G. Aad, Measurements of the higgs boson production and decay rates and constraints on its couplings from a combined atlas and cms analysis of the lhc pp collision data at ? s = 7
URL : https://hal.archives-ouvertes.fr/in2p3-01328829

C. Adam-bourdarios, G. Cowan, C. Germain, I. Guyon, B. Kégl et al., The Higgs boson machine learning challenge, HEPML@ NIPS, pp.19-55, 2014.
DOI : 10.1088/1742-6596/664/7/072015

URL : https://hal.archives-ouvertes.fr/in2p3-01024802

P. Baldi, P. Sadowski, and D. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nature Communications, vol.ACAT, pp.7-2014
DOI : 10.1103/PhysRevLett.102.152001

R. Barlow, Systematic Errors: facts and fictions. ArXiv High Energy Physics -Experiment e-prints, 2002.

S. Ben-david, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira et al., A theory of learning from different domains, Machine Learning, vol.60, issue.1-2, pp.1-2151, 2010.
DOI : 10.1007/s10994-009-5152-4

Y. Bengio, A. Courville, and P. Vincent, Representation Learning: A Review and New Perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.8, pp.1798-1828, 2013.
DOI : 10.1109/TPAMI.2013.50

URL : http://www.cs.princeton.edu/courses/archive/spring13/cos598C/Representation Learning - A Review and New Perspectives.pdf

H. Edwards and A. Storkey, Censoring Representations with an Adversary, International Conference in Learning Representations (ICLR2016), 2016.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle et al., Domain-Adversarial Training of Neural Networks, 2015.
DOI : 10.1007/978-3-319-58347-1_10

URL : https://hal.archives-ouvertes.fr/hal-01624607

G. Louppe, M. Kagan, and K. Cranmer, Learning to Pivot with Adversarial Networks, physics, 2016.

S. Rifai, Y. Dauphin, P. Vincent, Y. Bengio, and X. Muller, The Manifold Tangent Classifier, NIPS, p.523, 2011.

S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, Contractive autoencoders: Explicit invariance during feature extraction, Proceedings of the 28th international conference on machine learning (ICML-11), pp.833-840, 2011.

P. Y. Simard, B. Victorri, Y. Lecun, and J. S. Denker, Tangent Prop -A Formalism for Specifying Selected Invariances in an Adaptive Network, NIPS, pp.895-903, 1991.

D. Warde-farley and I. Goodfellow, Adversarial perturbations of deep neural networks, Perturbation, Optimization and Statistics, pp.1-32, 2016.