flow balance constraints (2b) define the path
between the origin and destination node of each commodity. Then, constraint
sets (2c-2e) identify the segment each arc is on. Naturally, only a single
segment per arc may be selected (2c). The choice of segment is implied by
the load flowing through the respective arc. This load is given by constraints
(2d) and its value is assigned to one of the variables l. To ensure that only
the appropriate load variable is non-zero, in (2e) we either bound lsa by the
breakpoints of the corresponding segment, if ysa = 1; or we force it to zero, if
ysa = 0.

min
∑
a∈A

∑
s∈Sa

(f say
s
a + csal

s
a) (2a)

s.t.
∑

a∈δ+(i)

xka −
∑

a∈δ−(i)

xka = λki , i ∈ V, k ∈ K, (2b)

∑
s∈Sa

ysa ≤ 1, a ∈ A, (2c)∑
s∈Sa

lsa =
∑
k∈K

ρkxka, a ∈ A, (2d)

bs−1
a ysa ≤ lsa ≤ bsay

s
a, a ∈ A, s ∈ Sa, (2e)

xka ∈ {0, 1}, a ∈ A, k ∈ K, (2f)

ysa ∈ {0, 1}, a ∈ A, s ∈ Sa, (2g)

lsa ≥ 0, a ∈ A, s ∈ Sa. (2h)

Variables x and y are considered as binary (2f-2g), whilst variables l are
considered as continuous (2h). Note that if the cost function for every arc
is convex, it is not necessary to define explicitly y as binary; instead they
can simply be defined as continuous and non-negative. The impact on the
effectiveness of the model of defining variables y as binary or continuous is
discussed in Section 4.

Theorem 3. If cost functions ga are convex for all a ∈ A, then the optimal
solution of the LP relaxation of BM1 has binary y-variables.
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Proof. Consider a solution of BM1, Ŝ, with cost ĝ, and fractional y-variables.
Without loss of generality, we assume that this only occurs for one arc - arc
a. Then, ∃s ∈ S : ŷsa ∈]0, 1[. We show that there exists a feasible solution for
BM1 S̃, with x̃ka = x̂ka, a ∈ A, k ∈ K, binary y-variables, and cost g̃ : g̃ ≤ ĝ.

Let us first assume the case where
∑

s∈Sa
ŷsa < 1. As f 1

a = 0, it is possible
to increase the value of ŷ1

a without increasing ĝ. Since b0
a = 0, this new

solution would satisfy (2e). As such, let us re-define ŷ1
a := 1 −

∑
s∈Sa\{1} ŷ

s
a

instead. Then,
∑

s∈Sa
ŷsa = 1.

Now, let us consider the case where
∑

s∈Sa
ŷsa = 1. Then, we show that

solution S̃, with ỹs̄a = 1 and l̃s̄a =
∑

s∈Sa
l̂sa where s̄ = {s : bs−1

a ≤
∑

s∈Sa
l̂sa ≤

bsa}, is not more expensive than Ŝ.

First, let us define l̆sa = l̂sa
ŷsa

and y̆sa = 1, if ŷsa > 0 and l̆sa = 0 and y̆sa = 0

otherwise. Values l̆ and y̆sa satisfy (2e), as for every s ∈ Sa such that ŷsa > 0:

bs−1
a ŷsa ≤ l̂sa ≤ bsaŷ

s
a ⇔ bs−1

a ≤ l̂sa
ŷsa
≤ bsa ⇔ bs−1

a y̆sa ≤ l̆sa ≤ bsay̆
s
a.

Then, we have that:

g̃ = f s̄a ỹ
s̄
a+c

s̄
al̃
s̄
a = f s̄a

∑
s∈Sa

ŷsa+c
s̄
a

∑
s∈Sa

l̂sa = f s̄a
∑

s∈Sa
ŷsay̆

s
a+c

s̄
a

∑
s∈Sa

ŷsal̆
s
a.

Note that this implies that solution S̃ is a convex combination of feasible
solutions with load l̆sa. As the cost functions are convex, we know that:

g̃ = f s̄a
∑

s∈Sa
ŷsay̆

s
a+c

s̄
a

∑
s∈Sa

ŷsal̆
s
a ≤

∑
s∈Sa

ŷsa(f
s
a y̆

s
a+c

s
al̆
s
a) =

∑
s∈Sa

(f sa ŷ
s
ay̆

s
a+

csaŷ
s
al̆
s
a) =

∑
s∈Sa

(f sa ŷ
s
a + csal̂

s
a) = ĝ.

The BM1 is a multiple choice model, following the terminology in [22]; a
single segment is chosen per arc, which allows for the direct pricing of the
flow, based on the selected segment’s intercept and slope. An alternative way
of modelling costs, imposed by a piecewise linear cost function is suggested
in [3]. The authors define variables that stand for the routing cost of each
arc, to which they impose lower bounds representing the segments of the cost
function. Let ga be the routing cost for arc a ∈ A. We denote the following
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MIP as the Basic Model 2 (BM2):

min
∑
a∈A

ga (3a)

s.t.
∑

a∈δ+(i)

xka −
∑

a∈δ−(i)

xka = λki , i ∈ V, k ∈ K, (3b)

la =
∑
k∈K

ρkxka, a ∈ A, (3c)

ga ≥ f sa + csala, a ∈ A, s ∈ Sa, (3d)

xka ∈ {0, 1}, a ∈ A, k ∈ K, (3e)

la ≥ 0, a ∈ A, s ∈ Sa, (3f)

ga ≥ 0, a ∈ A. (3g)

Constraints (3c) determine the flow traversing each arc, based on the
routing defined in (3b). In (3d), for each segment s ∈ Sa, a lower bound is
set for the routing cost ga of arc a ∈ A. Note that for a given value of la,
only a single constraint is tight - the one corresponding to the segment arc a
is on. Finally, our objective (3a) is to minimize the sum of the routing costs
for every arc.

Consider the LP relaxations of BM1 and BM2, where we relax the in-
tegrality constraints for variables x and y (when applicable). We denote as
gB1(S) (gB2(S)), the cost of a feasible solution S of the LP relaxation of
BM1 (BM2), and as gB1

∗ (gB2
∗) the cost of the optimal solution to these

relaxations.

Theorem 4. gB1
∗ = gB2

∗.

Proof. We begin by showing that gB2
∗ ≤ gB1

∗. Let PB1 and PB2 be the
polyhedra defined by the set of feasible solutions of the LP relaxation of
BM1 and BM2, respectively. Consider the optimal solution of BM1, S̃∗ =
{x̃ka, l̃sa, ỹsa}. We construct a solution Ŝ = {x̃ka, l̂a, ĝa} by taking:

• l̂a :=
∑

s∈Sa
l̃sa, a ∈ A;

• ĝa := maxs∈Sa(f sa + csal̃
s
a), a ∈ A.

It is to see that Ŝ ∈ PB2. Let us consider the cost of this solution, gB2(Ŝ).
We have that gB2(Ŝ) =

∑
a∈A ĝa =

∑
a∈A maxs∈Sa(f sa + csal̃

s
a). Note that
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f sa ≤ 0, a ∈ A, and that ỹsa ≥ 0, a ∈ A, s ∈ Sa. Then,
∑

a∈A maxs∈Sa(f sa +

csal̃
s
a) ≤

∑
a∈A maxs∈Sa(f sa ỹ

s
a + csal̃

s
a). As it has been shown in Theorem 3,

variables ỹ are binary, even if their integrality is not explicitly enforced. As
such, and following constraints (2c,2e), we know that f sa ỹ

s
a + csal̃

s
a will only

be non-zero for a single s ∈ Sa. Thus, we can conclude that gB2(Ŝ) ≤∑
a∈A maxs∈Sa(f sa ỹ

s
a + csal̃

s
a) ≤

∑
a∈A

∑
s∈Sa

(f sa ỹ
s
a + csal̃

s
a) = gB1

∗, and conse-
quently gB2

∗ ≤ gB1
∗.

For the converse, consider the optimal solution of BM2, Ŝ∗ = {x̂ka, l̂a, ĝa}.
Let us define S̃ = {x̂ka, l̃sa, ỹsa} by taking:

• l̃sa := l̂a if bs−1
a ≤ l̂a ≤ bsa; 0 otherwise, a ∈ A.

• ỹsa := 1 if bs−1
a ≤ l̂a ≤ bsa; 0 otherwise, a ∈ A.

Naturally, S̃ is a feasible solution in PB1. The cost of solution S̃ is
gB1(S̃) =

∑
a∈A,s∈Sa

(f sa ỹ
s
a + csal̃

s
a). As discussed above, for each a ∈ A, f sa ỹ

s
a +

csal̃
s
a is non-zero only for a single s ∈ Sa. As such, gB1(S̃) =

∑
a∈A,s∈Sa

f sa ỹ
s
a +

csal̃
s
a ≤

∑
a∈A maxs∈Sa f

s
a + csal̂a ≤

∑
a∈A ĝa = gB2

∗. Therefore, we also have
that gB1

∗ ≤ gB2
∗, and thus, gB1

∗ = gB2
∗.

The LP relaxation of these basic models can provide very weak lower
bounds, even for toy instances. As an example to show how weak these
bounds are, consider a graph with only two nodes, o and d, connected by
three parallel arcs. Assume a single commodity with origin o, destination d,
and demand 3. Finally, assume that the cost function on all three arcs is the
same, and is characterized by only two segments, such that the breakpoints
are b0 = 0, b1 = 1 and b2 = 3; the slopes are c1 = 1 and c2 = 10; and
the intercepts f 1 = 0 and f 2 = −9. It is easy to see that there are three
solutions to the PUMF problem on this graph, all with the same cost of 21:
sending the flow through each one of the three available arcs. However, in
the LP relaxation of basic models BM1 and BM2, the flow can be equally
split among the three arcs, each on the first segment. This results in a LP
relaxation optimum value of only 3. By manipulating the structure of the
cost functions, this gap can be virtually any value. Therefore, it is important
to strengthen this model, in order to solve our problem efficiently.

To this end, we use variable disaggregation, a common technique to
strengthen the LP relaxation of MIPs. Thus, consider the binary variables
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xksa , with xksa = 1 if arc a ∈ A is on segment s ∈ Sa and on the unique path
chosen to route commodity k ∈ K, and xksa = 0 otherwise. We denote as the
Disaggregated Model (DM), the following formulation:

min
∑
a∈A

∑
s∈Sa

(
f say

s
a + csa

∑
k∈K

ρkxksa

)
(4a)

s.t.
∑

a∈δ+(i)

∑
s∈Sa

xksa −
∑

a∈δ−(i)

∑
s∈Sa

xksa = λki ,i ∈ V, k ∈ K, (α) (4b)

∑
s∈Sa

ysa ≤ 1, a ∈ A, (β) (4c)

bs−1
a ysa ≤

∑
k∈K

ρkxksa ≤ bsay
s
a, a ∈ A, s ∈ Sa, (γ) (4d)

xksa ∈ {0, 1}, a ∈ A, k ∈ K, s ∈ Sa, (4e)

ysa ∈ {0, 1}, a ∈ A, s ∈ Sa. (4f)

In this new model the l-variables are no longer necessary as for every a ∈
A, s ∈ Sa, lsa =

∑
k∈K ρ

kxksa , leading to the new objective function (4a) and
variable bound constraints (4d). Constraints (4b) define, for each commodity,
a path between the origin and destination, now with the disaggregated x-
variables. As for BM1, if the cost functions are convex, we can instead define
the y-variables as continuous and non-negative. The role of variables α, β
and γ will be revealed further on, in the proof of Theorem 5.

It is easy to see that DM, as it has been defined so far, is equivalent to
the basic models. However, we can use the disaggregated variables to create
new inequalities that considerably strengthen the LP relaxation.

First, note that an arc being traversed by a given commodity cannot
be on a segment whose upper breakpoint is smaller than the demand flow.
Therefore, we can fix the x-variables as follows:

xksa = 0, a ∈ A, k ∈ K, s ∈ Sa : bsa < ρk. (5)

Furthermore, when combined with inequalities (4d), this variable fixing
has a strong impact on the values of the y-variables.

A well-known class of valid inequalities, common with this variable dis-
aggregation, are the following:
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xksa ≤ ysa, k ∈ K, a ∈ A, s ∈ Sa. (6)

These valid inequalities are an obvious choice in cases where the intercepts
f sa are non-negative (e.g. [21]), as they lift the y-variables. This is not the case
for PUMF. However, due to (4c), these valid inequalities can still be useful
in cutting-off LP solutions; those that for a given arc a have xksa + xk

′s′
a > 1,

k′ 6= k, s′ 6= s.
A related class of valid inequalities, but now making use of the fact that

the intercepts f sa are negative, is obtained by tightening coefficients in the
first inequality in (4d):

bs−1
a ysa ≤

∑
k∈K

min(ρk, bs−1
a )xksa , a ∈ A, s ∈ Sa. (ζ) (7)

Empirical results reveal that combining DM with both fixing variables (5)
and valid inequalities (7) is highly advantageous, improving both the quality
of the lower bounds provided by the LP relaxation, and the computing time
of the MIPs. We refer to this strengthening of DM as the Strong Model
(SM). We do not include valid inequalities (6) in SM, as empirical results
show that they seldom improve the bounds of the LP relaxation (see above),
and often cause out-of-memory issues for large instances.

Note that SM is larger than the previous models. Whereas the number
of constraints is in the same order of magnitude, O(max{|V ||K|, |A||S|}),
there are more variables in SM, O(|A||S||K|), than in the basic models,
O(max{|A||K|, |A||S|}). However, as we will see in the next section, the
bounds obtained by the LP relaxation of SM are far superior than the ones
obtained by the LP relaxations of the basic models.

Finally, we conclude this section by pointing out a relevant result about
SM. In Theorem 1, we pointed out that the single-commodity PUMF problem
is polynomially solvable. Still, in this case, the LP relaxation of the basic
models can be fractional, as it was illustrated with the example following
Theorem 4. Theorem 5 shows that the same is not true for SM.

Theorem 5. When |K| = 1, the optimal solution of the linear relaxation of
SM is integer and solves PUMF.

Proof. First, let us recall what was shown in Theorem 1: solving PUMF
for |K| = 1 in G = (V,A) is equivalent to solving a shortest path problem
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between o and d where the length associated with each arc in a ∈ A is
wa = f s̄aa + cs̄aa ρ, with s̄a such that s̄a = {s : bs−1

a ≤ ρ ≤ bsa}. Let pi be
the length the shortest path from o to i. We can dynamically compute this
length for every node by defining po := 0, and pi := min{pj +wa : a ∈ δ+(i)}.
Let us consider a primal solution of the single-commodity PUMF with cost
g∗ = pd.

Next consider the dual of the linear relaxation of SM (SDM). We show
that there is a solution of SDM that also has cost g∗.

max αo − αd −
∑
a∈A

βa (8a)

αi − αj + bs̄a−1
a γ s̄aa − ρζ s̄aa ≤ cs̄aa ρ, a = (i, j) ∈ A (8b)

αi − αj + ργsa − ρζsa ≤ csaρ, a = (i, j) ∈ A, s ∈ Sa : s > s̄a (8c)

− βa − bs−1
a γsa + bsaζ

s
a ≤ f sa , a ∈ A, s ∈ Sa (8d)

βa ≥ 0, a ∈ A (8e)

γsa, ζ
s
a ≥ 0, a ∈ A, s ∈ Sa (8f)

Dual variables α, β, γ, and ζ correspond, respectively to constraints (4b),
(4c), to the left-most constraints in (4d), and to constraints (7). In turn, dual
constraints (8b) are linked to the xsa-variables when s = s̄a , constraints (8c)
to the xsa-variables when s > s̄a, and (8d) to the y-variables. Note that we
do not include dual constraints associated with xsa-variables when s < s̄a,
because these variables are fixed to 0 in (5). Let us fix the dual variables as
follows:

• βa = 0, a ∈ A;

• ζsa = 0, a ∈ A, s ∈ Sa;

• γsa = − fsa
bs−1
a

, if s ≤ s̄a; −fsa
ρ

if s > s̄a, a ∈ A.

Constraints (8d) are satisfied - both when, s ≤ s̄a (obvious); and when

s > s̄a, as for those cases bs−1
a

ρ
≥ 1. The remainder of our dual formulation

with fixed variables (SDM-f) is as follows:

max αo − αd (9a)

αi − αj ≤ f sa + csaρ, a = (i, j) ∈ A, s ∈ Sa : s ≥ s̄a (9b)
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Note that f s̄aa + cs̄aa ρ ≤ f sa + csaρ, a ∈ A, s ∈ Sa : s > s̄a. SDM-f is thus
the dual of the LP formulation that describes the shortest path problem, as
detailed above. It is well-known [27] that these dual and primal formulations
have dual gap zero. Therefore, there is a solution in SDM with cost g∗.

4. Computational experiments

In this section, we present the results of computational experiments that
were conducted in order to compare the performance of CPLEX using BM1,
BM2 and SM for solving instances of the PUMF problem. These experiments
were done using two test sets, T1 and T2, whose description follows.

Class ID |V | |A| |K|
1 40 936 70
2 40 1092 70
3 40 1092 100
4 60 2478 200
5 60 2832 150
6 60 2832 200
7 80 316 250
8 80 1896 200
9 80 1896 250
10 80 3160 200
11 80 1896 350

Table 1: Description of each class of instances.

In test set T1, we created 55 instances and grouped them into 11 classes,
according to number of nodes, arcs and commodities. Table 1 describes each
class of instances. In each of these instances, the distribution of the arcs on
the graph is random. Each arc was assigned a capacity of 50, 75 or 100. The
traffic demand between the origin and destination node of each commodity
was calculated using the following formula, used in [3]:

ρk = αOokDdkR(ok,dk)e
−L2(ok,dk)

2∆ (10)

For each node i, two random numbers, Oi and Di were randomly gener-
ated in the interval [0, 1]. These values reflect, respectively, the attractiveness
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of each node as a sender and as a receiver. Another value, R(i,j), was gener-
ated in the same interval, for each pair of nodes. The parameter α was set to
0.6, for all the experiments; we found that this value lead to instances where
the majority of the arcs used in the optimal solution were not overloaded.
The Euclidian distance (L2) was substituted by the length of the shortest
path between each pair of nodes, with respect to the number of links. ∆ is
the largest distance in the network. The final values were rounded to the
nearest integer.

The routing cost on every arc are given by the function shown in Figure 2,
and described in [3]. This function has 6 segments, separated by the following
breakpoints: {0, 1

3
Ca,

2
3
Ca,

9
10
Ca, Ca,

11
10
Ca,∞}, where Ca is the capacity of the

respective arc. The slopes of each of these 6 segments are respectively 1, 3,
10, 70, 500 and 5000. Note that the intercepts of each segment can be easily
calculated in the sense that f sa = bsa(c

s−1
a − csa) + f s−1

a , a ∈ A, s ∈ Sa.
The results of the computational experiments analyzed in Section 4.1 re-

veal that solving instances of T1 with SM is very easy. As such, we propose
another test set T2, where we construct instances that are designedly diffi-
cult. In this sense, in test set T2, we adapted instances of SNDlib [28] to
better fit the PUMF problem. These instances are known to be challenging
for different network optimization problems. Table 2 details the characteris-
tics of these instances. For each of these SNDlib instances, we created four
adapted instances for the PUMF problem, creating a total of 24 instances.
For the first instance, we chose as the flow capacity on each arc, either the
pre-installed capacity, or, in the cases where the latter was null, the capac-
ity of the first module. So, for example, the capacity assigned to arc (1,6)
in instance atlanta was 11000, whereas the capacity assigned to arc (1,2)
in instance newyork was 1000. For the three other adapted instances, we
increased or decreased the aforementioned capacities, maintaining the origi-
nal proportions between the arcs, such that the average arc’s utilization was
slightly above the breakpoints in the cost function in Figure 2: 38%, 71%
and 105%. As the results described in Section 4.1 will show, these instances
will be quite more challenging to solve.

The three formulations were implemented using ILOG CLEX 12.6, on
a Intel Core i7 CPU 960 @ 3.20GHz with 12GB of memory with 64 bits,
and running Ubuntu 14.04.2 LTS (GNU/Linux 3.2.0 − 26−generic x86 64).
Tests were done solving both the MIP and LP of each instance. In Subsec-
tions 4.1 and 4.2 we present the results of these computational experiments.
The results are shown in performance profile graphs. These graphs depict
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Instance ID |V | |A| |K|
atlanta–D-B-M-N-C-A-N-N 15 44 210
france–D-B-L-N-C-A-N-N 25 90 300

newyork–D-B-E-N-C-A-N-N 16 98 240
pdh–D-B-E-N-C-A-N-N 11 68 24
sun–D-D-M-N-C-A-N-N 27 102 67
ta1–D-B-E-N-C-A-N-N 24 110 396

Table 2: Description of each class of instances in T2.

the percentage of instances (spanned over the y-axis) that are solved under
different values of each criteria, detailed in the x-axis.

4.1. Results for test set T1

Let g∗IP and g∗LP be, respectively, the cost of the best integer solution
found, and the cost of the solution of the LP relaxation of each model. We
denote as LP gap the ratio

g∗IP−g
∗
LP

g∗IP
. Figure 3 illustrates the performance

profile for the LP gaps of the three modes, for instances of T1. We can
observe what had been stated in Theorem 4: the basic models produce the
same lower bound. More importantly, we can see how strong the SM really
is. The high percentage (93%) of instances that have 0 LP gap with the SM,
clearly contrasts with the results for the basic models.

Next, we analyze the performance of the different models, when used by
CPLEX to solve the MIPs of T1 instances. In preliminary experiments we
solved the LPs of the instances of T1, using different optimizer methods of-
fered by CPLEX. We verified that using the Barrier method for solving the
LPs of the basic models, allows for a large speed-up, when compared with the
optimizer provided by CPLEX’s automatic selection. As for SM, CPLEX’s
default selection seems to provide the best results. We also tested the impact
in the solving time of the MIPs, of defining variables y in BM1 and SM, as
binary or continuous. The results of these experiments are depicted in Figure
4. We can observe that defining variables y as continuous is highly advan-
tageous, for both BM1 and SM, allowing CPLEX to solve more instances in
the time limit of 1 hour. Furthermore, defining y as binary, in the case of
SM, led to memory issues. To have a better understanding of this behavior,
further computational experiments involving test set T1 were carried out on
CPLEX using the configurations detailed in Table 3.
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Figure 3: LP gaps for T1 instances.
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Figure 4: Times for solving MIPs for T1 instances.
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Figure 5: LP solving times for T1 instances.
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Figure 6: Gaps at the root node for T1 instances.
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Figure 7: LP gaps for T1 instances with 10 segments.

Model LP optimizer y-variables
SM Default Continuous

BM1 Barrier Continuous
BM2 Barrier

Table 3: Configuration implemented for instances of T1

We are now in a better condition for comparing the MIP solving time, for
the three different formulations. Figure 4 illustrates these results. They re-
veal that SM clearly out-performs BM1 and BM2 when solved with CPLEX.
Even though, by using BM1, we are able to solve 95% of the instances in the
time limit, by using SM we solved every instance, in only under 150 seconds.
Finally, we can also observe that BM2 is slower than the other models, only
solving 87% of the instances within the time limit.
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It is easy to understand that the efficiency of SM is closely linked to its
stronger lower bounds. The latter also account for the fact that all instances
are solved in the root node of the Branch and Bound (B&B) tree. Another
important argument for the efficiency of SM is the fast LP solving times,
observable in Figure 5. Since in theory the size of SM’s LP basis is comparable
to the ones of the basic models (see end of previous section), we believe
that these short LP solving times are explained by CPLEX’s pre-processing
procedure, that is particularly effective for SM.

For the basic models, it is interesting to note that despite having the same
LP bounds (see Theorem 4 and Figure 3), comparable LP solving times (see
Figure 5) and very similarly sized B&B trees, the solving time of the MIPs
are distinct. This might be explained by better lower bounds at the end
of the root node (g0), as a result of CPLEX’s automatically-generated cuts.
The latter can be observed in the performance profile of the gap at the root
node,

g∗IP−g0

g∗IP
, depicted in Figure 6.

We were also interested in investigating how increasing the number of seg-
ments in the cost function, effected the performance of the proposed models.
As such, we conducted experiments on adapted instances of T1, where the
piecewise linear cost functions described in the beginning of this section, were
replaced by functions with 10 segments, and breakpoints {0, 1

20
Ca,

1
10
Ca,

1
6
Ca,

1
3
Ca,

1
2
Ca,

2
3
Ca,

9
10
Ca, Ca,

11
10
Ca,∞}. The slopes of those segments are respec-

tively 0.1, 0.3, 1, 2, 5, 10, 20, 70, 500 and 5000.
Figure 7 depicts the performance profile of the LP gaps for this case.

Once again, the LP gaps of SM are far superior than the LP gaps of the
basic models. Nevertheless, the LP gaps of SM seem to be considerably
higher for this case, than for the original instances - only 44% instances have
null gap, and the maximum value observed is of 23%. It should be noted,
however, that these results are possibly “inflated”, as for most instances we
were unable to find the optimal solution; the LP gaps are calculated using
the best found solution, which might not be particularly good. In fact, only
25 instances were solved by SM; for the others, we had out-of-memory issues,
due to the large size of the corresponding MIP. These 25 instances were all
solved under 250 seconds and their LP gaps were all under 1%. The basic
models did not obtain memory problems. Regardless, BM1 was unable to
solve any instance in the time limit, whereas BM2 only solved one.
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Figure 8: LP gaps for T2 instances.
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Figure 9: Times for solving MIPs for T2 instances.
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Figure 11: LP solving times for T2 instances.
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Figure 12: Gaps at the root node for T2 instances.
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4.2. Results for test set T2

In this subsection, we analyze the results of the computational exper-
iments done on instances of test set T2. Figure 8 shows the performance
profile for the LP gap (see definition in Subsection 4.1). Once again, SM is
able to produce much better lower bounds than both basic models. Never-
theless, the gaps are slightly higher than they were for instances of T1. Only
54% of the instances have LP gap 0, and the values go as high as 3%. These
results imply that the instances of T2 are harder than the ones of T1; this is
unsurprising, as they were explicitly constructed to be difficult (see beginning
of section).

Next, we analyze the performance of CPLEX in solving T2 instances’
MIPs, under our three models. Once again, we analyzed which LP optimizer
was better suited for each model. Contrary to what was the case for instances
of T1, for solving the LPs of T2 instances, CPLEX’s default LP optimizer is
the faster for all models. We also analyzed the impact of defining y-variables
as continuous or binary. The results can be observed in Figure 9. They are
quite different than for instances of T1: for instances of T2, it seems to be
more convenient to define variables y as binary. This is especially observable
for SM. We believe that this disparity is a result of the different structures of
the networks, in test sets T1 and T2, and how they impact the performance of
CPLEX’s pre-processing. For most instances of T1, CPLEX is able to reduce
the MIP further, when the y-variables are defined as continuous; whereas
for instances of T2, the tendency seems to be the opposite. On further com-
putational experiments, we implement the models on CPLEX following the
configurations in Table 4.

Model LP optimizer y-variables
SM Default Binary

BM1 Default Binary
BM2 Default

Table 4: Configuration implemented for instances of T2

We can now compare the solving time of the MIPs of the three formula-
tions. The performance profiles illustrated in Figure 9 show that for solving
instances of T2, BM2 is the most efficient model. With it, CPLEX can solve
92% of the instances in the 1 hour time limit. Moreover, it reveals that
SM does not perform as well as it did for instances of T1. When using SM,
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CPLEX only solves 71% of the instances before reaching the time limit and,
in general, the solving times are comparable to those obtained with BM1.

The below-par performance of SM with respect to the solving time of
the MIPs, especially considering the strength revealed in Figure 8, can be
explained by the following two factors: i) the LPs of SM are very slow to be
solved (see Figure 11), ii) the difference between the lower bounds for the
basic and strong models at the end of the root node is not as pronounced as
in the case of the lower bounds provided by the LP relaxations (see Figure
12). The latter implies that CPLEX is able to produce good cuts for the
basic models. The faster MIP solving times for BM2, when compared with
BM1, are probably explained by the smaller B&B trees (see Figure 10), as
BM1 out-performs BM2 in both the LPs solving time (see Figure 11) and
gap at the end of the root node (see Figure 12).

5. Non-convex case

In the previous sections, we have considered the case where the piecewise
linear function was convex. However, we can also define the unsplittable
multicommodity flow problem with non-convex piecewise linear cost func-
tions (NPUMF). This problem is a direct extension to the NCPMF problem
(discussed in [20], [21] and [23]), with the added constraint of having single
path routing for each commodity. Note that the complexity results described
in Section 2 for the PUMF problem, can be extended to this case.

In order to characterize the non-convex piecewise linear cost functions,
we resort to the notation described in Section 1 and illustrated in Figure
1. However, some new assumptions about these functions are made: the
slopes csa are non-negative as well, but no monotonicity is imposed and the
intercepts f sa are not necessarily non-positive. The functions are not nec-
essarily continuous, but we assume them to be lower semi-continuous (i.e.,
ga(la) ≤ lim inf l′a→la ga(l

′
a), for any sequence l′a that approaches la). Figure

13 illustrates two examples of non-convex piecewise linear functions: one
concave (black) and another non-concave (gray).

In this section, we analyze the performance of our proposed models for
instances of the NPUMF problem. First, observe that while BM2 cannot be
used to model the NPUMF problem, both BM1 and DM are valid formula-
tions for the problem. The SM is also a valid formulation for the NPUMF
problem; however, as discussed in Section 3, for cases where f sa ≥ 0, a greater
strengthening can be obtained from valid inequalities (6), rather than from
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Figure 13: Two examples of non-convex piecewise linear cost functions

inequalities (7). As such, for clarity, we include below SM readapted for this
case; we name it as the Strong Model for the Non-Convex Case (SM-n).

min
∑
a∈A

∑
s∈Sa

(
f say

s
a + csa

∑
k∈K

ρkxksa

)
(4a)

s.t.
∑
a∈A

∑
s∈Sa

xksa −
∑
a∈A

∑
s∈Sa

xksa = λki , i ∈ V, k ∈ K, (4b)∑
s∈Sa

ysa ≤ 1, a ∈ A, (4c)

bs−1
a ysa ≤

∑
k∈K

ρkxksa ≤ bsay
s
a, a ∈ A, s ∈ Sa, (4d)

xksa ∈ {0, 1}, a ∈ A, k ∈ K, s ∈ Sa, (4e)

ysa ∈ {0, 1}, a ∈ A, s ∈ Sa, (4f)

xksa = 0, a ∈ A, k ∈ K, s ∈ Sa : bsa < ρk, (5)

xksa ≤ ysa, k ∈ K, a ∈ A, s ∈ Sa. (6)

Note that since for the NPUMF problem the cost functions are non-
convex, the y-variables in BM1 and SM-n need to be considered as binary.

In our analysis, we also explore the impact of imposing unsplittable flows
(NPUMF problem), versus allowing each commodity to be sent through mul-
tiple paths (NCPMF problem). In this sense, we need to adapt our models
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to solve the NCPMF problem. To this purpose, we define the Relaxed Basic
Model 1 (BM1-r), where the integrality of variables x (2f) is relaxed. We can
also consider the same relaxation in constraint (4e) of DM . As before, this
relaxed model can be strengthened by adding valid inequalities (6); we name
this formulation as the Relaxed Strong Model (SM-r). Observe that if the
flows can be split, we cannot apply valid inequalities (5), and as such, we
exclude them from SM-r. Both BM1-r and SM-r have been proposed in [21]
to model the NCPMF problem.

In Table 6, we summarize the composition of the strong models for all
three problems, PUMF, NPUMF and NCPMF.

Problem Model
Common

Valid ineqs.
ysa ∈ xksa ∈

constraints [0, 1] {0, 1} [0, 1] {0, 1}
PUMF SM

(4a)-(4d)
(5),(7) 3 3

NPUMF SM-n (5),(6) 3 3

NCPMF SM-r (6) 3 3

Table 5: Strong models for PUMF, NPUMF and NCPMF problems.

Network ID |V | |A| |K|
1 20 100 50
2 20 100 50
3 25 100 100
4 25 150 100
5 25 150 100
6 40 300 100
7 40 300 400
8 40 400 400
9 50 400 400
10 50 600 400

Table 6: Description of each class of instances for the NPUMF.

In our computational experiments we tested these models, using instances
that had been previously developed for the NCPMF problem [23]. For test
set Tn, we selected 40 instances, that describe 10 different networks, whose
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Figure 14: LP gaps for Tn instances.
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Figure 15: Times for solving MIPs for Tn instances.
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Figure 16: LP solving times for Tn instances.
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Figure 17: Size of the B&B tree for Tn instances.
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Figure 18: Gaps at the root node for Tn instances.
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characteristics are detailed in Table 6. Despite having the same number of
nodes, arcs and commodities, network #1 has tighter arc capacities b

|Sa|
a , than

network #2. The same happens for networks #4 and #5. For each network,
there are 4 different instances based on the characteristics of the non-convex
piecewise linear cost functions. There are 2 instances with concave functions,
and 2 instances with non-concave functions. In some cases, the non-concave
functions are also non-continuous. For each type of cost functions, there
is an instance with up to 4 segments, and another with up to 8 segments.
Every segment has non-negative intercept f , even when the cost functions
are non-concave. Finally, note that in the original instances, each commodity
had one source and multiple targets. To adapt the instances to the NPUMF
problem, we separated each commodity to many, such that each has a single
origin and a single destination.

In Figure 14, we present the performance profile of the LP gap, for the
NPUMF and the NCPMF problems. For this graph, we only considered the
34 instances, for which we were able to obtain an upper bound for both the
NPUMF and NCPMF problems, and lower bounds for all four formulations
(BM1, SM-n, BM1-r and SM-r) in the time limit of 1 hour. As before, it
reveals that SM-n produces much better lower bounds than BM1. It also
shows that, as expected, the gaps for the unsplittable flows case are higher
than for the splittable flows one. However, it is noteworthy that the maxi-
mum observed gaps for SM-n and SM-r are similar. Moreover, it is easier for
CPLEX to find good (or optimal) solutions for the NCPMF problem, than
for the NPUMF problem. As such, it is likely that in many cases, the quality
of upper bounds used to calculate the LP gaps of SM-n are not very good,
and the values for the LP gap are, ultimately, greatly overestimated.

Next, we analyze the behaviour of CPLEX for instances of test set Tn,
while using BM1 and SM-n. As it was done for previous experiments, we
tested which CPLEX’s LP optimizer method was faster to solve the instances
of Tn. These preliminary experiments showed that while for BM1, CPLEX’s
default choice works best, for SM-n the Barrier method generally improves
the LP solving time. In Figure 15, we depict the performance profile of the
solving time of the MIPs of Tn. Similarly to what happens for instances of
T2 (see Subsection 4.2), BM1 is faster in solving instances of Tn than SM-
n. However, in this case, the number of instances solved in the time limit
is very low (30%). This is probably explained by the long solving times of
the LPs of SM-n (see Figure 16). While all the LPs of BM1 are solved in
under 50 seconds, not all the LPs of SM-n were solved in the time limit of
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1 hour. Moreover, in Figure 18 we can observe that for BM1, CPLEX is
able to automatically generate strong cuts, that highly improve the lower
bounds at the root nodes, approaching them to the ones of SM-n. Figure 17
seems to indicate that the B&B trees for SM-n are smaller than for BM1.
Notwithstanding, in our performance profiles of the B&B trees nodes (Figures
10 and 17), we only consider instances that were solved in the time limit by
all models, in order to keep the results consistent. Seeing that only 9 out of
the 40 instances of test set Tn are in this condition, the results depicted in
Figure 17 might not be significant.

6. Summary and conclusions

In this work, we present a special case of the multicommodity flow prob-
lem, for which the flow of each commodity is unsplittable, and the routing
costs on the arcs are given by a piecewise linear function. We focus on the
case where the cost functions are convex - the PUMF problem. We show
that the PUMF problem is NP-hard for the general case, but polynomial
when there is only a single commodity. We begin by proposing two basic
MIP formulations for this problem, BM1 and BM2. By disaggregating the
flow variables in BM1, we are able to develop valid inequalities that we in-
clude in a new MIP formulation: SM. We show that the LP feasible set of
SM provides a complete description for the associated polyhedron, in the
single-commodity case.

We present results of extensive computational experiments, done over
instances of two different test sets: in T1 we randomly generate our own
instances, while in T2 we adapt instances of the SNDlib. These experiments
reveal that the LP relaxation of SM is able to provide very good lower bounds,
far better than the ones provided by the LP relaxation of the basic models. In
fact, for 93% of the instances in T1 and for 58% of the instances of T2, the LP
gap of SM is null. In [29], it was shown that for large topologies, splittable
multicommodity flow problems with piecewise linear costs (as well as for
others types of objective) essentially become unsplittable flow problems, since
at optimality each demand tends to use a single path, despite the existence
of multiple paths. These results might explain the very good bounds that we
were able to obtain for large networks, as it implies that the optimal solutions
of the LP relation of the PUMF problem are integer.

We also consider the case where the cost functions are non-convex. This
problem, denoted NPUMF, is an extension of the NCPMF problem, where
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the flows can be split and sent through multiple paths [20], [21] and [23].
We adapt our SM to better adapt to characteristics of the NPUMF problem,
and we name it SM-n. We test the performance of BM1 and SM-n in solving
instances proposed in [23]. Our results reveal that, despite the added difficult
of the NPUMF problem, in relation to the NCPMF problem, the LP gaps
are only slightly worse. This might be explained by valid inequalities (5)
that are not valid for the NCPMF problem.

We also tested the efficiency of the formulations in solving the MIPs of
the instances, when implemented in CPLEX. Despite being the faster model
to solve instances of T1, SM did not perform as well for instances of T2 and
Tn as BM1 and BM2. This is explained by the large LPs, that can take a
long time for CPLEX to solve.

Following these results, in the future, we want to explore the use of decom-
position methods, that could eventually reduce the size of the LPs, allowing
for a faster solving of the MIPs. Alternatively, we also want to try to project
the strong valid inequalities of SM onto BM1, and hopefully gain from having
a compact and strong formulation.
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Lúıs Gouveia is supported by National Funding from FCT - Fundação para
a Ciência e a Tecnologia, under the project: UID/MAT/04561/2013.

References

[1] D. Papadimitriou, B. Fortz, Time-dependent combined network design
and routing optimization, in: IEEE International Conference on Com-
munications, ICC 2014, Sydney, Australia, June 10-14, 2014, 2014, pp.
1124–1130. doi:10.1109/ICC.2014.6883472.
URL http://dx.doi.org/10.1109/ICC.2014.6883472

[2] D. Papadimitriou, B. Fortz, Methods for time-dependent combined net-
work design and routing optimization, in: IEEE Global Communica-
tions Conference, GLOBECOM 2014, Austin, TX, USA, December 8-12,
2014, 2014, pp. 1303–1309. doi:10.1109/GLOCOM.2014.7036988.

30

http://dx.doi.org/10.1109/ICC.2014.6883472
http://dx.doi.org/10.1109/ICC.2014.6883472
http://dx.doi.org/10.1109/ICC.2014.6883472
http://dx.doi.org/10.1109/ICC.2014.6883472
http://dx.doi.org/10.1109/GLOCOM.2014.7036988


[3] B. Fortz, M. Thorup, Internet traffic engineering by optimizing ospf
weights, in: INFOCOM 2000. Nineteenth annual joint conference of
the IEEE computer and communications societies. Proceedings. IEEE,
Vol. 2, IEEE, 2000, pp. 519–528.

[4] B. Fortz, M. Thorup, Increasing internet capacity using local search,
Computational Optimization and Applications 29 (1) (2004) 13–48.

[5] M. Gerla, L. Kleinrock, Communication nets: stochastic message flow
and delay 25 (1) (1977) 48–60.
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