
21

A Principled Approach to Ornamentation inML

THOMAS WILLIAMS, Inria, France
DIDIER RÉMY, Inria, France

Ornaments are a way to describe changes in datatype definitions reorganizing, adding, or dropping some pieces

of data so that functions operating on the bare definition can be partially and sometimes totally lifted into func-

tions operating on the ornamented structure. We propose an extension of ML with higher-order ornaments,

demonstrate its expressiveness with a few typical examples, including code refactoring, study the metatheoreti-

cal properties of ornaments, and describe their elaboration process. We formalize ornamentation via an a poste-

riori abstraction of the bare code, returning a generic term, which lives in a meta-language aboveML. The lifted
code is obtained by application of the generic term to well-chosen arguments, followed by staged reduction,

and some remaining simplifications. We use logical relations to closely relate the lifted code to the bare code.

CCS Concepts: · Software and its engineering → Functional languages; Polymorphism; Data types

and structures; Semantics; Software maintenance tools;

Additional Key Words and Phrases: Ornaments, ML, Refactoring, Dependent Types, Logical Relations.

ACM Reference Format:

Thomas Williams and Didier Rémy. 2018. A Principled Approach to Ornamentation inML. Proc. ACM Program.

Lang. 2, POPL, Article 21 (January 2018), 30 pages. https://doi.org/10.1145/3158109

1 INTRODUCTION

Inductive datatypes and parametric polymorphism are two key features introduced in theML family
of languages in the 1980’s, at the core of the two popular languages OCaml and Haskell. Datatypes
stress the algebraic structure of data while parametric polymorphism allows to exploit universal
properties of algorithms working on algebraic structures and is a key to modular programming
and reusability.

Datatype definitions are inductively defined as labeled sums and products over primitive types.
However, the same data can often be represented with several isomorphic data-structures, using a
different arrangement of sums and products. Two data-structures may also differ in minor ways, for
instance sharing the same recursive structure, but one carrying an extra information at some specific
nodes. Having established the structural ties between two datatypes, one soon realizes that both
admit strikingly similar functions, operating similarly over their common structure. Users sometimes
feel they are programming the same operations over and over again with only minor variations.
The refactoring process by which one adapts existing code to work on another similarly-structured
datatype requires non-negligible efforts from the programmer. Can this process be automated?
The strong typing discipline of ML is already helpful for code refactoring. When modifying a

datatype definition, the type checker points out all the ill-typed occurrences where some rewriting
ought to be performed. However, while in most cases the adjustments are really obvious from
the context, they still have to be manually performed, one after the other, which is boring, time
consuming, and error prone. Worse, changes that do not lead to type errors will be left unnoticed.

Authors’ addresses: Thomas Williams, Inria, Paris, France; Didier Rémy, Inria, Paris, France.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/1-ART21

https://doi.org/10.1145/3158109

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3158109
https://doi.org/10.1145/3158109

21:2 Thomas Williams and Didier Rémy

Our goal is not just that the new program typechecks, but to carefully track all changes in
datatype definitions to automate most of this process. Besides, we wish to have some guarantee
that the new version behaves consistently with the original program.

The recent theory of ornaments [Dagand and McBride 2013, 2014; McBride 2011] seems the right
framework to tackle these challenges. It defines conditions under which a new datatype definition
can be described as an ornament of another. In essence, an ornament is a relation between two
datatypes, reorganizing, specializing, and adding data to a bare type to obtain an ornamented type. In
previous work [Williams et al. 2014], we have already explored the interest of ornamentation in the
context of ML where ornaments are added as a primitive notion rather than encoded, and sketched
how functions operating on some datatype could be lifted to work on its ornamented version instead.
We both generalize and formalize the previous approach, and propose new typical uses of ornaments.

Our contributions are the following: we extend the definition of ornaments to the higher-order
setting; we give ornaments a semantics using logical relations and establish a close correspondence
between the bare code and the lifted code (Theorem 7.6); we propose a new principled approach to
the lifting process, through a posteriori abstraction of the bare code to a most general syntactic
elaborated form, which is then instantiated into a concrete lifting, meta-reduced, and simplified
back to ML code; this appears to be a general schema for refactoring tools that should also be useful
for other transformations than ornamentation; we introduce an intermediate meta-language above
ML with a restricted form of dependent types, which are used to keep track of selected branches
during pattern matching, and could perhaps also be helpful for other purposes.
The rest of the paper is organized as follows. In the next section, we introduce ornaments by

means of examples. The lifting process, which is the core of our contribution, is presented intuitively
in section ğ3. We introduce the meta-language in ğ4 and present its meta-theoretical properties
in ğ5. In ğ6, we give a formal definition of ornaments based on a logical relation. In ğ7, we formally
describe the lifting process that transforms a lifting declaration into actual ML code, and we justify
its correctness. We discuss our implementation and possible extensions in ğ8 and related work in ğ9.

2 EXAMPLES OF ORNAMENTS

Let us discover ornaments by means of examples. All examples preceded by a blue vertical bar have
been processed by a prototype implementation1, which follows an OCaml-like2 syntax. Output of
the prototype appears with a wider green vertical bar. The code that appears without a vertical
mark is internal intermediate code for sake of explanation and has not been processed.

2.1 Code Refactoring

The most striking application of ornaments is the special case of code refactoring, which is an
often annoying but necessary task when programming. We start with an example reorganizing a
sum data structure into a sum of sums. Consider the following datatype representing arithmetic
expressions, together with an evaluation function.

type expr =

| Const of int

| Add of expr ∗ expr

| Mul of expr ∗ expr

let rec eval a = match awith

| Const i → i

| Add (u, v) → add (eval u) (eval v)

| Mul (u, v) → mul (eval u) (eval v)

The programmer may realize that the binary operators Add and Mul can be factorized, and thus
prefer the following version expr' using an auxiliary type of binary operators (given below on the

1The prototype, available at url http://pauillac.inria.fr/~remy/ornaments/, contains a library of detailed examples (including

those presented here). More examples can also be found in the extended version of this article [Williams and Rémy 2017].
2http://caml.inria.fr/

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

http://pauillac.inria.fr/~remy/ornaments/
http://caml.inria.fr/

A Principled Approach to Ornamentation in ML 21:3

left-hand side). There is a relation between these two types, which we may describe as an ornament

oexpr from the base type expr to the ornamented type expr' (right-hand side).

type binop = Add' |Mul'

type expr' =

| Const' of int

| Binop' of binop ∗ expr' ∗ expr'

type ornament oexpr : expr⇒ expr'with

| Const i ⇒ Const' i

| Add (u, v) ⇒ Binop' (Add', u, v) when u v : oexpr

| Mul (u, v) ⇒ Binop' (Mul', u, v) when u v : oexpr

This relation is recursively defined. The first clause relates Const i to Const' i for any integer i . The
second clause should be understood as:

Add(u−,v−)⇒ Binop'(Add'(u+, v+)) when u−⇒ u+ and v−⇒ v+ in oexpr

and means that Mul(u−, v−) and Binop'(Mul'(u+, v+)) are in the oexpr relation whenever both u− and
u+ on the one hand and v− and v+ on the other hand are in the oexpr relation.
In this example, the relation happens to be an isomorphism and we say that the ornament is a

pure refactoring. Hence, the compiler has enough information to automatically lift the old version
of the code to the new version. We just request this lifting as follows:

let eval' = lifting eval : oexpr→ _

The expression oexpr→ _ is an ornament signature, which follows the syntax of types but replacing
type constructors by ornaments (the wildcard is a part that is inferred). Here, the compiler will
automatically elaborate eval' to the expected code, without any further user interaction:

let rec eval' a = match awith

| Const' i → i

| Binop' (Add', u, v) → add (eval' u) (eval' v)

| Binop' (Mul', u, v) → mul (eval' u) (eval' v)

Not only is this well-typed, but the semantics is also preservedÐby construction. Notice that a pure
refactoring also works in the other direction: we could have instead started with the definition of
eval' , defined the reverse ornament from expr' to expr, and obtained eval as a lifting of eval' .
Lifting also works with higher-order types and recursive datatype definitions with negative

occurrences (see the library of examples included with the prototype).
Pure refactorings such as oexpr are a particular, but quite interesting subcase of ornaments because

the lifting process is fully automated. As a tool built upon ornamentation, we provide a shortcut
for refactoring: one only has to write the definitions of expr' and oexpr, and lifting declarations
are generated to transform a whole source file. Thus, pure refactoring is already a very useful
applications of ornaments: these transformations become almost free, even on a large code base.

Notice that pure code refactoring need not even define a new type. One such example is to invert
values of a boolean type:

type bool = True | False

type ornament not : bool⇒ boolwith True⇒ False | False⇒ True

Then, wemay define or as a lifting of and, and the compiler inverts the constructors; it may also do so
selectively, only at some given occurrences of the bool type, while carefully rejecting inconsistencies.

2.2 Code Refinement

Code refinement is an example of a proper ornament where the intention is to derive new code
from existing code, rather than modify existing code and forget the original version afterwards. To

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

21:4 Thomas Williams and Didier Rémy

illustrate code refinement, observe that lists can be considered as an ornament of Peano numbers:

type nat = Z | S of nat

type 'a list = Nil | Cons of 'a ∗ 'a list

type ornament 'a natlist : nat⇒ 'a listwith

| Z ⇒ Nil

| S m ⇒ Cons (_, m) when m : 'a natlist

The parametrized ornamentation relation 'a natlist is not an isomorphism: a natural number S m−
will be in relation with all values of the form Cons (x, m+) as long as m− is in relation with m+, for
any x. We use an underscore ł_ž instead of x on Cons (_, m) to emphasize that it does not appear
on the left-hand side and thus freely ranges over values of its type. Hence, the mapping from nat to
'a list is incompletely determined: we need additional information to translate a successor node.
The addition on numbers may have been defined as follows (on the left-hand side):

let rec add m n =match mwith

| Z→ n

| S m'→ S (add m' n)

val add : nat → nat→ nat

let rec append m n =match mwith

| Nil → n

| Cons (x, m') → Cons(x, append m' n)

val append : 'a list → 'a list → 'a list

Observe the similarity with append, given above (on the right-hand side). Having already recognized
an ornament between nat and list , we expect append to be definable as a lifting of add (below, on
the left). However, this returns an incomplete lifting (on the right):

let append0 =

lifting add

: _ natlist → _ natlist → _ natlist

let rec append0 m n =match mwith

| Nil → n

| Cons (x, m') → Cons (#2 , append0 m' n)

Indeed, this requires building a cons node from a successor node, which is underdetermined. This
is reported to the user by leaving a labeled hole #2 in the generated code. The programmer may
use this label to provide a patch that will fill this hole. The patch may use all bindings that were
already in context at the same location in the bare version. In particular, the first argument of Cons
cannot be obtained directly, but only by matching onm again:

let append = lifting add : _ natlist → _ natlist → _ natlist

with #2←match mwith Cons(x, _)→ x

The lifting is now complete, and produces exactly the code of append given above. The super-
fluous pattern matching in the patch has been automatically removed: the patch łmatch m with

Cons(x0,_)→ x0ž has not just been inserted in the hole, but also simplified by observing that x0
is actually equal to x and need not be extracted again from m. This also removes an incomplete
pattern matching. This simplification process relies on the ability of the meta-language to maintain
equalities between terms via dependent types, and is needed to make the lifted code as close as
possible to manually written code. This is essential, since the lifted code may become the next
version of the source code to be read and modified by the programmer. This is a strong argument
in favor of the principled approach that we present next and formalize in the rest of the paper.

This example is chosen here for pedagogical purposes, as it illustrates the key ideas of ornamen-
tation. While it may seem anecdotal, there is a strong relation between recursive data structures
and numerical representations, whose relation to ornamentation has been considered by Ko [2014].

2.3 Composing TransformationsÐa Practical Use Case

Ornamentation could be used in different scenarios: the intent of refactoring is to replace the base
code with the generated code, even though the base code could also be kept for archival purposes;
when enriching a data structure, both codes may coexist in the same program. To support both of
these usages, we try to generate code that is close to manually written code. For other uses, the

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

A Principled Approach to Ornamentation in ML 21:5

base code and the lifting instructions may be kept to regenerate the lifted code when the base code
changes. This already works well in the absence of patches; otherwise, we would need a patch
description language that is more robust to changes in the base code. We could also postprocess
ornamentation with some simple form of code inference that would automatically try to fill the
holes with łobviousž patches, as illustrated below. Our tool currently works in batch mode and is
just providing the building blocks for ornamentation. The ability to output the result of a partially
specified lifting makes it possible to build an interactive tool on top of our interface.

The following example shows how different use-cases of ornaments can be composed to reorga-
nize, enrich, and cleanup an incorrect program, so that the final bug fix can be reduced to a manual
but simple step. The underlying idea is to reduce manual transformations by using automatic
program transformations whenever possible. Notice that since lifting preserves the behavior of the
original program, fixing a bug cannot just be done by ornamentation.
Let us consider a small calculus with abstractions and applications and tuples (which we will

take unary for conciseness) and projections. We assume given a type id representing variables.

type expr = Abs of id ∗ expr | App of expr ∗ expr | Var of id | Tup of expr | Proj of expr

We write an expression evaluator using environments. We assume given an assoc function of
type 'a → ('a ∗ 'b) list → 'b option that searches a binding in the environment. For compactness,
we omit the case of tuples (it is included in the extended version).

let bind x f = match xwith Some v→ f v | None→ None

let rec eval env e = function

| Abs(x, f) → Some (Abs(x, f))

| App(e1,e2)→ bind (eval env e1) (function

| Abs(x,f) → bind (eval env e2) (fun v→ eval (Cons((x,v), env)) f)

| Tup _→ None (∗ Type error ∗)

| _ → fail ()) (∗ Note a value ∗)

| Var x → assoc x env | ...

(∗ eval : (id ∗ expr) list −> expr −> expr option ∗)

The evaluator distinguishes type (or scope) errors in the program, where it returns None, and
internal errors when the expression returned by the evaluator is not a value. In this case, the
evaluator raises an exception by calling fail () .
We soon realize that we mistakenly implemented dynamic scoping: the result of evaluating an

abstraction should not be an abstraction but a closure that holds the lexical environment of the
abstraction. One path to fixing this evaluator is to start by separating the subset of values returned
by the evaluator from general expressions. We define a type of values as an ornament of expressions.

type value =

| VAbs of id ∗ expr

| VTup of value

type ornament expr_value : expr⇒ valuewith

| Abs(x, e) ⇒ VAbs(x, e) when e : expr

| Tup(e) ⇒ VTup(e)when e : expr_value

| _ → ∼

This ornament is intendedly partial: some cases are not lifted. Lifting constructors of excluded
cases will fail, and pattern matching on excluded cases them will be eliminated. The notation ∼
corresponds to the empty pattern.
This ornament does not preserve the recursive structure of the original datatype: the recursive

occurrences are transformed into values or expressions depending on their position. By contrast
with prior works [Dagand and McBride 2013, 2014; Williams et al. 2014], we do not treat recursion
specifically. Hence, mutual recursion is not a problem; for instance, we can ornament a mutually
recursive definition of trees and forests or modify the recursive structure during ornamentation.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

21:6 Thomas Williams and Didier Rémy

Using the ornament expr_value we transform the evaluator by making explicit the fact that it
only returns values and that the environment only contains values (as long as this is initially true):

let eval' = lifting eval : (id ∗ expr_value) list → expr→ expr_value option

(∗ val eval' : (id ∗ value) list −> expr −> value option ∗)

The lifting succeedsÐand eliminates all occurrences of fail () in eval' .

let rec eval' env e = match ewith

| Abs(x, e) → Some (VAbs(x, e))

| App(e1, e2) → bind' (eval' env e1) (function

| VAbs(x, e) → bind' (eval' env e2) (fun v→ eval' (Cons((x, v), env)) e)

| VTup _→ None)

| Var x → assoc x env | ...

We may now refine the code to add a field for storing the environment in closures:

type value' =

| VClos' of id ∗ (id ∗ value') list ∗ expr

| VTup' of value'

type ornament value_value' : value⇒ value'with

| VAbs(x, e) ⇒ VClos'(x, _, e)

| VTup(v) ⇒ VTup'(v)when v : value_value'

Since this ornament is not one-to-one, the lifting of eval' is partial. The advanced user may realize
that there should be a single hole in the lifted code that should be filled with the current environment
env, and may directly write the clause ł | ∗ ← envž:

let eval'' = lifting eval' with ornament ∗← value_value',@id | ∗← env

The annotation ornament ∗← value_value',@id is another way to indicate which ornaments to
use that is sometimes more convenient than giving a signature: for each type that needs to be
ornamented, we first try value_value', and use the identity ornament if this fails (e.g. on types other
than value). A more pedestrian path to writing the patch is to first look the output of the partial
lifting:

let eval'' = lifting eval' with ornament ∗← value_value',@id

let rec eval'' env e = match ewith

| Abs(x, e) → Some (VClos'(x, #32 , e))

| App (e1, e2) → ... | ...

The hole has been labeled #32 which can then be used to refer to this specific program point:

let eval'' = lifting eval' with ornament ∗← value_value',@id | #32← env

An interactive tool could point the user to this hole in the partially lifted code shown above, so that
she directly enters the code env, and the tool would automatically generate the lifting command just
above. Notice that env is the most obvious way to fill the hole here, because it is the only variable
of the expected type available in context. Hence, a very simple form of type-based code inference
could pre-fill the hole with env and just ask the user to confirm.

When the programmer is quite confident, she could even ask for this to be done in batch mode:

let eval'' = lifting eval' with ornament ∗← value_value',@id | ∗← try by type

Example-based code inference would be another interesting extension of our prototype, which
would increase the robustness of patches to program changes. Here, the user could instead write:

let eval'' = lifting eval' with ornament ∗← value_value',@id

| ∗ ← try eval env (VAbs (_, _)) = Some (Closure (_, env, _))

providing a partial definition of eval that is sufficient to completely determine the patch.
For each of these possible specifications, the system will return the same answer:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

A Principled Approach to Ornamentation in ML 21:7

a ∼ aдen τ̄ s̄

aдen
a0 = aдen τ̄ ′ s̄ ′

a1

a′ ∼ aдen τ̄ ′ s̄ ′

elaboration

lifting

instantiation

specialization

trivial
specialization

meta-reduction

simplification

Fig. 1. Overview of the lifting process

let rec eval'' env e = match ewith

| Abs(x, e) → Some (VClos'(x, env, e))

| App(e1, e2) → bind' (eval'' env e1) (function

| VClos'(x, _, e) → bind' (eval'' env e2) (fun v→ eval'' (Cons((x, v), env)) e)

| VTup' _→ None)

| Var x → assoc x env | ...

So far, we have not changed the behavior of the evaluator: the ornaments guarantee that the result
of eval'' on some expression is essentially the same as the result of evalÐup to the addition of
an environment in closures. The final modification must be performed manually: when applying
functions, we need to use the environment of the closure instead of the current environment.

let rec eval'' env e = match ewith

| Abs(x, e) → Some (VClos'(x, env, e))

| App(e1, e2) → bind' (eval'' env e1) (function

| VClos'(x, clos_env , e) → bind' (eval'' env e2) (fun v→ eval'' (Cons((x, v), clos_env)) e)

| VTup' _→ None)

| Var x → assoc x env | ...

2.4 More Examples

More examples can be found in [Williams and Rémy 2017] or the online prototype: we can enrich
a data structure (turning sets into associative maps), use code refactoring for optimization by
changing the data representation (transforming a map with unit as values into a set) or for hiding
administrative data such as location information or type annotations in abstract syntax trees, etc.
Although it was not our initial goal, we found that ornaments could also be used for generic

programming: one can define a type of arbitrary sum of products, then view first-order datatypes
as a specialization, represented by an ornament, of this structure. Thus, functions operating on the
general structure could be lifted to any datatype. However, this is not practical yet, as the generic
functions must be manually unfolded to fit the recursive structure of the ornament, defeating the
purpose of defining generic functionsÐwe discuss the problem of unfolding in ğ8.4.

3 OVERVIEW OF THE LIFTING PROCESS

Whether used for refactoring or refinement, ornaments are about code reuse. Code reuse is usually
obtained bymodularity, which itself relies on both type and value abstractionmechanisms. Typically,
one writes a generic function дen that abstracts over the representation details, say described by
some structures s̄ of operations on types τ̄ . Hence, a concrete implementation a is schematically

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

21:8 Thomas Williams and Didier Rémy

obtained by the application дen τ̄ s̄ ; changing the representation to small variation s̄ ′ of types τ̄ ′ of
the structures s̄ , we immediately obtain a new implementation дen τ̄ ′ s̄ ′, say a′.

Although the case of ornamentation seems quite different, as we start with a non-modular imple-
mentation a, we may still get inspiration from the previous schema: modularity through abstraction
and polymorphism is the essence of good programming discipline. Instead of directly going from a

to a′ on some ad hoc track, we may first find a modular presentation of a as an application aдen τ̄ s̄

so that moving from a to a′ is just finding the right parameters τ̄ ′ and s̄ ′ to pass to aдen .
This is depicted in Figure 1. In our case, the elaboration that finds the generic term aдen is syntactic

and only depends on the source term a. The specialization process is actually performed in several
steps, as we do not want a′ to be just the application aдen τ̄ ′ s̄ ′, but be presented in a simplified
form as close as possible to the term we started with and as similar as possible to the code the
programmer would have manually written. Hence, after instantiation, we perform meta-reduction,
which eliminates all the abstractions that have been introduced during the elaborationÐbut not
others. This is followed by simplifications that will eliminate intermediate pattern matchings.

Having recovered a modular schema, we may use parametricity results, based on logical relations.
As long as the arguments s and s ′ passed to the polymorphic function aдen are relatedÐand they are
by the ornamentation relation!Ðthe two applications aдen τ̄ s̄ and aдen τ̄ ′ s̄ ′ are also related. Since
meta-reduction preserves the relation, it only remains to check that the simplification steps also pre-
serve equivalence to establish a relationship between the bare term a and the lifted term a′ (see ğ5.3).
The lifting process is formally described in section ğ7. In the rest of this section, we present it

informally on the example of add and append.

3.1 Encoding Ornaments

We are trying to build a function append that has the same structure as add, and operates on
constructors Nil and Cons similarly to the way add proceeds with constructors S and Z . Since
ornamentation only affects datatypes, it is enough to insert some code to translate from and to lists
at occurrences where nat is either constructed or destructed in add.
To help with this transformation, we may see a list as a nat-like structure where just the head

of the list has been transformed. For that purpose, we introduce an hybrid open version of the
datatype of Peano naturals, called the skeleton, using new constructors Z' and S' corresponding to
Z and S but parameterized over the type of the argument of the constructor S:

type 'a nat_skel = Z' | S' of 'a

We define the head projection of a list into nat_skel where the tail stays a list:

let proj_nat_list : 'a list → 'a list nat_skel = fun m //=⇒match mwith

| Nil → Z'

| Cons (_, m') → S' m'

We use annotated versions of abstractions fun x //=⇒ a and applications a#b called meta-functions

and meta-applications to keep track of helper code and distinguish it from the original code, but
these can otherwise be read as regular functions and applications.
Once an 'a list has been turned into 'a list nat_skel, we can pattern match on it in the same

way we match on nat in the definition of add. Hence, the definition of append should look like:

let rec append1 m n =match proj_nat_list # mwith

| Z' → n

| S' m'→ ... S' (append1 m' n) ...

In the second branch, we must construct a list out of the hybrid list-nat skeleton S' (append1 m' n).
We use a helper function to inject an 'a list nat_skel into an 'a list :

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

A Principled Approach to Ornamentation in ML 21:9

| S' m'→ inj_nat_list1 (S' (append m' n)) ...

Of course, inj_nat_list requires some supplementary information x to put in the head of the list:

let inj_nat_list : 'a list nat_skel → 'a → 'a list = fun n x //=⇒match nwith

| Z' → Nil

| S' n' → Cons (x, n')

As explained above (ğ2.2), this supplementation is (match m with Cons (x, _)→ x). and must be user
provided as patch #2. Hence, the lifting of add into lists is:

let rec append2 m n =match proj_nat_list # mwith

| Z' → n

| S' m'→ inj_nat_list # (S' (append2 m' n)) # (match mwith Cons (x, _)→ x)

This version is correct, but not final yet, as it still contains the intermediate hybrid structure, which
will eventually be eliminated. Besides, for more complex examples, we cannot give a valid ML type
to the analog of inj_nat_list, as the argument x takes different types in different branches. This
is solved by adding a form of dependent types to our intermediate languageÐand finely tuned
restrictions to guarantee that the generated code becomes typeable inML after some simplifications.

3.2 Eliminating the Encoding

The mechanical ornamentation both creates intermediate hybrid data structures and includes extra
abstractions and applications. Fortunately, these additional computations can be avoided, which
not only removes sources of inefficiencies, but also helps generate code with fewer indirections
that is more similar to hand-written code.
We first perform meta-reduction of append2, which removes all helper functions:

let rec append3 m n = match (match mwith Nil→ Z' | Cons (x, m')→ S' m') witÂŕh

| Z'→ n

| S' m'→ b where b is match S'(append3 m' n)with

| Z' −> Nil

| S' r' → Cons ((match mwith Cons(x, _)→ x), r')

(The grayed out branch is inaccessible). Still, append3 computes two pattern matchings that do
not appear in the manually written version append. Interestingly, both of them can be eliminated.
Extruding the inner match on m in append3, we get:

let rec append4 m n =match mwith

| Nil → (match Z'with Z'→ n | S' m' −> b)

| Cons (x, m') → (match S' m'with Z' −> n | S' m'→ b)

Since we know thatm is equal to Cons(x,m') in the Cons branch, we simplify b to Cons(x, append m' n).
After removing all remaining dead branches, we exactly obtain the manually written version append.

3.3 Inferring a Generic Lifting

We have shown a specific ornamentation append of add. However, instead of producing such
an ornamentation directly, we first generate a generic lifting of add abstracted over all possible
instantiations, and only then specialize it to some specific ornamentation by passing encoding and
decoding functions as arguments, as well as a set of patches that generate the additional data.
Let us detail this process by building the generic lifting add_gen of add. Because they will be

passed together to the function, we group the injection and projection into a record:

type ('a, 'b , 'c) orn = { inj : 'a → 'b → 'c ; proj : 'c → 'a }

let nat_list = { inj = inj_nat_list ; proj = proj_nat_list ; }

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

21:10 Thomas Williams and Didier Rémy

The code of append2 could have been written as:

let rec append2 m n =match nat_list.proj # mwith

| Z' → n

| S' m'→ nat_list . inj # (S' (add m' n)) # (match mwith Cons (x, _)→ x)

in append2

Instead of using the concrete ornament nat_list , the generic version abstracts over arbitrary orna-
ments of nats and over the patch:

let add_gen = fun m_orn n_orn p1 //=⇒

let rec add_gen' m n =match m_orn.proj # mwith

| Z' → n

| S' m'→ n_orn.inj # S' (add_gen' m' n) # (p1 # add_gen' # m # m' # n)

in add_gen'

While append2 uses the same ornament nat_list for ornamenting both arguments m and n, this
need not be the case in general; hence add_gen has two different ornament arguments m_orn and
n_orn. The patch p1 is abstracted over all variables in scope, i.e. m, n and m'.
In general, we ask for a different ornament for each occurrence of a constructor or pattern

matching on a datatype. We then apply ML inference on the generic term (ignoring the patches)
allowing us to deduce that some ornaments encode to the same datatype. In order to preserve
the relation between the bare and lifted terms (see ğ7), these ornaments are merged into a single
ornament, with a single record. We thus obtain a description of all possible syntactic ornaments
of the base function, i.e. those ornaments that preserve the structure of the original code:

let add_gen = fun m_orn n_orn p1 //=⇒

let rec add_gen' m n =match m_orn.proj # mwith

| Z' → n

| S' m'→ n_orn.inj # S' (add_gen' m' n) # (p1 # add_gen' # m # m' # n)

in add_gen'

The patch p1 describes how to obtain the missing information from the environment (namely
add_gen, m, n, m') when building a value of the ornamented type. While the parameters m_orn and
n_orn will be automatically instantiated, the code for patches will have to be user-provided.

The generalized function abstracts over all possible ornaments, andmust now be instantiated with
some specific ornaments.Wemay for instance decide to ornament nothing, i.e. just lift nat to itself us-
ing the identity ornament on nat, which amounts to passing to add_gen the following trivial functions:

let proj_nat_nat = fun x //=⇒

match xwith Z→ Z' | S x→ S' x

let inj_nat_nat = fun x () //=⇒

match xwith Z'→ Z | S' x→ S x
let orn_nat_nat = { proj=proj_nat_nat; inj = inj_nat_nat }

There is no information added, so we may use the following unit_patch for p1:

let unit_patch = fun _ _ _ _ //=⇒ ()

let add1 = add_gen # orn_nat_nat # orn_nat_nat # unit_patch

As expected, meta-reducing add1 and simplifying the result returns the original program add.
We may also instantiate the generic lifting with the ornament from nat to lists and the following

patch. Meta-reduction of append5 gives append2 which can then be simplified to append.

let orn_nat_list = { proj = proj_nat_list ; inj = inj_nat_list }

let append_patch = fun _ m _ _ //=⇒match mwith Cons(x, _)→ x

let append5 = add_gen # orn_nat_list # orn_nat_list # append_patch

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

A Principled Approach to Ornamentation in ML 21:11

κ ::= Typ | Sch

τ ,σ ::= α | τ → τ | ζ τ | ∀(α : Typ) τ

Γ ::= ∅ | Γ,x : τ | Γ,α : Typ

ζ ::= unit | bool | nat | list | . . .

a,b ::= x | let x = a in a | fix (x : τ) x . a | a a | a τ

| Λ(α : Typ). u | d τ a | match a with P → a

P ::= d τ x

v ::= d τ v | fix (x : τ) x . a

u ::= x | d τ u | fix (x : τ) x . a | u τ | Λ(α : κ). u

| let x = u in u | match u with P → u

Fig. 2. Syntax of ML

The generic lifting is not exposed as is to the user because it is not convenient to use directly.
Positional arguments are not practical, because one must reference the generic term to understand
the role of each argument. We can solve this problem by attaching the arguments to program
locations and exposing the correspondence in the user interface. For example, in the lifting of add
to append shown in the previous section, the location #2 corresponds to the argument p1.

3.4 Lifting and Ornament Specifications

A lifting definition comes with an optional ornament signature and ornamentation instructions
which are propagated during instantiation to choose appropriate ornaments of the types appearing
in the definition. This process will be described in ğ7.

During elaboration, liftings of auxiliary functions are chosen among the liftings already defined.
Sometimes, a lifting may be required at some type while none or several are available. In such
situations, lifting information must also be provided as additional rules. See the full version for
such examples. Some patches are ignored: either they do not contain any information or are in a
dead branch. In this case, the user need not provide them.

4 META ML

As explained above (ğ3), we elaborate programs into a larger meta-language mML that extends
ML with dependent types and separate meta-abstractions and meta-applications. We extend ML in
two steps: we first enrich the language with equality constraints in typing judgments, obtaining an
intermediate language eML. We then add meta-operations to obtain mML. Our design is carefully
crafted so that terms that have an mML typing containing only eML types can be meta-reduced to
eML (Theorem 5.5). Then, in an environment without equalities, they can be simplified intoML
terms (ğ5.3). For space reasons, we omit the definitions that are not essential for understanding the
elaboration. We refer the reader to Williams and Rémy [2017] for a complete presentation.

Notation. We write (Qi)
i ∈I for a tuple (Q1, ..Qn). We often omit the set I in which i ranges and

just write (Qi)
i , using different indices i , j, and k for ranging over different sets I , J , and K ; and

just Q if we do not have to explicitly mention the components; Q stands for (Q, ..Q) in syntax
definitions. We write Q[zi ← Qi]

i for the simultaneous substitution of zi by Qi in Q for all i in I .

4.1 ML

We consider an explicitly typed version of ML. In practice, the user writes programs with implicit
types that are elaborated into the explicit language, but we leave out type inference here for sake
of simplicity3. The programmer’s language is core ML with recursion and datatypes. Its syntax
is described in Figure 2, ignoring the gray which is not part of theML definition. To prepare for

3The issue of type inference is orthogonal, since the generic lifting is obtained from the typed term.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

21:12 Thomas Williams and Didier Rémy

Var
⊢ Γ x : σ ∈ Γ

Γ ⊢ x : σ

TAbs

Γ,α : Typ ⊢ u : σ

Γ ⊢ Λ(α : Typ). u : ∀(α : Typ) σ

TApp

Γ ⊢ τ : Typ Γ ⊢ a : ∀(α : Typ) σ

Γ ⊢ a τ : σ [α ← τ]

Fix

Γ,x : τ1 → τ2,y : τ1 ⊢ a : τ2

Γ ⊢ fix (x : τ1 → τ2) y. a : τ1 → τ2

App

Γ ⊢ b : τ1 Γ ⊢ a : τ1 → τ2

Γ ⊢ a b : τ2

Let-Mono

Γ ⊢ τ ′ : Typ Γ ⊢ a : τ ′ Γ,x : τ ′,x =τ ′ a ⊢ b : τ

Γ ⊢ let x = a in b : τ

Let-Poly

Γ ⊢ σ : Sch Γ ⊢ u : σ Γ,x : σ ,x =σ u ⊢ b : τ

Γ ⊢ let x = u in b : τ

Conv

Γ ⊢ τ1 ≃ τ2 Γ ⊢ a : τ1

Γ ⊢ a : τ2

Con

d : ∀(α j : Typ)
j (τi)

i → τ (Γ ⊢ τj : Typ)
j (Γ ⊢ ai : τi [α j ← τj]

j)i

Γ ⊢ d(τj)
j (ai)

i : τ [α j ← τj]
j

Match Γ ⊢ τ : Sch (di : ∀(αk : Typ)k (τi j)
j → ζ (αk)

k)i

Γ ⊢ a : ζ (τk)
k (Γ, (xi j : τi j [αk ← τk]

k)j ,a =ζ (τk)k di (τi j)
k (xi j)

j ⊢ bi : τ)
i

Γ ⊢ match a with (di (τik)
k (xi j)

j → bi)
i : τ

Fig. 3. Typing rules of ML (and eML in gray)

E ::= [] | E a | v E | d(v ,E, a) | Λ(α : Typ). E | E τ | match E with P → a | let x = E in a

(fix (x : τ) y. a) v −→β a[x ← fix (x : τ) y. a,y ← v]

(Λ(α : Typ). v) τ −→β v[α ← τ]

let x = v in a −→β a[x ← v]

match dj τj (vi)
i with (dj τj (x ji)i → aj)

j −→β aj [xi j ← vi]
i

Context-Beta

a −→β b

E[a] −→β E[b]

Fig. 4. Reduction rules of ML

extensions, we slightly depart from traditional presentations and introduce monotypes of kind
Typ as a restriction of type schemes of super kind Sch. Still, type schemes are not first-class, since
polymorphic type variables range only over monomorphic types, i.e. those of kind Typ.

We assume given a set of type constructors, written ζ . Each type constructor has a fixed signature
of the form (Typ, .. Typ) ⇒ Typ. We require that type expressions respect the kinds of type
constructors and type constructors are always fully applied.
The grammar of types is given on the left-hand side of Figure 2. Well formedness of types

and type schemes are asserted by judgments Γ ⊢ τ : Typ and Γ ⊢ τ : Sch, whose definitions are
omittedÐas well as the well-formedness of environments ⊢ Γ.

We assume given a set of data constructors. Each data constructor d comes with a type signature,
which is a closed type scheme of the form ∀(αi : Typ)i (τj)j → ζ (αi)

i . We assume that all datatypes
have at least one constructor. Pattern matching is restricted to complete, shallow patterns. Instead
of having special notation for recursive functions, functions are always defined recursively, using
the construction fix (f : τ1 → τ2) x . a.

The language is equipped with a weak (no reduction under binders), left-to-right, call-by-value
small-step reduction semantics. The evaluation contexts E and the reduction rules are given in
Figure 4. This reduction is written −→β .

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

A Principled Approach to Ornamentation in ML 21:13

Typing environments Γ contain term variables x : τ and type variables α : Typ. The typing rules
are standard and given in Figure 3. Typing judgments are of the form Γ ⊢ a : τ where Γ ⊢ τ : Sch.
Although we do not have references, we still have a form of value restriction: Rule Let-Poly restricts
polymorphic binding to non-expansive terms u, defined in Figure 2, that do not contain applicationÐ
and whose reduction always terminate. This will be important once we add equalities. Binding of
an expansive term is still allowed, but its typing is monomorphic (Rule Let-Mono).

4.2 Adding Term Equalities

The intermediate language eML extendsML with term equalities and type-level matches. Type-level
matches may be reduced using term equalities accumulated along pattern matching branches. The
syntax of eML terms is the same as that of ML terms, except for the syntax of types, which now
includes a pattern matching construct that matches on values, and returns types. We classify
type pattern matching in Sch to prevent it from appearing deep inside types. Typing contexts are
extended with type equalities, which are accumulated along pattern matching branches:

τ ::= . . . | match a with P → τ Γ ::= . . . | Γ,a =τ b

We revisit the rules Let-Mono, Let-Poly, and Match-eML of Figure 3, now reading the gray: a let
binding introduces an equality in the typing context witnessing that the new variable is equal to its
definition (rules Let-Mono and Let-Poly); similarly, both type-level and term-level pattern matching
introduce equalities witnessing the branch under selection (Match). Type-level pattern matching
is not introduced by syntax-directed typing rules. Instead, it is implicitly introduced through the
conversion rule Conv. It allows replacing one type with another in a typing judgment as long as
the types can be proved equal, as expressed by an equality judgment Γ ⊢ τ1 ≃ τ2.
Although the equality judgment plays a key role, its formal definition is technical and only

given in [Williams and Rémy 2017], as the rest of the presentation does not depend on it. It is
defined generically on terms, types, and kinds: even if equality of terms does not appear in typing
derivations, terms do appear in types. Equality assumptions between non-expansive terms are
injected into the equality. A controlled form of reduction is also allowed into the equality: type-level
and term-level pattern matching, let binding, and type abstraction and application can be reduced
to check for equality. This is enough to reduce all closed non-expansive terms to values.

4.3 Adding Meta-abstractions

The language mML is eML extended with meta-abstractions and meta-applications, with two goals
in mind: first, we need to abstract over all the elements that appear in a context so that they can be
passed to patches; second, we need a form of stratification so that a well-typed mML term whose
type and typing context are in eML can always be reduced to a term that can be typed in eML,
i.e. without any meta-operations. The program can still be read and understood as if eML and
mML reduction were interleaved, i.e. as if the encoding and decodings of ornaments were called at
runtime, but they happen at ornamentation time.
The syntax of mML is described in Figure 5. Terms are extended with meta-abstractions and

the corresponding meta-applications on types, equalities, and non-expansive terms, while types
are extended with meta-abstractions and meta-applications on types and non-expansive terms.
Both meta-abstractions and meta-applications are marked with ♯ to distinguish them from ML
abstractions and applications. Equalities are unnamed in environments, but we use the notation ⋄
to witness the presence of an equality in both abstractions and applications.

The restriction of meta-applications to the non-expansive subset of terms is to ensure that non-
expansive terms are closed under meta-reduction. It is important that a non-expansive term remains
non-expansive after substitution. Therefore, wemay only allow substitution by non-expansive terms.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

21:14 Thomas Williams and Didier Rémy

κ ::= . . . | Met | τ → κ | ∀(α : κ) κ

τ ,σ ::= . . . | ∀♯(α : κ). τ | Π(x : τ). τ | Π(⋄ : a =τ a). τ | Λ♯(α : κ). τ | τ ♯ τ | λ♯(x : τ). τ | τ ♯ a

a,b ::= . . . | λ♯(x : τ). a | a ♯u | Λ♯(α : κ). a | a ♯ τ | λ♯(⋄ : a =τ a). a | a ♯ ⋄

u ::= . . . | λ♯(x : τ). a | Λ♯(α : κ). a | λ♯(⋄ : a =τ a). a

(λ♯(x : τ). a) ♯u −→♯ a[x ← u]

(Λ♯(α : κ). a) ♯ τ −→♯ a[α ← τ]

(λ♯(⋄ : b1 =τ b2). a) ♯ ⋄ −→♯ a

(λ♯(x : τ ′). τ) ♯ u −→♯ τ [x ← u]

(Λ♯(α : κ). τ) ♯ τ ′ −→♯ τ [α ← τ ′]

Context-Meta

a −→♯ b

C[a] −→♯ C[b]

TAbs-Meta

Γ,α : κ ⊢ a : τ

Γ ⊢ Λ♯(α : κ). a : ∀♯(α : κ). τ

TApp-Meta

Γ ⊢ a : ∀♯(α : κ). τ1 Γ ⊢ τ2 : κ

Γ ⊢ a ♯ τ2 : τ1[α ← τ2]

Abs-Meta

Γ ⊢ τ1 : Met Γ,x : τ1 ⊢ a : τ2

Γ ⊢ λ♯(x : τ1). a : Π(x : τ1). τ2

App-Meta

Γ ⊢ a : Π(x : τ1). τ2
Γ ⊢ u : τ1

Γ ⊢ a ♯u : τ2[x ← u]

EApp

Γ ⊢ a1 ≃ a2
Γ ⊢ b : Π(⋄ : a1 =τ ′ a2). τ

Γ ⊢ b ♯ ⋄ : τ

EAbs Γ ⊢ τ : Sch Γ ⊢ a1 : τ
Γ ⊢ a2 : τ Γ, (a1 =τ a2) ⊢ b : τ ′

Γ ⊢ λ♯(⋄ : a1 =τ a2). b : Π(⋄ : a1 =τ a2). τ
′

Fig. 5. Syntax, reduction and typing of mML

In particular, arguments of redexes in Figure 5 must be non-expansive. To ensure that meta-redexes
can still always be reduced before other redexes, arguments of meta-applications are syntactically
restricted to non-expansive terms. We add meta-abstractions, but not meta-applications, to the
class of non-expansive terms u. The meta-reduction, written −→♯ , is defined in Figure 5. It is a
strong reduction, allowed under arbitrary contexts C .

The new typing rules ofmML are also given in Figure 5. Meta-abstractions are dependently typed:
the value of the argument can be used in the type of the result. The types ∀♯(α : κ). τ , Π(x : τ). τ ,
and Π(⋄ : a =τ a). τ are classified in a superkindMet of Sch. This prevents them from appearing
anywhere but at the toplevel of a Met-kinded type, which is essential for ensuring that eML-typed
mML expressions can be reduced to eML. Type abstractions Λ♯(α : κ). τ and type applications
τ ♯ τ are classified using dependent function kinds ∀(α : κ) κ. Term abstractions λ♯(x : τ). τ and
applications in types τ ♯ a are classified using term-to-type kind functions τ → κ.

5 THE METATHEORY OF MML

In this section we present the main results on the metatheory of mML that we later use to prove
the correctness of the encoding of ornaments. More results and detailed proofs can be found in
Williams and Rémy [2017].

We write −→ for the union of −→β , and −→♯ , and −→
∗ for its transitive closure. We also write

−→0 for −→without reduction of ML applications and −→∗0 for its transitive closure. This reduction
terminates on well-typed terms. Thanks to the careful design of meta-reduction and the grammar
of non-expansive terms, any combination of the reduction relations −→0, −→β , −→♯ is confluent.
Below we show that meta-reduction can always be performed firstÐhence at ornamentation time.

5.1 Type Soundness

Using a reducibility argument, we prove the following result:

Theorem 5.1 (Normalization for meta-reduction). The reduction−→♯ is strongly normalizing.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

A Principled Approach to Ornamentation in ML 21:15

G[∅] = {∅}

G[Γ,x : τ] = {γ [x ← (u1,u2)] | (u1,u2) ∈ E[τ]γ ∧ γ ∈ G[Γ]}

G[Γ,α : κ] = {γ [α ← (τ1,R,τ2)] | (τ1,R,τ2) ∈ K[κ]γ1,γ2 ∧ γ ∈ G[Γ]}

G[Γ, (a1 =τ a2)] = {γ ∈ G[Γ] | (⊢ γ1(a1) ≃ γ1(a2)) ∧ (⊢ γ2(a1) ≃ γ2(a2))}

E[τ]γ = {(a1,a2) | ∀v2, (a2 −→
∗ v2) =⇒ ∃v1, (a1 −→

∗ v1) ∧ (v1,v2) ∈ V[τ]γ }

V[α]γ = γ (α)

V[τ1 → τ2]γ = {(v1,v2) | (vi = fix (y : τ ′) x . ai)
i

∧ ∀(v ′1,v
′
2) ∈ V[τ1]γ ,

(
a′i [y ← vi ,x ← v ′i]

) i
∈ E[τ2]γ }

V[ζ (τi)
i]γ = {(d(vj)

j ,d(w j)
j) | (d : ∀(αi : Typ)i (τj)j → ζ (αi)

i)

∧ ∀ (j) (vj ,w j) ∈ V[τj [αi ← τi]
i]γ }

V

[
match a with
(di (xi j)

j → τi)
i

]

γ

=

{
V[τj]γ [xi j←(vj ,v ′j)]j if γ1(a) −→∗0 di (vj)

j ∧ γ2(a) −→
∗
0 di (v

′
j)
j

∅ otherwise

Fig. 6. Definition of the logical relation (excerpt)

We have the usual subject reduction and progress properties. We only state them for the reduction
of terms (while they are actually recursively defined with the reduction of types and kinds).

Lemma 5.2 (Subject reduction). If Γ ⊢ a : τ in mML and a −→ a′, then Γ ⊢ a′ : τ in mML.

We have a progress property for −→♯ alone and for eML terms:

Theorem 5.3 (Soundness for eML). Well-typed closed eML terms are values or reduce.

Theorem 5.4 (Reduction of mML terms). Consider an mML typing judgment Γ ⊢ a : τ where Γ

is an eML typing environment and τ an eML type. Then, a has a meta-normal form a′ which, moreover,

is an eML term.

Moreover, the resulting eML term has an eML typing derivation:

Theorem 5.5 (mML does not type new eML terms). If the judgment Γ ⊢ a : τ is provable in

mML, and Γ, a, and τ are eML environment, term, and type, then it also has an eML derivation.

This is a key for the elimination of meta-abstractions and meta-applications after instantiation
of generic liftings.

5.2 A Step-indexed Logical Relation on mML

To give a semantics to ornaments and establish the correctness of elaboration, we define a step-
indexed logical relation on mML. We later give a definition of ornamentation using the logical
relation. Instead of defining a relation compatible with the strong and non-deterministic reduction
on mML, we define a deterministic reduction 7→ that interleaves the ordinary and meta-reductions
while still guaranteeing reduction of closed terms to values. We prove that terms normalize for
7→ if and only if they normalize for −→. We also define an analogue 7→0 of −→0. However, in this
simplified presentation, we keep the full reduction −→, and ignore the details of the step-indexing4

An excerpt of the definition is given in Figure 6. We again refer the reader to Williams and Rémy
[2017] for the exact definition and technical details.
The logical relation gives an interpretation of types. It depends on an environment γ that

associates type variables to triples composed of two types and a relation between them (for
parametric polymorphism), and term variables to pairs of related terms (for dependent types).

4Step-indexing is needed to cope with type definitions with recursive occurrences in negative positions.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

21:16 Thomas Williams and Didier Rémy

Typing environments G[Γ] are interpreted as sets of environments. Equalities are interpreted as
restricting environments to those where two closed terms are equal for the equality of mML in
the empty context. Kinds K[κ]γ1,γ2 are interpreted as sets of relations for kinds of types, and as
functions for higher order kinds (this interpretation is given in the long version). Types τ are
interpreted in an environment γ as a relation on terms E[τ]γ . This interpretation is done through
a relation on values, writtenV[τ]γ : two terms a1,a2 are related if they evaluate to related values
v1,v2, or if a2 does not terminate. Notice the asymmetry of E[τ]γ , which allows the right-hand-side
term to diverge while the left-hand-side term converges. This allows comparing programs for
termination. To relate only programs that converge exactly as often, we may instead consider the
intersection of E[τ]γ with its symmetric relation E[τ]−1γ .
The interpretation of function types τ1 → τ2 is standard: two functions (v1,v2) are related if,

for a pair of arguments (w1,w2) related at type τ1, the terms (v1 w1,v2 w2) are related at type τ2.
Similarly, two terms (a1,a2) of a given datatype are related if they evaluate to terms starting with the
same constructor, and the fields of the constructor are related at their respective types. Type-level
pattern matching is interpreted by evaluating the argument in the environment to determine the
correct branch, and then evaluating the type in the branch in an environment extended with the
variables bound by the pattern. We use the reduction −→0 because reduction of applications is
forbidden in equalities, and because −→0 terminates. The interpretations of the other type-level
computations (not included in this version) are defined so as to be compatible with type-level
evaluation: type-level abstraction is interpreted as a function from interpretations to interpretations
and type-level application as application of the interpretation of the function to the interpretation
of the argument.
The logical relation has the expected properties:

Theorem 5.6 (Fundamental lemma). If Γ ⊢ a : τ and γ ∈ G[Γ], then (γ1(a),γ2(a)) ∈ E[τ]γ .

Theorem 5.7 (Eqality). If Γ ⊢ a ≃ a′, Γ ⊢ b ≃ b ′, and γ ∈ G[Γ], then (γ1(a),γ2(b)) ∈ E[τ]γ if

and only if (γ1(a
′),γ2(b

′)) ∈ E[τ]γ .

5.3 Simplification from eML to ML

The terms obtained from meta-reducing a meta-closed mML term are usually not typeable in ML,
as the types appearing in them may contain type-level pattern matching and the typing derivation
may use equalities. However, we are able to transform eML terms typeable in an environment
without equalities into programs typeable inML.

The transformation proceeds in two steps. In a first step, we ensure that all the equalities that are
used are of the form x = d(yi)

i . For simplicity, we start by reducing all let-bindings of non-expansive
terms. Since equalities on expansive terms cannot be used for substitution, we only have to consider
equalities introduced by pattern matching on non-expansive terms. The only non-expansive terms
that can appear in a well-typed pattern matching are variables, type constructors, and pattern
matching (since let bindings have been reduced). Pattern matching on a type constructor reduces.
For the case of nested pattern matching, we extrude the inner pattern matchings by repeatedly
applying the following transformation:

(
match (match u with (dk σ (xk j)j → ak)

k)

with (di τ (xi j)j → bi)
i

)
7−→

(
match u with (dk σ (xk j)j →
(match ak with (di τ (xi j)j → bi)

i)k

)

In a second step, we get rid of all the implicit uses of equalities in conversions. All equalities between
non-expansive terms are of the form x = d(yi)

i and introduced in the branch of a pattern matching.
Then, in this branch, we can replace y by d(yi)i . If a substitution occurs in the argument of a pattern

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

A Principled Approach to Ornamentation in ML 21:17

matching, we reduce the pattern matching. Formally, we apply the following transformation:
(
match x with (dk σ (xk j)

j → ak)
k
)
7−→

(
match x with (dk σ (xk j)

j → ak [x ← dk σ (xk j)
j])k

)

Thus, all uses of these equalities in conversions become uses of reflexivity, and conversions are
provable in a context without equalities. Then, the conversions are not necessary:

Lemma 5.8 (ML conversions are trivial). If Γ ⊢ τ1 ≃ τ2 in eML where Γ is equality-free and τ1
and τ2 are ML types, then τ1 = τ2.

The transformations we apply preserve the equality judgment of eML, thus the eML term and
the ML term obtained after the transformation are equivalent for the logical relation:

Theorem 5.9 (Match elimination). If Γ ⊢ a : τ in eML where Γ is an ML environment and τ is

an ML type, then there exists an ML term a′ such that Γ ⊢ a ≃ a′ and Γ ⊢ a′ : τ .

6 ENCODING ORNAMENTS

We now consider how ornaments are described and represented inside the system. This section
bridges the gap between mML, a language for meta-programming that does not have any notion of
ornament, and the interface presented to the user for ornamentation. We define both the datatype
ornaments and the higher-order functional ornaments that can be built from them.
As a running example, we reuse the ornament natlist α from natural numbers to lists:

type ornament natlist α : nat→ list α with Z→ Nil | S w → Cons (_,w) when w : natlist α

The ornament natlist α defines, for all types α , a relation between values of its base type nat, which
we write (natlist α)−, and its lifted type listα , written (natlist α)+: the first clause says that Z is
related to Nil; the second clause says that ifw− is related tow+, then S w− is related to Cons (v,w+)
for any valuev . As a notation shortcut, the variablesw− andw+ are identified in the definition above.

A higher-order ornament natlist α → natlist α relates two functions f− of type nat→ nat and
f+ of type list τ → list τ when for related inputsv− andv+, the outputs f− v− and f+ v+ are related.

6.1 Ornamentation as a Logical Relation

We formalize this idea by defining a family of ornament types corresponding to the ornamentation
definitions given by the user and giving them an interpretation in the logical relation. Then, we
say that one term is a lifting of another if they are related at the desired ornament type.

The syntax of ornament types, given on Figure 7, mirrors the syntax of types. An ornament type,
written ω, may be an ornament variable φ, a datatype ornament χ ω, a higher-order ornament
ω1 → ω2, or an identity ornament ζ (ω)i , which is automatically defined for any datatype of the
same name (ωi indicates how the i-th type argument of the datatype is ornamented). An ornament
type ω is interpreted as a relation between terms of type ω− and ω+. The projection operation,
defined on Figure 7, depends on the projections of the datatype ornaments: they are given by the
global judgment χ α : τ ⇒ τ . For example, the ornament list (natlist nat) describes the relation
between lists whose elements have been ornamented using the ornament natlist nat. Thus, its
projections are (list (natlist nat))− equal to list nat and (list (natlist nat))+ equal to list (list nat).

Interestingly, our tentative interpretation of a functional ornament typeω1 → ω2 as a pair of func-
tions (f1, f2) taking related arguments (v1,v2) at ornament type ω1 to related results (f1 v1, f2 v2)
at ornament type ω2 corresponds exactly to the interpretation of function types in the logical
relation, with types replaced by ornament types. Likewise, interpretation of the identity ornament
ζ (ωi)

i is similar to the interpretation of the datatype ζ (τi)i , with the type parameters replaced by

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

21:18 Thomas Williams and Didier Rémy

χ ::= natlist | . . .

ω ::= φ | χ (ω)i | ζ (ω)i | ω → ω

αϵ = α

(ω1 → ω2)
ϵ
= ωϵ

1 → ωϵ
2

(ζ (ωi)
i)ϵ = ζ (ωϵ

i)
i

(χ (αi)
i : τ ⇒ σ)

(χ (ωi)
i)− = τ [αi ← ω−i]

i

(χ (ωi)
i)+ = σ[αi ← ω+i]

i

(αi)
i ⊢ αi

(αi)
i ⊢ ω1 (αi)

i ⊢ ω2

(αi)
i ⊢ ω1 → ω2

ζ : (Typ)j → Typ ((αi)
i ⊢ ωj)

j

(αi)
i ⊢ ζ (ωj)

j

χ (α j)
j : . . .⇒ . . .

((αi)
i ⊢ ωj)

j

(αi)
i ⊢ χ (ωj)

j

Fig. 7. Ornament types

ornaments. Thus, we identify the interpretations of function types and functional ornaments, and
the interpretation of datatype with the interpretation of the identity ornament of this datatype.
From the point of view of the logical relation, ornament types are a mere extension of the syntax of
types with non-identity datatype ornaments. An immediate consequence is that a well-typed term
is in an ornamentation relation with itself at its type, seen as an ornament type (i.e. as the identity
ornament corresponding to its type). These properties are keys to the lifting correctness proof.

6.2 Defining Datatype Ornaments

A datatype ζ (αi)i is defined by a family of constructors (dk)k taking arguments of types (τk j)j :

(dk : ∀(αi : Typ)
i (τk j)

j → ζ (αi)
i)k

where the type ζ may occur recursively (possibly with some other types). We define the skeleton
by abstracting out the concrete types from the constructors and replacing them by type parameters:
the skeleton of ζ , written ζ̂ , is parametrized by types (αk j)k j and has constructors:

(d̂ℓ : ∀(αk j : Typ)
k j (αℓj)

j → ζ̂ (αk j)
k j)ℓ

Let us write Aζ (τi)
i for (τk j [αi ← τi]

i)k j , i.e. the function that expands arguments of the datatype

into arguments of its skeleton. The types ζ (τi)i and ζ̂ (Aζ (τi)
i) are isomorphic by construction.

Similarly to nat_skel in the overview, the skeleton allows us to incrementally ornament any subpart
of a datatype before ornamenting the whole datatype (or, in the case of natlist , the recursive part).
Ornament definitions associate a pattern in one datatype to a pattern in another datatype.

We allow deep pattern matching: the patterns are not limited to matching on only one level of
constructors, but can be nested. Additionally, we allow wildcard patterns _ that match anything,
alternative patterns P | Q that match either P or Q , and the null pattern ∅ that matches nothing.
We write deep pattern matching the same as shallow pattern matching, with the understanding
that it is implicitly desugared to shallow pattern matching.

In general, an ornament definition is a mutually recursive group of definitions, each of the form:

type ornament χ (α j)
j : ζ (τk)

k ⇒ σ with (Pi ⇒ Qi when (xiℓ : ωiℓ)
ℓ)i

with χ the name of the datatype ornament, ζ (τk)k the base type, and σ the lifted type. The base
and ornamented types must be such that ζ is a type constructor of arity k , ((α j : Typ)j ⊢ τk : Typ)k

and (α j : Typ)j ⊢ σ : Typ. Then, we can add χ (α j)
j : ζ (τk)k ⇒ σ to the set of available ornaments.

The ornaments of a recursive definition can be used in the body of this definition.
For each clause i of the ornament, the patterns Pi andQi must each bind the same variables (xiℓ)ℓ ,

and the (ωiℓ)
ℓ must be well-formed ornament types. In the user-facing syntax, we do not require an

ornament signature for every variable: an identity ornament is inferred for the missing signatures.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

A Principled Approach to Ornamentation in ML 21:19

The patterns (Pi)i must be well-typed and form a partition of ζ (τk)k , assuming (xi j : ω−i j)
j . Moreover,

they must consist only of variables and data constructors (they do not contain alternative patterns,
wildcards, and the empty pattern, thus they are also expressions). The patterns (Qi)

i must form a
well-typed partition of σ assuming (xi j : ω+i j)

j .
To be able to convert the ornament definitions to encoding and decoding functions, we introduce

the skeleton patterns (P̂i)
i obtained from (Pi)i by replacing the head constructor d (of ζ) by d̂ . If

a pattern Pi does not have a head constructor, the ornament definition is invalid. Assuming the
pattern variables have types (xiℓ : βiℓ)ℓ , the family of patterns (P̂ i)i must form an exhaustive
partition of some instance ζ̂ (τ̂m)m of the skeleton.
We define the meaning of a user-provided ornament by adding its interpretation to the logical

relation on mML. The interpretation is the union of the relations defined by each clause of the
ornament. For each clause, the values of the variables must be related at the appropriate type, and
the wildcards on the right-hand side can be replaced by any value of the correct type. As a notation
shortcut, we insert patterns into the relation instead of the set of values matched by this pattern.
Then, the interpretation is:

V[χ (ωj)
j]γ =

⋃

i

{
(Pi [xiℓ ← vℓ−]

ℓ,Qi [xiℓ ← vℓ+]
ℓ)

�� ∀ℓ, (vℓ−,vℓ+) ∈ V[ωiℓ[α j ← ωj]
j]γ

}

For example, on natlist , we get the following definition (omitting the typing conditions):

V[natlistτ]γ = {(Z,Nil)} ∪
{
(S(v−), Cons(_,v+) | (v−,v+) ∈ V[natlistτ]γ

}

6.3 Encoding Ornaments in mML

We now describe the encoding of datatype ornaments in mML. We leave the type variables (α j)j

free, so that they can be later instantiated. We write τ̂+ for the type ζ̂ (τ̂m[βiℓ ← (ωiℓ)
+]iℓ)m of the

skeleton where the recursive parts and the type parameters have already been lifted. The ornament
is encoded as a quadruple (σ ,δ , proj, inj) where σ : Typ is the lifted type; δ is the extension, a
type-level function describing the information that needs to be added; and proj and inj are the
projection and injection functions introduced in ğ3. More precisely, the projection function proj
from the lifted type to the skeleton has type Π(x : σ). τ̂+ and, conversely, the injection inj has type
Π(x : τ̂+). Π(y : δ ♯ x). σ , where the argument y is the additional information necessary to build a
value of the lifted type. The type of y is given by the extension type function δ of kind τ̂+ → Typ,
which takes the skeleton and gives the type of the missing information. This dependence allows
us to add different pieces of information for different shapes of the skeleton, e.g. in the case of
natlist α , we need no additional information when the skeleton is Ẑ, but a value of type α when
the skeleton starts with Ŝ, as explained at the end of ğ3.1. The encoding works incrementally: all
functions manipulate the type τ̂+, with all subterms already ornamented.
The projection projχ (ωj)j

from the lifted type to the skeleton is given by reading the clauses of
the ornament definition from right to left:

projχ (ωj)j
: σ → τ̂+

△
= λ♯(x : σχ (ωj)j).match x with (Qi → P̂ i)

i

The extension δχ (ωj)j is determined by computing, for each clause Pi → Qi , the type of the infor-
mation missing to reconstruct a value. There are many possible representations of this information.
The representation we use is given by the function JQiK mapping a pattern to a type, defined below5.
There is no missing information in the case of variables, since they correspond to variables on
the left-hand side. In the case of constructors, we expect the missing information corresponding

5Formally, we translate pattern typing derivations instead of patterns

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

21:20 Thomas Williams and Didier Rémy

to each subpattern, given as a tuple. For wildcards, we expect a value of the type matched by the
wildcard. Finally, for an alternative pattern, we require to choose between the two sides of the
alternative and give the corresponding information, representing this as a sum type τ1 + τ2.

J(_ : τ)K = τ

JxK = unit
JP | QK = JPK + JQK

Jd(P1, .. Pn)K = JP1K × .. JPnK

Then, the extension δχ (ωj)j matches on the (P̂ i)i to determine which clause of the ornament
definition can handle the given skeleton, and returns the corresponding extension type:

δχ (ωj)j : Π(x : σ). τ̂+
△
= λ♯(x : τ̂+).matchx with (P̂ i→JQiK)

i

The code reconstructing the ornamented value is given by the function Lift(Qi ,y) defined below,
assuming that the variables ofQi are bound and thaty of type JQiK contains the missing information:

Lift(_,y) = y

Lift(x ,y) = x

Lift(P | Q,y) = match y with inl y1 → Lift(P ,y1) | inr y2 → Lift(Q,y2)
Lift(d(Pi)i ,y) = match y with (yi)i → d(Lift(Pi ,yi))i

The injection injχ (ωj)j
then examines the skeleton to determine which clause of the ornament to

apply, and calls the corresponding reconstruction code (writing just δ for δχ (ωj)j):

injχ (ωj)j
: Π(x : τ̂+). Π(y : δ ♯ x). σ

△
= λ♯(x : τ̂+). λ

♯(y : δ ♯ x).match x with (P̂ i → Lift(Qi ,y))
i

In the case of natlist , we recover the definitions given in ğ3.3, with a slightly more complex (but
isomorphic) encoding of the extra information:

σnatlist τ = list τ
δnatlist τ = λ♯(x : n̂at(list τ)).match x with Ẑ→ unit | Ŝ x → τ × unit

projnatlist τ = λ♯(x : list τ).match x with Nil→ Ẑ | Cons (y, _) → Ŝ y
injnatlist τ = λ♯(x : n̂at(list τ)). λ♯(y : δnatlist τ ♯ x).

match y with Ẑ→ (match y with () → Nil)
| Ŝ x ′→ (match y with (y ′, ()) → Cons (y ′,x ′))

The identity ornament corresponding to a datatype ζ defined as (di : ∀(α j : Typ)j (τik)k →
ζ (α j)

j)i is automatically generated and is described by the following code (since we do not add
any information, the extension is isomorphic to unit):

type ornament ζ (α j)j : ζ (α j)j → ζ (α j)
j with (di (xk)k → di (xk)

k when (xk : τik)k)i

6.4 Correctness of the Encoding

We must ensure that the terms defined in the previous section do correspond to the ornament
as interpreted by the logical relation, as this is used to prove the correctness of the lifting. More
precisely, we rely on the fact that the functions describing the ornamentation from the base type τ−
to the ornamented type σχ (ωj)j are related to the functions defining the identity ornament of τ−. Let

us consider the relation on skeletons described by the ornament type ω̂ = ζ̂ (ω̂m)
m
= ζ̂ (τm[βiℓ ←

ωiℓ]
iℓ)m . This is the relation between a skeleton of the base type and a skeleton where the necessary

subparts have been ornamented. Then, the projection function maps values related by the ornament
to skeletons related by ω̂, and the injection maps related skeletons and any pair of patches to related
values.

The relation on the skeleton is also important for lifting: it describes how we must lift the fields
of a constructor of the base type. In the case of natlist α , ω̂ is equal to n̂at (natlist α): the field in Ŝ
must have already been ornamented with natlist α before we apply the injection.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

A Principled Approach to Ornamentation in ML 21:21

The processed definitions are considered global and written χ (α j)
j 7→ (δ , proj, inj)� ζ̂ (ω̂m)

m :
ζ (τi)

i ⇒ σ . We require that all processed definitions are valid:

Definition 6.1 (Valid ornament definition). We say that χ (α j)
j 7→ (δ , proj, inj) � ζ̂ (ω̂m)

m :
ζ (τi)

i ⇒ σ is a valid ornament definition for χ if:

• the ornamentation functions have the correct types defined above;
• (ω̂−m)

m
= Aζ (τi)

i , which implies that the left projection of the skeleton is isomorphic to the
base type;
• for all γ ∈ G[(α j : Typ)j],V[χ (α j)j]γ is a relation between ζ (γ1(τi))

i and γ2(σ) and:

–
(
γ1(projζ (τi)i),γ2(proj)

)
∈ V[Π(x : χ (α j)j). ζ̂ (ωm)

m]γ ;

–
(
γ1(injζ (τi)i),γ2(inj)

)
∈ V[Π(x : ζ̂ (ωm)

m)). Π(y : δ ♯ x). χ (α j)j]γ [δ←λ_. Top]

The ornaments defined in this section are valid. Together, these properties allow us to take a
term that uses the encoding of a yet-unspecified ornament φ and relate the terms obtained by
instantiating it with the identity on the one hand and with another ornament on the other hand,
using the ornament’s relation. We use this technique to prove the correctness of the elaboration.

7 ORNAMENTING TERMS

We now consider the problem of ornamenting terms. The ornamentation is done in two main steps:
first the base term is elaborated to a generic term, which is then specialized using specific ornaments
to generateML code. The lifted code cannot be polymorphic in ornaments. To avoid the problem
of considering parametric ornaments (ornaments depending on a type, but not in a computation-
relevant way), we restrict ourselves to an input language with only top-level polymorphism. We
also require that pattern matching be shallow, and the arguments of constructors be variables. The
latter restriction can be met by compiling down deep pattern matching and explicitly binding the
arguments of constructors to variables before passing these variables to constructors.
For the restriction to toplevel polymorphism, we need to make a distinction between (general-

izable) toplevel bindings and monomorphic local bindings. The environment Γ can then be split
into G, (αi : Typ)i ,∆ where G is an environment of polymorphic variable bindings, (αi : Typ)i the
list of type variables parametrizing the current binding, and ∆ a local environment binding only
monomorphic variables. Additionally, we require that polymorphic variables are immediately in-
stantiated when used in a term. This does not restrict the expressivity of the language: polymorphic
local bindings can be duplicated (see ğ8.2 for a discussion of this point).
To save notation, we just write α instead of α : Typ in typing contexts or polymorphic types,

assuming that type variables have the Typ kind by default.
We now explain the ornamentation of awhole program,which is a sequence of toplevel definitions.

For simplicity, we assume that type definitions and ornament definitions come first and are used to
build the global environment of ornament definitions hereafter treated as a constant, followed by
expression definitions, and last, by lifting definitions. Therefore, we may perform all elaborations
first, followed by all specializations as requested by lifting definitions.

7.1 Elaborating to a Generic Program

Each toplevel definition łlet x = Λα . až is elaborated in order of appearance, using the main
elaboration judgment of the form Γ ⊢ a ; A : ω (described in Figure 10). The elaboration
environment Γ is actually of the form G,α , S,R,∆, as described in Figure 8. The local environment
∆ is initially empty, as shown in Rule Elab-Decl (Figure 11) and used to bind variables appearing in

a to ornament types, as well as equalities (a =τ a)♯ that may be needed to type the ornamented

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

21:22 Thomas Williams and Didier Rémy

Γ ::= G, α , S,R,∆

G ::= ∅ | G,x ⟨α , S,R⟩ : ω = a ; A

∆ ::= ∅ | ∆,x : ω | ∆, (a =τ a)♯

s ::= ∅ | φ 7→ φ

S ::= ∅ | S,φ 7→ (δ , proj, inj)� ζ̂ ω : ζ τ ⇒ α

R ::= ∅ | R,y :♯ Γ → δφ A | R, (x[ω, s]; y : ω)

Fig. 8. Environments

αϵ
S
= α

(ω1 → ω2)
ϵ
S
= (ω1)

ϵ
S
→ (ω2)

ϵ
S

(φ 7→ _ � _ : τ ⇒ σ) ∈ S

φ−S = τ φ+S = σ

(R,x :♯ σ)+S = R+S ,x : σ
(R,x[_, _]; y : ω)+S = R+S ,y : ω+S

(∆,x : ω)ϵ
S
= ∆

ϵ
S
,x : ωϵ

S

(∆, (a =τ b)
♯)−S = ∆

−
S

(∆, (a =τ b)
♯)+S = ∆

+

S , (a =τ b)

(G,α , S,R,∆)− = G−,α ,∆−S
(G,α , S,R,∆)+ = α , S+,R+S ,∆

+

S

(G,x ⟨α , S, _⟩ : ω = _ ; _)− = G−,x : ∀α ω−S

Fig. 9. Environment projections

E-VarLocal

x : ω ∈ Γ

Γ ⊢ x ; x : ω

E-VarGlobal

(x ⟨α , S ′,R⟩ : ω) ∈ Γ Γ ⊢ s : S ′[α ← ω]

(ω)−S = τ (x[ω , s]; y : ω[α ← ω][s]) ∈ Γ

Γ ⊢ x τ ; y : ω[α ← ω][s]

E-Let

Γ ⊢ a ; A : ω0 Γ,x : ω0 ⊢ b ; B : ω

Γ ⊢ let x = a in b ; let x = A in B : ω

E-App

Γ ⊢ a ; A : ω1 → ω2 Γ ⊢ b ; B : ω1

Γ ⊢ a b ; A B : ω2

E-Fix

Γ,x : ω1 → ω2,y : ω1 ⊢ a ; A : ω2 τ1 → τ2 = (ω1 → ω2)
−
Γ

σ1 → σ2 = (ω1 → ω2)
+

Γ

Γ ⊢ fix (x : τ1→τ2) y. a ; fix (x : σ1→σ2) y. A : ω1→ω2

E-Con

(φ 7→ (δ , inj, proj)� ζ̂ (ωi)
i : ζ (τℓ)

ℓ ⇒ _) ∈ Γ d̂ : ∀(αi)
i (ωj)

j → ζ̂ (αi)
i

((x j : ωj [αi ← ωi]
i) ∈ Γ)j Γ = _, _, _, _,∆ (p :♯ ∆+S→ δ ♯ d̂((ωi)

+

S)
i (x j)

j) ∈ Γ

Γ ⊢ d(τℓ)
ℓ(x j)

j
; let y = p ♯ ∆+S in inj ♯ d̂((ωi)

+

S)
i (x j)

j ♯y : φ

E-Match

(φ 7→ (δ , inj, proj)� ζ̂ (ωi)
i : ζ (τℓ)

ℓ ⇒ _) ∈ Γ (d̂k : ∀(αi)
i (τk j)

j → ζ̂ (αi)
i)k

x : φ ∈ Γ (Γ, (yk j : τk j [(αi ← ωi)
i])j , proj ♯ x =

ζ̂ ((ωi)+S)
i
dk ((ωi)

+

S)
i (yk j)

j ⊢ ak ; Ak : ω)k

Γ ⊢ match x with (dk (τℓ)
ℓ(yk j)

j → ak)
k

; match proj ♯ x with (d̂k ((ωi)
+

S)
i (yk j)

j → Ak)
k : ω

Fig. 10. Elaboration to a generalized term

Elab-Decl

G,α , S,R ⊢ a ; A : ω

G ⊢ let x = Λα . a ⇒ G, (x ⟨α , S,R⟩ : ω = a ; A)

Fig. 11. Elaborating a declaration

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

A Principled Approach to Ornamentation in ML 21:23

side. We use capital letter A for elaborated terms to help distinguish them from base terms; ω is
the ornament relating a and A. S and R are explained below. The result of the elaboration of the
definition is then folded into the global environment G as a sequence of declarations of the form
x ⟨α , S,R⟩ : ω = a ; A (rule Elab-Decl in Figure 11). The contexts S and R are new and used to
describe abstract ornaments and patches, respectively.

The generic termA is usually more polymorphic than a, since we abstract over ornaments where
we originally had a fixed type. It is thus parametrized by a number of ornaments, described by the
ornament specification environment S which is a set of mutually recursive bindings, each of the
form φ 7→ (δ , proj, inj)� ζ̂ (ωk)

k : ζ (τi)i ⇒ β . This binds an ornament variable φ that can only be
instantiated by a valid ornament (see Definition 6.1) of base type ζ (τi)i with skeleton ζ̂ (ωk)

k ; it
also binds the target type β and the ornament type extension, projection, and injection functions
to the variables δ , proj, and inj, respecting the types of valid ornaments.
An ornament type ω is well-formed in an environment S with free type variables α , written

G,α , S ⊢ ω orn, if it contains only function arrows, type variables from α , and ornament variables
bound in S .
A generic term also abstracts over patches and the liftings used to lift references to previously

elaborated bindings. Since these bindings do not influence the final ornament type and are not
mutually recursive, they are stored in a separate patch environment R. Together, S and R specify all
the parts that have to be user-provided at specialization time (see ğ7.2).
When encountering a variable x corresponding to a global definition (Rule E-VarGlobal in

Figure 10), we look up the signature of the elaboration of this definition (x ⟨α , S ′,R⟩ : ω) ∈ G. We
choose an instantiation ω of the type parameters α by ornament types, an instantiation s ′ of the
ornament variables in S ′ with ornament variables of S (checked by the judgment Γ ⊢ s : S ′[α ← ω],
defined in the long version), and request a value y corresponding to an instantiation of the function
with the chosen type and ornament parameters. We record this instantiation in the environment R
in the form (x[ω , s]; y : ω[α ← ω][s]) ∈ Γ.
The environment R also contains patches, i.e. mML terms of the appropriate type, written in R

as y :♯ σ . Well-formedness rules require that the type σ corresponds to meta-functions of multiple
arguments returning a value of type δ ♯A where δ is the extension function of some ornament in S .

The elaboration judgment Γ ⊢ a ; A : ω also contains the superposition of two typing judgments
for the base term a and lifted termA, as stated in Lemma 7.1. We use helper left and right projections
to extract environments and types related to the base and lifted terms, respectively. These are
defined in Figure 9. Most rules are unsurprising, once noticed that the projections of an ornament
ω require an ornament specification S in order to project ornament variables. For convenience,
we may also use the superset Γ instead of S in the projection. The right-hand side projection of
ornament specifications is the ordered concatenation of two environments:

S+ =
{
β | (φ 7→ _ � _ : _⇒ β) ∈ S

}
,{

δ : ω̂+S → Typ, proj : Π(x : β). ω̂+S , inj : Π(x : ω̂+S). Π(y : δ ♯ x). β
| (φ 7→ (δ , proj, inj)� ω̂ : _⇒ β) ∈ S

}

We use set notation for each environment as the internal order does not matter, but the respective
order of the two sets does: the former binds the target types β of ornaments, while the latter binds
functions defining these ornaments. The order matters because, while S is recursively defined, the
environment S+ is not. In the second part, we flatten the bindings δ , proj, inj whose types depend
on the sequence of variables introduced first and make the typing constraints carried by S explicit.

Well-formedness judgments have been omitted by lack of spaceÐsee Williams and Rémy [2017]
for details.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

21:24 Thomas Williams and Didier Rémy

The main elaboration judgment Γ ⊢ a ; A : ω, described in Figure 10, follows the structure of
the original term. When used for type inference, we need to expand Γ as G,α , S,R,∆ to see the
flow of information: G, α , and ∆ are inputs, while S and R are outputs, and added to on demand.
The term a is an input while A and ω are outputs. Applications, abstractions, let-bindings, and
local variables are translated to themselves. We have already explained the elaboration of global
variables.

Pattern matching and construction of datatypes are the key rules. Reading Rule E-Match intu-
itively, x is typed first, which determines the datatype ornament φ and the type of the projection
proj by looking up φ in S . The type ω is given by elaborating the branches. In Rule E-Con, the type
of ζ̂ (ωi)

i is first determined by the types of α j and the type of the skeleton d̂ ; then, an abstract
ornament φ is introduced in the S subset of Γ and a patch variable is introduced in the R subset of
Γ. The well-typedness comes again from the type constraints in S . Some ornament bindings in S

may in fact be forced to be equal.
As announced earlier, the elaboration judgments ensure well-typedness of the projections:

Lemma 7.1. If Γ ⊢ a ; A : ω holds then both Γ
− ⊢ a : ω−

Γ
and Γ

+ ⊢ A : ω+
Γ
hold.

In practice, the elaboration is obtained by inference. We first construct an elaborated term where
all ornamentation records are different, and type it using the normal ML inference (this always
succeeds because the term can be instantiated with records defining identity ornaments). Then,
according to the constraints on elaboration environments, ornaments with the same lifted type
must be the same. This is in fact sufficient: we only have to merge the ornaments whose lifted
types are unified by ML inference. We thus obtain the most general generic program.

7.2 Specialization of the Generic Program

Specialization comes last, using the resultG of the elaboration and processing the sequence of user-
given lifting declarations in order of appearance. We essentially describe the instantiation, since
meta-reduction and simplification steps, described in section 5.1 and 5.3, can be done afterwards.

A lifting declaration of the form łlet y β = lifting x (ωj)
j with s, rž defines y, polymorphic in the

type variables β , as a lifting of the base term a bound by x whose type parameters are instantiated
by ornament types (ωj)

j . The user gives two substitutions s and r : s maps ornament variables (of
some specification S) to ornaments; r maps term variables (of some patch specification r) to terms.
We use a judgment β ⊢ s : S to state that the substitution s conforms to an ornament specifica-

tion S . This means that for every binding (φ 7→ _ � ω̂ ′ : _⇒ _) in S , s maps φ to some ornament
type χ (ωi)

i where χ is a concrete ornament such that (χ (βi)i 7→ _ � ω̂ ′′ : _⇒ _), the (ωi)
i are

well-formed, and s(ω̂ ′) is ω̂ ′′[βi ← ωi]
i . When β ⊢ s : S holds, we may take the right-projection

s+S of s that gives the code of the ornamentation functions, such that β ⊢ s+ : S+. That is for any
φ ← χ (ωi)

i in s corresponding to some (φ 7→ (δ , proj, inj)� _ : _⇒ β) in S , we put the bindings
β ← σχ (ωi)i ,δ ← δχ (ωi)i , proj ← projχ (ωi)i , inj ← injχ (ωi)i in s+S .
Assume we have a lifting environment I composed of bindings of the form ∀α (x[ω, s]; y α :

ω = A) obtained from the previous liftings. The right projection of a binding y : ∀α ω+ = A gives
the definition of the lifted term. We write I+ for the projection of I , which describes the definitions
in scope in the lifted term.

We also use a judgment I ; β ; s ⊢ r : R to check that the substitution r is appropriate: this requires
that the terms in r are typed according to the specification R, namely I+, β ⊢ r : s(R+S), using the
projection R+S defined in Figure 9. For any lifting (x[ω, s]; y : ω) in R, we require that r (y) = z τ

for some z, τ and check that the lifting requirement matches the lifting signature of z present in I .

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

A Principled Approach to Ornamentation in ML 21:25

To proceed with the instantiation, we first find the binding (x ⟨α , S,R⟩ : ω = a ; A) in G of
the variable x . We then construct a substitution (α j ← ωj)

j , say θ , and check that β ⊢ s : Sθ and

I ; β ; s ⊢ r : Rθ . Then, the instantiated term is A[s+S , r ,θ
+], which we can meta-reduce and simplify

into anML term, sayB. Finally, we build the lifting specification∀β (x[(ωj)
j , s]; y β : ω[s+S ,θ] = B)

which is added to the environment I for subsequent liftings.
These judgments check that the lifting is valid. In our prototype, they are also used to infer the

ornaments and liftings that have not been specified by the user.
While ornaments are known to be well-typed, because they have been generated internally to

the prototype, patches are given by the user and may contain type errors. We constrain the patches
to be composed of a series of mML abstractions and an eML term. We can check the type of the
mML part, assuming the eML part is well-typed. Then, mML reduction does not diverge, and eML
simplification terminates independent of well-typedness (although it can signal type errors). We can
then type the lifted term using ML inference: if it does not type, one of the patches was ill-typed.

7.3 Correctness of the Lifting

We use the logical relation from ğ5.1 to prove that the lifted term is related to the base term by
ornamentation. We first focus on the elaboration: we introduce an identity instantiation and prove
that, for all elaborated terms, the identity instantiation gives back the original term.

Definition 7.2. Given environments S and R, the identity instantiation idS,R is defined as the
composition of s+ and r where:

• s are identity ornaments: for all (φ 7→ (δ , proj, inj)� ζ̂ (ωi)
i : ζ (τℓ)ℓ ⇒ β) in S , the substitu-

tion s+ maps β , δ , proj, and inj to ζ (τℓ)ℓ , δζ (τℓ)ℓ , projζ (τℓ)ℓ , injζ (τℓ)ℓ , respectively.

• patches are trivial, i.e. for all y :♯ ∆→ δ ♯A in R, the substitution r maps y to λ♯∆. ().
• for all (x[ω , s]; y : ω ′) in R, the substitution r maps y to x (ω)−S .

Lemma 7.3. If ⊢ G,α , S,R, then idS,R exists and (G,α)− ⊢ idS,R : (S,R)+.

We say that an elaboration (x ⟨α , S,R⟩ : ω = a ; A) inG is appropriate if the identity instantiation
of the generic term gives back the original term: (G,α)− ⊢ a ≃ idS,R (A). An environment G is
appropriate if it contains only appropriate definitions.

Theorem 7.4. Suppose G,α , S,R ⊢ a ; A : ω. Then (x ⟨α , S,R⟩ : ω = a ; A) is appropriate. As a

consequence, elaborating a declaration preserves the property that the environment is appropriate.

We now prove that the liftings we generate are indeed related to the base term by the ornamen-
tation relation: we say that a lifting ∀β (x[(ωj)

j , s]; y β : ω = A) in G is appropriate if the base
term a (typed in G−) and the lifted term A (typed in I+) are related at ω for all choices of the type
variables. Formally, we use the logical relation (ğ5.1): for all γ ∈ G[β], we want

(
(G− ◦ γ1)(a), (I

+ ◦ γ2)(A)
)
∈ V[ω]γ

A lifting environment is appropriate if it contains only appropriate liftings. The property we need
to prove is that, in an appropriateG , the lifting environment I stays appropriate when processing a
new lifting. It suffices to show that the generated lifting is appropriate.

Consider γ ∈ G[β]. We prove the correctness of the ornamentation by constructing a relational
instantiation γ ′ ∈ G[(β , S,R)+] as follows. For β ∈ β , take γ ′(β) = γ (β). For ornaments (φ 7→
(δ , proj, inj) � _ : τ ⇒ α) ∈ S , take γ ′(α) = V[s(φ)]γ , γ ′(δ) = λ_. Top, γ ′(proj) = (projτ , projs(φ))

andγ ′(inj) = (injτ , injs(φ)) as in Definition 6.1. For patchesy :♯ ∆→ δ ♯A, takeγ ′(y) = (λ∆.(), r (y)).
For liftings y of x τ , take γ ′(y) = ((G− ◦ γ1)(x τ), (I+ ◦ γ2)(r (y))).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

21:26 Thomas Williams and Didier Rémy

Lemma 7.5. Consider γ ∈ G[α], and suppose G, S,R, I are well-formed. Then, γ ′ ∈ G[(α , S,R)+],

γ ′1 = G
− ◦ γ1 ◦ idS,R , and γ ′2 = I+ ◦ γ2 ◦ s

+

S ◦ r .

Then, we can instantiate the generic term with γ ′. On the left-hand side we obtain a term
equivalent to the base term, and on the right-hand side a term equivalent to the lifted term (because
simplification preserves equivalence). Both terms are related by the relationV[s(ω)]γ . Thus we
deduce correctness of the lifting process:

Theorem 7.6 (Correctness of lifting). Suppose I is appropriate, and consider a lifting request s .

If G; I ⊢ s ⇒ I ′, then I ′ is appropriate.

In the case of strictly positive datatypes and first-order functions, this result can be translated
to the coherence property of ornaments [Dagand and McBride 2014]. We can define a projection
function that projects the whole datatype at once (rather than incrementally as with the proj
function), e.g. the length function for natlist α . Then, the relation expressed by natlist α between
a1 and a2 is simply a1 = length a2 (up to termination). The statement that append is a lifting of
add at natlist α → natlist α → natlist α can then be translated (again, up to termination) to the
fact that, for all a1,a2, length (append a1 a2) = add (length a1) (length a2).

8 DISCUSSION

8.1 Implementation and Design Issues

Our prototype tool for refactoring ML programs using ornaments closely follows the structure
outlined in this paper: programs are first elaborated into a generic term, stored in an elaboration
environment and then instantiated and simplified in a separate phase. Of course, our prototype also
performs inference during elaboration, while we have only presented elaboration as a checking
relation. Inference is a rather orthogonal issue and does not raise any difficulty.
The prototype is a proof of concept that only accepts programs in a toy language. Porting the

implementation to a real language, such as OCaml, would allow to demonstrate the benefits of
ornamentation on real, large cases. We believe that instances of pure refactoring would already be
very useful to the programmer, even though it is just a small subset of the possibilities.

As presented, elaboration abstracts over all possible ornamentation points, which requires to
specify many identity ornaments and corresponding trivial patches, while many datatypes may
never be ornamented. We could avoid generating the ornamentation points in the generic lifting
that are known in advance to be always instantiated to the identity ornament. This information
could be user-specified, or be inferred by scanning all ornament definitions prior to elaboration.
The lifting process, as described, only operates on ML terms restricted to shallow pattern

matching and where constructors are only applied to variables. To meet these restrictions we
preprocess terms, turning deep pattern matching into shallow pattern matching, and lifting the
arguments of constructors into separate let bindings. This creates unnatural looking terms as
output. To recover a term closer to the original one, we mark the bindings we introduced and
substitute them back afterwards. When applying this transformation, we keep the evaluation order
of the arguments even if they are permuted. Thus our implementation should preserve effects and
their ordering. We use a similar strategy for deep pattern matching. During compilation to shallow
pattern matching, we annotate the generated matches with tags that are maintained during the
elaboration and, whenever possible, we merge back pattern matchings with identical tags after
elaboration. This seems to work well, and a primitive treatment of deep pattern matching would be
more involved.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

A Principled Approach to Ornamentation in ML 21:27

Pattern matching clauses with wildcards may be expanded to multiple clauses with different head
constructors. For the moment we only factor them back in obvious cases, but we could use tags
to try to merge all clauses in the lifted code that originate from the same clause in the base code.

These transformation phases introduce auxiliary variables. Some of these bindings will eventually
be expanded, but some will remain in the lifted program. Before printing, we select names derived
from the names used in the original program. This seems to be enough to generate readable terms.

8.2 Polymorphic Let Bindings

Currently, in a pre-elaboration pass, all local polymorphic let-bindings are duplicated into a sequence
of monomorphic let for each usage point. This does not reduce the expressivity of the system
Ðassuming, as [Vytiniotis et al. 2010], that they are sufficiently rare (see to avoid exponential
behavior. This transformation requires the user to instantiate what appears to be the same code
multiple times. On the other hand, it is useful because it allows lifting a local definition differently
for different usage points.
The duplicated local definitions could be tagged and shared back after ornamentation if their

instantiations are identical. Another approach would be to allow the user to provide several
ornamentations at the definition point, and then choose one ornamentation at each usage point.
From a theoretical point of view, this is equivalent to λ-lifting and extruding the definition to the
toplevel: we can then use our mechanism for lifting references to global definition and fold the
definition back in the term before printing it out. It would also be possible to allow a local definition
to be ornamented with polymorphic ornaments, i.e. ornaments polymorphic on a type parameter.
This would not solve the problem of using different ornaments for different usage points, but would
allow polymorphic recursionÐwhich is not allowed in our current presentation.

8.3 Lifting

For convenience, we do not require that all parameters be instantiated when lifting a term: we infer
some ornaments and liftings and automatically fill-in patches that return unit. We also provide a
way to specify a default ornament for a type. These simple strategies seem to work well for small
examples, but it remains to see if they also scale to larger examples with numerous ornamentation
points. Our view is that inferring patches is an orthogonal issue that can be left as a post-processing
pass, with several options that can be studied independently but also combined. One possibility is
to use code inference techniques such as implicit parameters [Chambard and Henry 2012; Devriese
and Piessens 2011; Scala 2017; White et al. 2014], as illustrated in ğ2.3.
In realistic scenarios, programs are written in a modular way. We could generalize and then

instantiate whole modules, and store the resulting environments in an interface file describing the
relation between a base module and its lifting. Then, when releasing a new interface-incompatible
version of a library, a maintainer could distribute an ornamentation specification allowing clients
of the library to automatically migrate their code.

8.4 Semantic Issues

Our approach to ornamentation is not semantically complete: we are only able to generate lift-
ings that follow the syntactic structure of the original program, instead of merely following its
observable behavior. Most reasonable liftings seem to follow this pattern. Syntactic lifting seems
to be rather predictable and intuitive and leads to quite natural results. This restriction also helps
with automation by reducing the search space. Still, it would be interesting to find a less syntactic
description of which functions can be reached by this method.
We could also consider preprocessing source programs prior to ornamentation. Indeed, η-

expansion or unfolding of recursive definitions could provide more opportunities for ornamentation

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

21:28 Thomas Williams and Didier Rémy

(e.g. in ğ2.4). In the cases we observed, the unfolding follows the structure of an ornament. Hence,
it would be interesting to perform the unfolding on demand during the instantiation process.

The correctness result we give for lifting only gives weak guarantees with respect to termination:
since the logical relation relates a non-terminating term on the right-hand side to any term on the
left-hand side, a diverging term is an ornamentation of any term. We can prove a stronger property:
if the patches always terminate, the lifting terminates exactly when the base term terminates.

We have described ornaments in ML, equipped a call-by-value semantics, but only to have a fixed
setting: our proposal should apply seamlessly to core Haskell. Our presentation of ornamentation
ignores effects, as well as the runtime complexity of the resulting program. A desirable result
would be that an ornamented program produces the same effects as the original program, save for
the effects performed in patches. Similarly, the complexity of the ornamented program should be
proportional to the complexity of the original one, save for the time spent in patches.

8.5 Future Work

Programming with generalized algebraic datatypes (GADT) requires writing multiple definitions
of the same type holding different invariants. GADT definitions that only add constraints could
be considered ornaments of regular types, which was one of the main motivations for introducing
ornaments in the first place [Dagand and McBride 2014]. It would then be useful to automatically
derive, whenever possible, copies of the functions on the original type that preserve the new invari-
ants. Extending our results to the case of GADTs is certainly useful but still challenging future work.
Besides issues with type inference, GADTs also make the analysis of dead branches more difficult.

The meta-languagemMLmust fulfill two conflicting goals: be sufficiently expressive to make the
generic lifting well-typed, but also restrictive enough so that elaborated programs can be reduced
and simplified back toML. Hence, many extensions of ML will require changing the language eML
as well, and it is not certain that the balance will be preserved.
The languages eML and mML have only been used as intermediate languages and are not

exposed to the programmer. We wonder whether they would have other useful applications for
other program transformations or for providing the user with some meta-programming capabilities.
For example, one might consider exposing mML to the user to let her write generic patches that
could be instantiated as needed at many program points.

Ornaments can be composed in multiple ways. Applying the effects of two ornaments consecu-
tively (lifting one type to another one, and lifting the lifted type again to a third type) can be done by
re-lifting an already lifted definition. An interesting direction is to combine the information added
by two ornaments into a datatype representing the base type and both ornamentations [Dagand
and McBride 2013; Ko and Gibbons 2013]. Lifting could then similarly be composed to liftings
along the combined ornament. This could be especially useful with GADTs: one could build a new
datatype by combining two invariants established independently and obtain liftings by combining
two independent liftings. Finally, it would be interesting to consider other transformations of
datatypes, and in particular, deornamentation: instead of adding information to existing datatypes,
deornamentation removes information from a datatype and adapts the functions operating on the
original datatype so that they can operate on its impoverished version.

9 RELATED WORK

Ornaments have been recently introduced by [Dagand and McBride 2013, 2014; McBride 2011]
in the context of dependently typed languages, where they can be encoded instead of treated as
primitive. In this context, Ko and Gibbons [2016] describe a different way to handle higher-order
ornaments without using logical relations. We first considered applying ornaments to an ML-like
language in [Williams et al. 2014].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

A Principled Approach to Ornamentation in ML 21:29

Type-Theory in Color [Bernardy and Guilhem 2013] is another way to understand the link
between a base type and a richer type. Some parts of a datatype can be tainted with a color modality:
this allows tracing which parts of the result depend on the tainted values. Terms operating on
a colored type can then be erased to terms operating on the uncolored version, which would
correspond to the base term.

Ghostbuster [McDonell et al. 2016] proposes a gradual approach to porting functions to GADTs
with richer invariants, by allowing to write a function against the base structure and dynamically
checking that it respects the invariant of the richer structure.
Najd and Peyton-Jones [2016] also observe that one often needs many variants of a given data

structure (typically an abstract syntax tree), and corresponding functions for each variant. They
propose an idiom to encode extensible datatypes (including GADTs) using existing Haskell features.
This approach requires that the programmer adds in extension points from the start, instead of allow-
ing unforeseen extensions. The encoding is not eliminated, leaving runtime and readability costs.
Views, first proposed by Wadler [1986] and later reformulated by Okasaki [1998] have some

resemblance with isomorphic ornaments. They allow several interchangeable representations for
the same data, using isomorphism to switch between views, but, again, the isomorphisms persist at
runtime. Lenses [Foster et al. 2007] also focus on switching representations at runtime.

Our mML language is equipped with rudimentary meta-programming facilities, by separating a
meta-abstraction from the ML abstraction. Its main distinguishing features from usual approaches
to meta-programming inML (such as Kiselyov [2014]) is its ability to embed eML and transform
equalities, allowing simplification of partial pattern matchings.
Ornamentation is a form of code refactoring on which there is a lot of literature, but based on

quite different techniques and rarely supported by a formal treatment. It has however not been
much explored in the context of ML-like languages.

CONCLUSION

We have designed and formalized an extension of ML with ornaments. We have used logical
relations as a central tool to give a meaning to ornaments, to closely relate the ornamented and
original programs, and to guide the lifting process. We believe that this constitutes a solid, but
necessary basis for using ornaments in programming. This is also a new use of logical relations
applied to type-based program refactoring.
Ornaments seem to have several interesting applications in an ML setting. Still, we have so far

only explored them on small examples and more experiment is needed to understand how they
behave on large scale programs. We hope that our proof-of-concept prototype could be turned into
a useful, robust tool for refactoring ML programs. Many design issues are still open to move from a
core language to a full-fledged programming language. More investigation is also needed to extend
our approach to work with GADTs.

A question that remains unclear is what should be the status of ornaments: should they become a
first-class construct of programming languages, remain a meta-language feature used to preprocess
programs into the core language, or a mere part of an integrated development environment?

Our principled approach with a posteriori abstraction of the source term revealed very beneficial
for ornaments and we imagine that it could also be used for other forms of program transformations
beyond ornaments that remain to be explored.

REFERENCES

Jean-Philippe Bernardy and Moulin Guilhem. 2013. Type-theory in color. In International Conference on Functional Program-

ming. 61ś72. https://doi.org/10.1145/2500365.2500577

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

https://doi.org/10.1145/2500365.2500577

21:30 Thomas Williams and Didier Rémy

Pierre Chambard and Grégoire Henry. 2012. Experiments in generic programming: runtime type representation and
implicit values. Presentation at the OCaml Users and Developers meeting, Copenhagen, Denmark. (sep 2012). http:
//oud.ocaml.org/2012/slides/oud2012-paper4-slides.pdf

Pierre-Évariste Dagand and Conor McBride. 2013. A Categorical Treatment of Ornaments. In 28th Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013. IEEE Computer Society,
530ś539. https://doi.org/10.1109/LICS.2013.60

Pierre-Évariste Dagand and Conor McBride. 2014. Transporting functions across ornaments. J. Funct. Program. 24, 2-3
(2014), 316ś383. https://doi.org/10.1017/S0956796814000069

Dominique Devriese and Frank Piessens. 2011. On the Bright Side of Type Classes: Instance Arguments in Agda. In
Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming (ICFP ’11). 143ś155. https:
//doi.org/10.1145/2034773.2034796

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. 2007. Combinators for
bidirectional tree transformations: A linguistic approach to the view-update problem. ACM Transactions on Programming

Languages and Systems 29, 3 (May 2007), 17. https://doi.org/10.1145/1232420.1232424
Oleg Kiselyov. 2014. The Design and Implementation of BER MetaOCaml. Springer International Publishing, Cham, 86ś102.

https://doi.org/10.1007/978-3-319-07151-0_6
Hsiang-Shang Ko. 2014. Analysis and synthesis of inductive families. DPhil dissertation. University of Oxford.
Hsiang-Shang Ko and Jeremy Gibbons. 2013. Modularising inductive families. Progress in Informatics 10 (2013). https:

//doi.org/doi:10.2201/NiiPi.2013.10.5
Hsiang-Shang Ko and Jeremy Gibbons. 2016. Programming with ornaments. Journal of Functional Programming 27 (2016).

https://doi.org/10.1017/S0956796816000307
Conor McBride. 2011. Ornamental Algebras, Algebraic Ornaments. (2011). https://personal.cis.strath.ac.uk/conor.mcbride/

pub/OAAO/LitOrn.pdf
Trevor L. McDonell, Timothy A. K. Zakian, Matteo Cimini, and Ryan R. Newton. 2016. Ghostbuster: A Tool for Simplifying

and Converting GADTs. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming

(ICFP 2016). ACM, New York, NY, USA, 338ś350. https://doi.org/10.1145/2951913.2951914
Shayan Najd and Simon Peyton-Jones. 2016. Trees that grow. JUCS (2016). https://www.microsoft.com/en-us/research/

wp-content/uploads/2016/11/trees-that-grow-2.pdf
Chris Okasaki. 1998. Views for Standard ML. In In SIGPLAN Workshop on ML. 14ś23.
Scala. 2017. Implicit Parameters. Scala documentation. (2017). https://docs.scala-lang.org/tour/implicit-parameters.html
Dimitrios Vytiniotis, Simon Peyton Jones, and Tom Schrijvers. 2010. Let Should Not Be Generalised, In Proceedings of the

5th ACM SIGPLAN Workshop on Types in Language Design and Implementation. https://www.microsoft.com/en-us/
research/publication/let-should-not-be-generalised/

Philip Wadler. 1986. Views: A way for pattern matching to cohabit with data abstraction. (1986).
Leo White, Frédéric Bour, and Jeremy Yallop. 2014. Modular implicits. In Proceedings ML Family/OCaml Users and Developers

workshops, ML/OCaml 2014, Gothenburg, Sweden, September 4-5, 2014. 22ś63. https://doi.org/10.4204/EPTCS.198.2
Thomas Williams, Pierre-Évariste Dagand, and Didier Rémy. 2014. Ornaments in practice. In Proceedings of the 10th ACM

SIGPLAN workshop on Generic programming, WGP 2014, Gothenburg, Sweden, August 31, 2014, José Pedro Magalhães and
Tiark Rompf (Eds.). ACM, 15ś24. https://doi.org/10.1145/2633628.2633631

Thomas Williams and Didier Rémy. 2017. A Principled Approach to Ornamentation in ML. Research Report RR-9117. Inria.
https://hal.inria.fr/hal-01628060

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 21. Publication date: January 2018.

http://oud.ocaml.org/2012/slides/oud2012-paper4-slides.pdf
http://oud.ocaml.org/2012/slides/oud2012-paper4-slides.pdf
https://doi.org/10.1109/LICS.2013.60
https://doi.org/10.1017/S0956796814000069
https://doi.org/10.1145/2034773.2034796
https://doi.org/10.1145/2034773.2034796
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/doi:10.2201/NiiPi.2013.10.5
https://doi.org/doi:10.2201/NiiPi.2013.10.5
https://doi.org/10.1017/S0956796816000307
https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/LitOrn.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/LitOrn.pdf
https://doi.org/10.1145/2951913.2951914
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/trees-that-grow-2.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/trees-that-grow-2.pdf
https://docs.scala-lang.org/tour/implicit-parameters.html
https://www.microsoft.com/en-us/research/publication/let-should-not-be-generalised/
https://www.microsoft.com/en-us/research/publication/let-should-not-be-generalised/
https://doi.org/10.4204/EPTCS.198.2
https://doi.org/10.1145/2633628.2633631
https://hal.inria.fr/hal-01628060

	Abstract
	1 INTRODUCTION
	2 EXAMPLES OF ORNAMENTS
	2.1 Code Refactoring
	2.2 Code Refinement
	2.3 Composing Transformations—a Practical Use Case
	2.4 More Examples

	3 OVERVIEW OF THE LIFTING PROCESS
	3.1 Encoding Ornaments
	3.2 Eliminating the Encoding
	3.3 Inferring a Generic Lifting
	3.4 Lifting and Ornament Specifications

	4 META ML
	4.1 ML
	4.2 Adding Term Equalities
	4.3 Adding Meta-abstractions

	5 THE METATHEORY OF mML
	5.1 Type Soundness
	5.2 A Step-indexed Logical Relation on mML
	5.3 Simplification from eML to ML

	6 ENCODING ORNAMENTS
	6.1 Ornamentation as a Logical Relation
	6.2 Defining Datatype Ornaments
	6.3 Encoding Ornaments in mML
	6.4 Correctness of the Encoding

	7 ORNAMENTING TERMS
	7.1 Elaborating to a Generic Program
	7.2 Specialization of the Generic Program
	7.3 Correctness of the Lifting

	8 DISCUSSION
	8.1 Implementation and Design Issues
	8.2 Polymorphic Let Bindings
	8.3 Lifting
	8.4 Semantic Issues
	8.5 Future Work

	9 RELATED WORK
	REFERENCES

