C. Adam-bourdarios, G. Cowan, C. Germain, I. Guyon, B. Kgl et al., The Higgs boson machine learning challenge, HEPML@ NIPS, pp.19-55, 2014.
DOI : 10.1088/1742-6596/664/7/072015

URL : https://hal.archives-ouvertes.fr/in2p3-01024802

R. Barlow, Systematic errors: Facts and fictions, Advanced Statistical Techniques in Particle Physics. Proceedings, Conference, pp.134-144, 2002.

S. Ben-david, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira et al., A theory of learning from different domains, Machine Learning, vol.60, issue.1-2, pp.151-175, 2010.
DOI : 10.1007/s10994-009-5152-4

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle et al., Domain-Adversarial Training of Neural Networks, 2015.
DOI : 10.1007/978-3-319-58347-1_10

URL : https://hal.archives-ouvertes.fr/hal-01624607

G. Louppe, M. Kagan, and K. Cranmer, Learning to Pivot with Adversarial Networks, physics, 2016.

S. Rifai, Y. Dauphin, P. Vincent, Y. Bengio, and X. Muller, The Manifold Tangent Classifier, NIPS, p.523, 2011.

P. Y. Simard, B. Victorri, Y. Lecun, and J. S. Denker, Tangent Prop -A Formalism for Specifying Selected Invariances in an Adaptive Network, NIPS, pp.895-903, 1991.