F. Cruz, J. Twiefel, S. Magg, C. Weber, and S. Wermter, Interactive reinforcement learning through speech guidance in a domestic scenario, 2015 International Joint Conference on Neural Networks (IJCNN)
DOI : 10.1109/IJCNN.2015.7280477

X. Hinaut, M. Petit, G. Pointeau, and P. Dominey, Exploring the acquisition and production of grammatical constructions through humanrobot interaction with echo state networks, Frontiers in Neurorobotics, vol.8, 2014.

X. Hinaut and P. Dominey, Real-Time Parallel Processing of Grammatical Structure in the Fronto-Striatal System: A Recurrent Network Simulation Study Using Reservoir Computing, PLoS ONE, vol.105, issue.2, p.52946, 2013.
DOI : 10.1371/journal.pone.0052946.s008

P. Dominey, Complex sensory-motor sequence learning based on recurrent state representation and reinforcement learning, Biological Cybernetics, vol.312, issue.3, pp.265-274, 1995.
DOI : 10.1007/BF00201428

W. Maass, T. Natschläger, and H. Markram, Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations, Neural Computation, vol.7, issue.11, pp.2531-2560, 2002.
DOI : 10.1038/35009102

P. Werbos, Backpropagation through time: what it does and how to do it, Proceedings of the IEEE, pp.1550-1560, 1990.
DOI : 10.1109/5.58337

M. Rigotti, O. Barak, M. Warden, X. Wang, N. Daw et al., The importance of mixed selectivity in complex cognitive tasks, Nature, vol.472, issue.7451, pp.497585-590, 2013.
DOI : 10.1038/nature09868

T. Brick and M. Scheutz, Incremental natural language processing for HRI, Proceeding of the ACM/IEEE international conference on Human-robot interaction , HRI '07, pp.263-270, 2007.
DOI : 10.1145/1228716.1228752

D. Schlangen and G. Skantze, A general, abstract model of incremental dialogue processing, Proceedings of the 12th Conference of the European Chapter, pp.710-718, 2009.

S. Harnad, The symbol grounding problem, Physica D: Nonlinear Phenomena, vol.42, issue.1-3, pp.335-346, 1990.
DOI : 10.1016/0167-2789(90)90087-6

URL : http://web.comlab.ox.ac.uk/oucl/research/areas/ieg/e-library/sources/harnad90_sgproblem.pdf

F. Van-der-velde, Communication, concepts and grounding, Neural Networks, vol.62, pp.112-117, 2015.
DOI : 10.1016/j.neunet.2014.07.003

T. Taniguchi, T. Nagai, T. Nakamura, N. Iwahashi, T. Ogata et al., Symbol emergence in robotics: a survey, Advanced Robotics, vol.1, issue.11-12, pp.11-12706, 2016.
DOI : 10.7210/jrsj.33.97

URL : http://arxiv.org/pdf/1509.08973

X. Hinaut and S. Wermter, An Incremental Approach to Language Acquisition: Thematic Role Assignment with Echo State Networks, Proc. of ICANN 2014, pp.33-40, 2014.
DOI : 10.1007/978-3-319-11179-7_5

K. Caluwaerts, M. D. 'haene, D. Verstraeten, and B. Schrauwen, Locomotion Without a Brain: Physical Reservoir Computing in Tensegrity Structures, Artificial Life, vol.5, issue.5, pp.35-66, 2013.
DOI : 10.1016/j.ijsolstr.2005.10.011

J. Burms, K. Caluwaerts, and J. Dambre, Reward-Modulated Hebbian Plasticity as Leverage for Partially Embodied Control in Compliant Robotics, Frontiers in Neurorobotics, vol.20, issue.Suppl. 1, p.9, 2015.
DOI : 10.1016/j.neunet.2007.04.003

URL : http://journal.frontiersin.org/article/10.3389/fnbot.2015.00009/pdf

H. Jaeger, The " echo state " approach to analysing and training recurrent neural networks, p.34, 2001.

J. Elman, Finding Structure in Time, Cognitive Science, vol.49, issue.2, pp.179-211, 1990.
DOI : 10.1007/BF00308682

R. Miikkulainen, Subsymbolic Case-Role Analysis of Sentences with Embedded Clauses, Cognitive Science, vol.1, issue.1, pp.47-73, 1996.
DOI : 10.1016/S0022-5371(67)80151-8

T. Mikolov, S. Kombrink, L. Burget, J. Cernock-`-cernock-`-y, and S. Khudanpur, Extensions of recurrent neural network language model, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.5528-5531, 2011.
DOI : 10.1109/ICASSP.2011.5947611

S. Frank, Strong Systematicity in Sentence Processing by an Echo State Network, International Conference on Artificial Neural Networks, pp.505-514, 2006.
DOI : 10.1007/11840817_53

M. Tong, A. Bickett, E. Christiansen, and G. Cottrell, Learning grammatical structure with Echo State Networks, Neural Networks, vol.20, issue.3, pp.424-432, 2007.
DOI : 10.1016/j.neunet.2007.04.013

G. Marcus, S. Vijayan, S. Rao, and P. Vishton, Rule Learning by Seven-Month-Old Infants, Science, vol.283, issue.5398, pp.77-80, 1999.
DOI : 10.1126/science.283.5398.77

A. Goldberg, Constructions: A construction grammar approach to argument structure, 1995.

A. Goldberg, Constructions: a new theoretical approach to language, Trends in Cognitive Sciences, vol.7, issue.5, pp.219-224, 2003.
DOI : 10.1016/S1364-6613(03)00080-9

URL : http://www.sls.hawaii.edu/bley-vroman/750/goldbergtrends.pdf

M. Tomasello, Constructing a language: A usage based approach to language acquisition, 2003.

E. Bates and B. Macwhinney, Competition, variation, and language learning. Mechanisms of language acquisition, pp.157-193, 1987.

P. Dominey, M. Hoen, and T. Inui, A Neurolinguistic Model of Grammatical Construction Processing, Journal of Cognitive Neuroscience, vol.18, issue.12, pp.2088-2107, 2006.
DOI : 10.1016/S0010-0277(00)00063-9

X. Hinaut, J. Twiefel, and S. Wermter, Recurrent Neural Network for syntax learning with flexible predicates for robotic architectures, 2016 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), 2016.
DOI : 10.1109/DEVLRN.2016.7846807

URL : https://hal.archives-ouvertes.fr/hal-01417697

X. Hinaut, J. Twiefel, M. Petit, P. F. Dominey, and S. Wermter, A recurrent neural network for multiple language acquisition: Starting with english and french, NIPS 2015 Workshop on Cognitive Computation: Integrating Neural and Symbolic Approaches, 2015.

D. Jurafsky and J. Martin, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, 2009.

X. Hinaut, J. Twiefel, M. B. Soares, P. Barros, L. Mici et al., Humanoidly speaking ? learning about the world and language with a humanoid friendly robot, IJCAI Video competition, 2015.

J. Twiefel, X. Hinaut, M. Borghetti, E. Strahl, and S. Wermter, Using natural language feedback in a neuro-inspired integrated multimodal robotic architecture, 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 2016.
DOI : 10.1109/ROMAN.2016.7745090

URL : https://hal.archives-ouvertes.fr/hal-01417706

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, Advances in neural information processing systems, pp.3111-3119, 2013.

M. Luko?evi?ius, A Practical Guide to Applying Echo State Networks, Neural Networks: Tricks of the Trade, pp.659-686, 2012.
DOI : 10.1109/IJCNN.2008.4634252

N. Chomsky, Aspects of the Theory of Syntax, 1965.
DOI : 10.21236/AD0616323

J. Twiefel, X. Hinaut, and S. Wermter, Syntactic reanalysis in language models for speech recognition, Proc. of the IEEE Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob). IEEE, 2017. [37] K. Dukes. Semeval-2014 task, p.45, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01558462

P. Enel, E. Procyk, R. Quilodran, and P. Dominey, Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex, PLOS Computational Biology, vol.87, issue.4, p.1004967, 2016.
DOI : 10.1371/journal.pcbi.1004967.t003

F. Chang, Symbolically speaking: a connectionist model of sentence production, Cognitive Science, vol.2, issue.5, pp.609-651, 2002.
DOI : 10.1038/35094573