A. Balakrishnan and K. Altinkemer, Using a Hop-Constrained Model to Generate Alternative Communication Network Design, ORSA Journal on Computing, vol.4, issue.2, pp.192-205, 1992.
DOI : 10.1287/ijoc.4.2.192

Q. Botton, B. Fortz, L. Gouveia, and M. Poss, Benders Decomposition for the Hop-Constrained Survivable Network Design Problem, INFORMS Journal on Computing, vol.25, issue.1, pp.13-26, 2013.
DOI : 10.1287/ijoc.1110.0472

URL : https://hal.archives-ouvertes.fr/hal-01255255

M. Conforti, G. Cornuéjols, and G. Zambelli, Extended formulations in combinatorial optimization, pp.1-48, 2010.
DOI : 10.1007/s10479-012-1269-0

M. Crappe, Stabilité et sauvegarde des réseaux électriques. Hermès, 2003.

B. Enacheanu, M. C. Alvarez, B. Raison, R. Caire, W. Bienia et al., Hadj- Said. Optimal meshed distribution network configuration, International Review of Electrical Engineering, vol.4, issue.5, pp.957-966, 2009.

A. Itai, Hamilton Paths in Grid Graphs, SIAM Journal on Computing, vol.11, issue.4, pp.676-686, 1982.
DOI : 10.1137/0211056

URL : http://www.cs.technion.ac.il/~itai/publications/Algorithms/Hamilton-paths.pdf

G. Gamrath, T. Kock, A. Martin, M. Miltenberger, and D. Weninger, Progress in presolving for mixed integer programming, Mathematical Programming Computation, vol.8, issue.3, pp.367-398, 2015.
DOI : 10.1023/A:1008675522511

M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP- Completness, 1979.

R. Gomory, Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem, Bulletin Of the American Mathematical Society, vol.64, pp.275-278, 1958.
DOI : 10.1007/978-3-540-68279-0_4

L. Gouveia, Using Variable Redefinition for Computing Lower Bounds for Minimum Spanning and Steiner Trees with Hop Constraints, INFORMS Journal on Computing, vol.10, issue.2, pp.180-188, 1998.
DOI : 10.1287/ijoc.10.2.180

L. Gouveia, M. Leitner, and I. Ljubi?, Hop constrained Steiner trees with multiple root nodes, European Journal of Operational Research, vol.236, issue.1, pp.100-112, 2014.
DOI : 10.1016/j.ejor.2013.11.029

L. Gouveia, L. Simonetti, and E. Uchoa, Modeling hop-constrained and diameterconstrained minimum spanning tree problems as steiner tree problems over layered graphs, Mathematical Programming, pp.123-148, 2011.
DOI : 10.1007/s10107-009-0297-2

URL : http://www.optimization-online.org/DB_FILE/2008/06/2013.pdf

I. Ljubi? and S. Gollowitzer, Modelling the Hop Constrained Connected Facility Location Problem on Layered Graphs, Electronic Notes in Discrete Mathematics, vol.36, pp.207-214, 2010.
DOI : 10.1016/j.endm.2010.05.027

. Hao-chunn, Y. Lu, H. Ko, and . Yao-huei, A note on "reducing the number of binary variables in cutting stock problems, Optimization Letters, vol.8, pp.569-579, 2014.

D. Meadows, J. Randers, and D. Meadows, Limits to Growth, the 30-Year Update, 2004.

C. Oliveira and P. Pardalos, A survey of combinatorial optimization problems in multicast routing, Computers & Operations Research, vol.32, issue.8, pp.1953-1981, 2005.
DOI : 10.1016/j.cor.2003.12.007

H. Pirkul and S. Soni, New formulations and solution procedures for the hop constrained network design problem, European Journal of Operational Research, vol.148, issue.1, pp.126-140, 2003.
DOI : 10.1016/S0377-2217(02)00366-1

J. Rifkin, The Third Industrial Revolution. St. Martin's Griffin, 2011.

A. Rossi, A. Aubry, and M. Jacomino, Connectivity-and-hop-constrained design of electricity distribution networks, European Journal of Operational Research, vol.218, issue.1, pp.48-57, 2011.
DOI : 10.1016/j.ejor.2011.10.006

URL : https://hal.archives-ouvertes.fr/hal-00654182

S. Voß, The steiner tree problem with hop constraints, Annals of Operations Research, vol.86, pp.321-345, 1999.
DOI : 10.1023/A:1018967121276

C. Wigginton, Telecommunications industry outlook. http://www2.deloitte.com/us/en/pages/technology-media-and-telecommunications/articles/telecommunications- industry-outlook.html, 2016.

L. Wolsey, Integer Programming, 1998.