P. S. Albert, A Two-State Markov Mixture Model for a Time Series of Epileptic Seizure Counts, Biometrics, vol.47, issue.4, p.13711381, 1991.
DOI : 10.2307/2532392

R. M. Altman, Mixed Hidden Markov Models, Journal of the American Statistical Association, vol.102, issue.477, p.201210, 2007.
DOI : 10.1198/016214506000001086

V. V. Anisimov, H. J. Maas, M. Danhof, D. Pasqua, and O. , Analysis of responses in migraine modelling using hidden Markov models, Statistics in Medicine, vol.24, issue.22, p.41634178, 2007.
DOI : 10.1136/jamia.1997.0040301

R. J. Bauer, Hidden Markov Model Analysis with NONMEM. https

M. Berglund, M. Sunnåker, M. Adiels, M. Jirstrand, and B. Wennberg, Investigations of a compartmental model for leucine kinetics using non-linear mixed eects models with ordinary and stochastic dierential equations, Mathematical Medicine and Biology, p.21, 2011.

O. Cappé, E. Moulines, and T. Rydén, Inference in Hidden Markov Models, 2005.

M. Delattre and M. Lavielle, Maximum likelihood estimation in discrete mixed hidden Markov models using the SAEM algorithm, Computational Statistics & Data Analysis, vol.56, issue.6, p.20732085, 2012.
DOI : 10.1016/j.csda.2011.12.017

URL : https://hal.archives-ouvertes.fr/hal-00756599

M. Delattre and M. Lavielle, Coupling the SAEM algorithm and the extended Kalman lter for maximum likelihood estimation in mixed-eects diusion models, Statistics and Its Interfaces, vol.6, issue.4, p.519532, 2013.

M. Delattre, R. M. Savic, R. Miller, M. O. Karlsson, and M. Lavielle, Analysis of exposureresponse of CI-945 in patients with epilepsy: application of novel mixed hidden Markov modeling methodology, Journal of Pharmacokinetics and Pharmacodynamics, vol.39, issue.3, p.263271, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01560511

C. Deng, E. L. Plan, and M. O. Karlsson, Approaches for modeling within subject variability in pharmacometric count data analysis: dynamic inter-occasion variability and stochastic differential equations, Journal of Pharmacokinetics and Pharmacodynamics, vol.86, issue.4, p.305314, 2016.
DOI : 10.1038/clpt.2009.136

C. Diack, O. Ackaert, B. Ploeger, P. Van-der-graaf, R. Gurrell et al., A hidden Markov model to assess drug-induced sleep fragmentation in the telemetered rat, Journal of Pharmacokinetics and Pharmacodynamics, vol.143, issue.1, p.697711, 2011.
DOI : 10.1148/radiology.143.1.7063747

S. Ditlevsen, D. Gaetano, and A. , Stochastic vs. deterministic uptake of dodecanedioic acid by isolated rat livers, Bulletin of Mathematical Biology, vol.67, issue.3, p.547561, 2005.
DOI : 10.1016/j.bulm.2004.09.005

S. Donnet and A. Samson, Parametric inference for mixed models dened by stochastic dierential equations, ESAIM: Probability and Statistics, vol.12, 2008.
DOI : 10.1051/ps:2007045

S. Donnet and A. Samson, EM algorithm coupled with particle lter for maximum likelihood parameter estimation of stochastic dierential mixed-eects models URL https, 2011.

S. Donnet and A. Samson, A review on estimation of stochastic dierential equations for pharmacokinetic/pharmacodynamic models, Advanced Drug Delivery Reviews, vol.65, issue.7, p.929939, 2013.

B. Favetto and A. Samson, Parameter estimation for a bidimensional partially observed OrnsteinUhlenbeck process with biological application, Scandinavian Journal of Statistics, vol.37, issue.2, p.200220, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00324133

L. Ferrante, S. Bompadre, and L. Leone, A Stochastic Compartmental Model with Long Lasting Infusion, Biometrical Journal, vol.45, issue.2, p.182194, 2003.
DOI : 10.1002/bimj.200390004

M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice Using MATLAB, 2011.
DOI : 10.1002/9781118984987

J. D. Hamilton, Time series analysis, 1994.

K. Itô, Diusion processes, 1974.

S. Klim, S. B. Mortensen, N. R. Kristensen, R. V. Overgaard, and H. Madsen, Population stochastic modelling (PSM) an R package for mixed-eects models based on stochastic dierential equations, Computer Methods and Programs in Biomedicine, vol.94, issue.3, p.279289, 2009.
DOI : 10.1016/j.cmpb.2009.02.001

URL : http://orbit.dtu.dk/en/publications/population-stochastic-modelling-psman-r-package-for-mixedeffects-models-based-on-stochastic-differential-equations(130960d8-5c8b-4134-b411-8cfa38f39860).html

N. R. Kristensen, H. Madsen, and S. H. Ingwersen, Using stochastic dierential equations for PK/PD model development, Journal of pharmacokinetics and pharmacodynamics, vol.32, issue.1, p.109141, 2005.
DOI : 10.1007/s10928-005-2105-9

M. Lavielle, Mixed eects models for the population approach: models, tasks, methods and tools, 2014.

L. Cam, S. Louis-dorr, V. Maillard, and L. , Hidden Markov chain modeling for epileptic networks identication, 2013 35th Annual International Conference of the IEEE, p.43544357, 2013.

J. Leander, J. Almquist, C. Ahlström, J. Gabrielsson, and M. Jirstrand, Mixed eects modeling using stochastic dierential equations: illustrated by pharmacokinetic data of nicotinic acid in obese Zucker rats, The AAPS journal, vol.17, issue.3, p.586596, 2015.

H. Maas, M. Danhof, and O. D. Pasqua, Prediction of Headache Response in Migraine Treatment, Cephalalgia, vol.60, issue.4, p.416422, 2006.
DOI : 10.1002/ana.10786

T. Mazzoni, Computational aspects of continuousdiscrete extended Kalman-ltering, Computational Statistics, vol.23, issue.4, p.519539, 2008.

S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, 2009.

O. Connell, J. Højsgaard, and S. , Hidden semi Markov models for multiple observation sequences: The mhsmm package for R, Journal of Statistical Software, vol.39, issue.4, p.122, 2011.

B. Oksendal, Stochastic dierential equations: an introduction with applications Pharmacometrics Models with Hidden Markovian Dynamics 17, 2013.

R. Overgaard, N. Jonsson, C. Tornøe, and H. Madsen, Non-linear mixed-eects models with stochastic dierential equations: implementation of an estimation algorithm, Journal of Pharmacokinetics and Pharmacodynamics, vol.32, issue.1, p.85107, 2005.

U. Picchini and S. Ditlevsen, Practical estimation of high dimensional stochastic dierential mixed-eects models, Computational Statistics & Data Analysis, vol.55, issue.3, p.14261444, 2011.
DOI : 10.1016/j.csda.2010.10.003

URL : http://arxiv.org/pdf/1004.3871

U. Picchini, S. Ditlevsen, D. Gaetano, and A. , Modeling the euglycemic hyperinsulinemic clamp by stochastic dierential equations, Journal of mathematical biology, vol.53, issue.5, p.771796, 2006.
DOI : 10.1007/s00285-006-0032-z

U. Picchini, A. Gaetano, and S. Ditlevsen, Stochastic dierential mixed-eects models, Scandinavian Journal of Statistics, vol.37, issue.1, p.6790, 2010.

L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, vol.77, issue.2, p.257286, 1989.

M. Ramanathan, An application of Ito's lemma in population pharmacokinetics and pharmacodynamics, Pharmaceutical research, vol.16, issue.4, p.584586, 1999.

C. W. Tornøe, R. V. Overgaard, H. Agersø, H. A. Nielsen, H. Madsen et al., Stochastic dierential equations in NONMEM R : implementation, application, and comparison with ordinary dierential equations, Pharmaceutical research, issue.8, pp.22-12471258, 2005.

I. F. Trocóniz, E. L. Plan, R. Miller, and M. O. Karlsson, Modelling overdispersion and Markovian features in count data, Journal of Pharmacokinetics and Pharmacodynamics, vol.27, issue.5, p.461, 2009.
DOI : 10.1017/CBO9780511814365

Y. Wang, Derivation of various nonmem estimation methods, Journal of Pharmacokinetics and pharmacodynamics, vol.34, issue.5, p.575593, 2007.
DOI : 10.1007/s10928-008-9083-7

URL : https://link.springer.com/content/pdf/10.1007%2Fs10928-008-9083-7.pdf

C. Zechner, M. Unger, S. Pelet, M. Peter, and H. Koeppl, Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings, Nature Methods, vol.92, issue.2, 2014.
DOI : 10.1109/78.978383