A. Astorino, A. Frangioni, A. Fuduli, and E. Gorgone, A Nonmonotone Proximal Bundle Method with (Potentially) Continuous Step Decisions, SIAM Journal on Optimization, vol.23, issue.3, pp.1784-1809, 2013.
DOI : 10.1137/120888867

URL : http://www.di.unipi.it/~frangio/papers/1ParamBundle.pdf

A. Astorino, A. Frangioni, M. Gaudioso, and E. Gorgone, Piecewise-quadratic Approximations in Convex Numerical Optimization, SIAM Journal on Optimization, vol.21, issue.4, pp.1418-1438, 2011.
DOI : 10.1137/100817930

H. Aytug, Feature selection for support vector machines using Generalized Benders Decomposition, European Journal of Operational Research, vol.244, issue.1, pp.210-218, 2015.
DOI : 10.1016/j.ejor.2015.01.006

P. Bertolazzi, G. Felici, P. Festa, G. Fiscon, and E. Weitschek, Integer programming models for feature selection: New extensions and a randomized solution algorithm, European Journal of Operational Research, vol.250, issue.2, pp.389-399, 2016.
DOI : 10.1016/j.ejor.2015.09.051

J. Bi, K. P. Bennett, M. Embrechts, K. M. Breneman, and M. Song, Dimensionality reduction via sparse support vector machines, Journal of Machine Learning Research, vol.3, pp.1229-1243, 2003.

P. Bradley and O. L. Mangasarian, Feature selection via concave minimization and support vector machines, Machine Learning proceedings of the Fifteenth International Conference, pp.82-90, 1998.

P. S. Bradley, O. L. Mangasarian, and W. N. Street, Feature Selection via Mathematical Programming, Feature selection via Mathematical Programming, pp.209-217, 1998.
DOI : 10.1287/ijoc.10.2.209

URL : ftp://ftp.cs.wisc.edu/math-prog/tech-reports/95-21.ps.Z

Y. W. Chen and C. Lin, Combining svms with various feature selection strategies, in Feature extraction, foundations and applications, I. Guyon, 2006.
DOI : 10.1007/978-3-540-35488-8_13

URL : http://www.csie.ntu.edu.tw/~b88052/tmp/thesis.pdf

N. Cristianini and J. Shawe-taylor, An introduction to Support Vector Machines and other kernel-based learning methods, 2000.
DOI : 10.1017/CBO9780511801389

E. Carrizosa and D. Morales, Supervised classification and mathematical optimization, Computers & Operations Research, vol.40, issue.1, pp.150-165, 2013.
DOI : 10.1016/j.cor.2012.05.015

B. Fortz, E. Gorgone, and P. , A Lagrangian heuristic algorithm for the timedependent combined network design and routing problem, Networks, pp.69-110, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01428061

A. Frangioni, Solving semidefinite quadratic problems within nonsmooth optimization algorithms, Computers & Operations Research, vol.23, issue.11, pp.1099-1118, 1996.
DOI : 10.1016/0305-0548(96)00006-8

A. Frangioni and E. Gorgone, Generalized bundle methods for sum-functions with " easy " components: Applications to multicommodity network design, Mathematical Programming, pp.133-161, 2014.
DOI : 10.1007/s10107-013-0642-3

URL : http://www.di.unipi.it/~frangio/papers/GBM4DFEC.pdf

A. Frangioni, E. Gorgone, and B. Gendron, On the computational eciency of subgradient methods: a case study with lagrangian bounds, Mathematical Programming Computation, 2017.

M. Gaudioso, G. Giallombardo, and G. Miglionico, On solving the Lagrangian dual of integer programs via an incremental approach, Computational Optimization and Applications, vol.169, issue.1, pp.117-138, 2009.
DOI : 10.1002/9781118627372

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, Journal of Machine Learning Research, vol.3, pp.1157-1182, 2003.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification using support vector machines, Machine Learning, pp.389-422, 2002.

J. Hiriart-urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II?Advanced Theory and Bundle Methods, Grundlehren Math. Wiss, vol.306, 1993.
DOI : 10.1007/978-3-662-06409-2

J. Kittler, Feature selection and extraction, in Handbook of Pattern Recognition and Image Processing, 1986.

E. Lee and W. Tsung-lin, Classification and disease prediction via Mathematical Programming, 2009.
DOI : 10.1063/1.2817343

URL : http://arxiv.org/pdf/0709.0047

Y. Liu and Y. Wu, Penalties, Journal of Computational and Graphical Statistics, vol.16, issue.4, pp.782-798, 2007.
DOI : 10.1198/106186007X255676

S. Maldonado, J. Pérez, R. Weber, and M. Labbé, Feature selection for Support Vector Machines via Mixed Integer Linear Programming, Information Sciences, vol.279, pp.163-175, 2014.
DOI : 10.1016/j.ins.2014.03.110

URL : https://hal.archives-ouvertes.fr/hal-01255519

O. L. Mangasarian, Arbitrary-norm separating plane, Operations Research Letters, vol.24, issue.1-2, pp.15-23, 1997.
DOI : 10.1016/S0167-6377(98)00049-2

URL : ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-07r.ps

P. E. Meyer, C. Schretter, and G. Bontempi, Information-Theoretic Feature Selection in Microarray Data Using Variable Complementarity, IEEE Journal of Selected Topics in Signal Processing, vol.2, issue.3, pp.261-274, 2008.
DOI : 10.1109/JSTSP.2008.923858

URL : http://www.ulb.ac.be/di/map/pmeyer/Homepage_files/Meyer08CorrectedJSTSP.pdf

M. H. Nguyen and F. De-la-torre, Optimal feature selection for support vector machines, Pattern Recognition, vol.43, issue.3, pp.584-591, 2010.
DOI : 10.1016/j.patcog.2009.09.003

URL : http://www.andrew.cmu.edu/user/minhhoan/papers/SVMFeatureWeight_PR.pdf

F. Rinaldi and M. Sciandrone, Feature selection combining linear support vector machines and concave optimization, Optimization Methods and Software, pp.117-128, 2010.
DOI : 10.1080/10556780903139388

V. Vapnik, The nature of the statistical learning theory, 1995.

J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, Use of the zero-norm with linear models and kernel methods, Journal of Machine Learning Research, vol.3, pp.1439-1461, 2003.

J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio et al., Feature selection for SVMs, Advances in Neural Information Processing Systems, p.12, 2000.