Pharmacometrics Models with Hidden Markovian Dynamics

Abstract : The aim of this paper is to provide an overview of pharmacometric models that involve some latent process with Markovian dynamics. Such models include hidden Markov models which may be useful for describing the dynamics of a disease state that jumps from one state to another at discrete times. On the contrary, diffusion models are continuous-time and continuous-state Markov models that are relevant for modelling non observed phenomena that fluctuate continuously and randomly over time. We show that an extension of these models to mixed effects models is straightforward in a population context. We then show how the Forward-Backward algorithm used for inference in hidden Markov models and the extended Kalman filter used for inference in diffusion models can be combined with standard inference algorithms in mixed effects models for estimating the parameters of the model. The use of these models is illustrated with two applications: a hidden Markov model for describing the epileptic activity of a large number of patients and a stochastic differential equation based model for describing the pharmacokinetics of theophyllin.
Type de document :
Article dans une revue
Journal of Pharmacokinetics and Pharmacodynamics, Springer Verlag, 2017, pp.1-15. 〈10.1007/s10928-017-9541-1〉
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01665722
Contributeur : Marc Lavielle <>
Soumis le : samedi 16 décembre 2017 - 17:15:56
Dernière modification le : jeudi 11 janvier 2018 - 06:22:34

Fichier

markov2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Marc Lavielle. Pharmacometrics Models with Hidden Markovian Dynamics. Journal of Pharmacokinetics and Pharmacodynamics, Springer Verlag, 2017, pp.1-15. 〈10.1007/s10928-017-9541-1〉. 〈hal-01665722〉

Partager

Métriques

Consultations de la notice

19

Téléchargements de fichiers

11