
HAL Id: hal-01666454
https://inria.hal.science/hal-01666454

Submitted on 21 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A branch and price algorithm for a Stackelberg Security
Game

Felipe Lagos, Fernando Ordóñez, Martine Labbé

To cite this version:
Felipe Lagos, Fernando Ordóñez, Martine Labbé. A branch and price algorithm for a Stackelberg Secu-
rity Game. Computers & Industrial Engineering, 2017, 111, pp.216 - 227. �10.1016/j.cie.2017.06.034�.
�hal-01666454�

https://inria.hal.science/hal-01666454
https://hal.archives-ouvertes.fr

A Branch and Price Algorithm for a Stackelberg Security Game

Felipe Lagosa, Fernando Ordóñezb, Martine Labbéc

aGeorgia Institute of Technology
bUniversidad de Chile, fordon@dii.uchile.cl

cUniversité Libre de Bruxelles, mlabbe@ulb.ac.be

Abstract

Mixed integer optimization formulations are an attractive alternative to solve Stackelberg Game problems

thanks to the efficiency of state-of-the-art mixed integer algorithms. In particular, decomposition algorithms,

such as branch and price methods, make it possible to tackle instances large enough to represent games

inspired in real world domians.

In this work we focus on Stackelberg Games that arise from a security application and investigate the use

of a new branch and price method to solve its mixed integer optimization formulation. We prove that the

algorithm provides upper and lower bounds on the optimal solution at every iteration and investigate the

use of stabilization heuristics. Our preliminary computational results compare this solution approach with

previous decomposition methods obtained from alternative integer programming formulations of Stackelberg

games.

1. Introduction

Stackelberg games model the strategic interaction between players, where one participant – the leader – is

able to commit to a strategy first, knowing that the remaining players – the followers – will take this strategy

into account and respond in an optimal manner. These games have been used to represent markets in which

a participant has significant market share and can commit to a strategy [19], where government decides tolls

or capacities in a transportation network [11], and of late have been used to represent the attacker-defender

interaction in security domains [9]. These games are examples of bilevel optimization problems, which are

in general non convex optimization problems that are difficult to solve.

In this work we focus on a specific class of Stackelberg games which we refer to as Stackelberg Security

Games (SSG) that arise in security domains and have a particular payoff structure [21]. In a SSG, the

security (or defender) behaves as the leader selecting a patrolling strategy first and the, possibly many

attackers act as the follower, observing the defender’s patrolling strategy and deciding where to attack.

Such Stackelberg Security Game models have been used in the deployment of decision support systems with

specialized algorithms in real security domain applications [9, 16, 17].

Preprint submitted to Elsevier June 13, 2017

Recent work has developed efficient integer optimization solution algorithms for different variants of

the SSGs [10, 6, 7, 8, 5]. In general terms these optimization problems are formulated with the defender

committing to a mixed (randomized) strategy, whereas the attacker(s) conduct(s) surveillance of the defender

mixed strategy and respond(s) with a pure strategy corresponding to an attack on a target. In addition,

the number of actions of the defender can be exponential in size, with respect to the targets and defense

resources, due to the combinatorics of using N resources to patrol m targets. This illustrates that to

solve SSGs we have to address mixed integer optimization problems with exponential number of variables.

Addressing the combinatorial size of defender strategies has led to both development of branch and price

methods [10] and constraint generation methods [20]. There are, however, problem instances that arise from

real security applications that still challenge existing solution methods. Here we investigate a new branch

and price method developed for a novel formulation of Stackelberg games (MIPSG), introduced in [3]. This

new formulation has been shown to provide tighter linear relaxations than other existing mixed integer

formulations and to give the convex hull of the feasible integer solutions when there is only one follower.

We begin by introducing notation and describing the integer optimization formulations that have been

considered previously in the next section. We also introduce the equivalent MIPSG formulation. In section

3 we present the column generation algorithm for the solution of the linear relaxation of MIPSG, along with

a speed up that can be obtained by aggregating subproblems, and the existence of upper and lower bounds

at every iteration. We also describe the branching strategies used in adapting this column generation to

a Branch and Price method and how to apply dual stabilization techniques. We present our preliminary

computational results in section 4 and provide concluding remarks in section 5.

2. Integer Optimization Formulations of SSG

In a Stackelberg security game we consider that the leader is the defender and the attacker (of possibly

many types) is the follower. We let Θ be the set of possible attacker types and assume that pθ corresponds to

a known a-priori probability distribution that the defender is facing an attacker of type θ ∈ Θ. The attacker

may decide to attack any one of a set of targets Q. The mixed strategy for the θ-th attacker is the vector

of probabilities over this set of targets, which we denote as qθ = (qθj)j∈Q. The defender allocates up to N

resources to protect targets, with N < |Q|. Each resource can be assigned to a patrol that protects multiple

targets, s ⊆ Q, so the set of feasible patrols for one resource is a set S ⊆ P (Q), where P (Q) represents the

power set of Q. The defender’s pure strategies, or joint patrols, are combinations of up to N such patrols,

one for each available resource. In addition we assume that in a joint patrol a target is covered by at most

one resource. Let X denote the set of joint patrols, or defender strategies. A joint patrol i ∈ X, can be

represented by the vector ai = [ai1, ai2, ..., ai|Q|] ∈ {0, 1}|Q| where aij represents whether or not target j is

covered in strategy i. The defender’s mixed strategy x = (xi)i∈X specifies the probabilities of selecting each

joint patrol i ∈ X.

2

Both the leader and followers aim to maximize a linear utility function that averages the rewards of every

combination of pure strategies weighted by the mixed strategies. If we let Rθij and Cθij denote the utility

received by the defender (and the θ-th attacker) for having the defender conduct patrol i while the θ-th

attacker strikes target j, then the defender and θ-th attacker utilities are given by

uD(x, (qθ)θ∈Θ) =
∑
θ∈Θ

∑
i∈X

∑
j∈Q

pθxiq
θ
jR

θ
ij

uθA(x,qθ) =
∑
i∈X

∑
j∈Q

xiq
θ
jC

θ
ij .

The goal is to find the optimal mixed strategy for the leader, given the follower may know this mixed strategy

when choosing its strategy. Stackelberg equilibria can be of two types: strong and weak, as described by [2].

We use the notion of Strong Stackelberg Equilibrium (SSE), in which the leader selects an optimal mixed

strategy based on the assumption that the follower will choose an optimal response and will break ties in

favor of the leader. In other words, following the formal definition of a SSE in [10], a pair of strategies form

a SSE if they satisfy: FO: MAKE PRECISE

1. The leader (defender) plays a best-response

2. The follower (attacker) plays a best response

3. The follower breaks ties optimally for the leader

This can be formulated as the following bilevel optimization problem, where e is the vector of all ones of

appropriate dimension:

max uD(x, (qθ)θ∈Θ)

s.t. eTx = 1, x ≥ 0

qθ = argmaxg{uθA(x,g) | eTg = 1, g ≥ 0} θ ∈ Θ .

Given that the inner optimization problem is a linear optimization problem over the |Q| dimensional sim-

plex, there always exists an optimal pure-strategy response for the attacker, so in the integer optimization

formulations we present now we restrict our attention to the set of pure strategies for the attacker. As we see

below, the optimality condition of the inner optimization problem can be expressed with linear constraints

and integer variables when we make use of the fact that the followers respond with an optimal pure strat-

egy. Although this leads to being able to use efficient mixed integer optimization machinery, the problem

remains theoretically difficult as the problem of choosing the optimal strategy for the leader to commit to

in a Bayesian Stackelberg game is NP-hard [4].

The payoffs for agents depend only on the target attacked, the adversary type and whether or not a

defender resource is covering the target. Let the parameter Rdθj denote the defender’s utility, or reward, if

j ∈ Q is attacked by adversary θ ∈ Θ when it is covered by a defender resource. If j ∈ Q is not covered, the

3

defender receives a penalty Pdθj . Likewise, the attacker’s utilities are denoted by a reward Raθj when target

j is attacked and not covered and penalty Paθj , when j is attacked while protected. Therefore if we let j ∈ i

denote when target j ∈ Q is protected by patrol i ∈ X, then we consider the following reward structure

Rθij =

 Rdθj j ∈ i

Pdθj j 6∈ i
Cθij =

 Paθj j ∈ i

Raθj j 6∈ i
.

Alternatively the strategy i can be represented by a vector ai ∈ {0, 1}|Q| such that aij = 1 when j ∈ i or

when j ∈ ai. Using this vector ai we have

Rθj (aij) := Rθij = Pdθj + aij
(
Rdθj − Pdθj

)
Cθj (aij) := Cθij = Raθj − aij

(
Raθj − Paθj

)
.

We assume adding coverage to target j ∈ Q is strictly better for the defender and worse for the attacker.

That is Rdθj > Pdθj and Raθj > Paθj . Note that this does not necessarily mean zero-sum.

2.1. DOBBS and ERASER

Efficient and compact techniques for choosing the optimal strategies for Bayesian Stackelberg games have

been a topic of active research from the work of [14, 13]. In particular, the DOBBS problem formulation

below, introduced in [13], allows for a Bayesian Stackelberg game to be expressed compactly as a single

mixed integer optimization problem.

max
∑
i∈X

∑
θ∈Θ

∑
j∈Q

pθzθijR
θ
ij

∑
i∈X

∑
j∈Q

zθij = 1 ∀θ

∑
i∈X

zθij = qθj ∀j, θ

0 ≤ vθ −
∑
i∈X

Cθij
∑
k∈Q

zθik ≤ (1− qθj)M ∀j, θ

∑
j∈Q

zθij = xi ∀i, θ

zθij ∈ [0, 1] ∀i, j, θ

qθj ∈ {0, 1} ∀j, θ

xi ∈ [0, 1] ∀i

(DOBBS)

Algorithms for large-scale SSG, using branch and price and fast upper bound generation framework are

introduced in Jain et al. [6]. That work builds these algorithms from a more compact representation of

4

DOBBS, which has been named as ERASER (Efficient Randomized Allocation of Security Resources). This

formulation does not use variable zθij obtaining a formulation that uses less variables overall but uses two

sets of big M constraints. In the ERASER formulation below we present the notation for the dual variables

of constraints (2)-(6) in parenthesis.

max
∑
θ∈Θ

pθdθ (1)

dθ −
∑
i∈X

xiR
θ
ij ≤ (1− qθj)M1 ∀j, θ (βθj) (2)

aθ −
∑
i∈X

xiC
θ
ij ≤ (1− qθj)M2 ∀j, θ (αθj) (3)

∑
i∈X

xiC
θ
ij ≤ aθ ∀j, θ (σθj) (4)

∑
i∈X

xi = 1 (δ) (5)

∑
j∈Q

qθj = 1 ∀θ (πθ) (6)

qθj ∈ {0, 1} ∀j, θ (7)

xi ≥ 0 ∀i (8)

(ERASER) (9)

The M1 and M2 values are important for the ERASER performance, since their value helps determine

how tight the linear relaxation is. Thus they must be chosen large enough so that the constraint does not

eliminate a feasible solution but as small as possible to give the tightest linear relaxation. The values for M1

and M2 are as follows,

M1 = max
j,θ

Rdθj −min
j,θ

Pdθj (10)

M2 = max
j,θ

Raθj −min
j,θ

Paθj (11)

These values of M guarantee the problem keeps its feasible region unchanged. We will show this in the next

section for similar constants in problem MIPSG.

When solving these equivalent formulations, one observes that the ERASER linear optimization relax-

ation is easier to solve than DOBBS, as it has less variables, however it gives a larger integrality gap. A

branch and price method for ERASER is introduced in [6] and is shown to be efficient in practice and able

to solve large SSG problems. This algorithm will be used as a comparison for the decomposition algorithm

presented in this work.

A Branch and Price method is based on using a column generation method to solve the LP relaxation.

5

In this column generation for ERASER, the master would solve the problem considering only a few of the

defender strategies X̄ ⊂ X, obtaining and optimal master primal and dual solutions. Then, the method

tests whether a defender strategy variable xi would enter the master problem by checking if its reduced cost

is positive. Given the reduced master optimal dual variables indicated in (2) - (6), the reduced cost for

strategy i ∈ X, also represented by the vector v ∈ {0, 1}|Q|, is as follows,

c̄i = c̄v =
∑
j∈Q

∑
θ∈Θ

Rθijβ
θ
j + Cθij(α

θ
j − σθj)− δ (12)

=
∑
j∈Q

∑
θ∈Θ

Rθj (vj)β
θ
j + Cθj (vj)(α

θ
j − σθj)− δ (13)

Using this reduced cost expression we can define the subproblem for the ERASER’s column generation.

In this case, the subproblem also includes resources and patrol constraints. The branch and price framework

is used for ERASER is the same that is used for the MIPSG model that will be presented in the next section.

Thus, the only difference between two models implementation are the branch and price tree nodes.

2.2. Strong Integer Optimization Formulation

A novel equivalent formulation of this problem, a variation on the DOBBS formulation, was introduced in

[3]. In contrast to ERASER, this model has tighter linear representation but requires more variables. Below

we present this optimization problem, referred to as Model Integer Problem for Security Games (MIPSG).

max
∑
i∈X

∑
θ∈Θ

∑
j∈Q

pθzθijR
θ
ij (14)

∑
i∈X

∑
j∈Q

zθij = 1 ∀θ (πθ) (15)

∑
i∈X

zθij = qθj ∀j, θ (σθj) (16)

∑
i∈X

(Cθij − Cθik)zθij ≥ 0 ∀j, k, θ (αθjk) (17)

∑
j∈Q

zθij = xi ∀i, θ (βθi) (18)

zθij ∈ [0, 1] ∀i, j, θ (19)

qθj ∈ {0, 1} ∀j, θ (20)

xi ∈ [0, 1] ∀i (21)

In the above description we also give the notation for the dual variables of the linear relaxation of MIPSG

for each of the four sets of constraints. This is indicated by the variable in parenthesis on each constraint.

Proposition 2.1. Problem MIPSG is equivalent to DOBBS

6

Proof Problem MIPSG and DOBBS are the same except for one constraint. While in MIPSG the solution

(z,x,q) satisfies
∑
i∈X(Cθij − Cθik)zθij ≥ 0 ∀j, k, θ in DOBBS the solution (z,x,q,v) satisfies 0 ≤ vθ −∑

i∈X C
θ
ij

∑
k∈Q z

θ
ik ≤ (1 − qθj)M ∀j, θ. If qθh = 1 then the DOBBS solution satisfies

∑
k∈Q z

θ
ik = zθih and

therefore ∑
i∈X

Cθijz
θ
ih =

∑
i∈X

Cθij
∑
k∈Q

zθik ≤ vθ ≤
∑
i∈X

Cθih
∑
k∈Q

zθik =
∑
i∈X

Cθihz
θ
ih ,

which is equivalent to the MIPSG constraint.

Let us now consider a solution for MIPSG. If qθh = 1 then let vθ :=
∑
i∈X C

θ
ihz

θ
ih. Since now we also have∑

k∈Q z
θ
ik = zθih we have from the MIPSG constraint that

vθ =
∑
i∈X

Cθihz
θ
ih ≥

∑
i∈X

Cθij
∑
k∈Q

zθik .

This satisfies the DOBBS constraints as the only tight right hand inequality is the one that defines vθ. �

The results in [3] show that a solution that is feasible for the linear relaxation of the MIPSG formulation is

a feasible solution for the linear relaxation of the DOBBS formulation. Furthermore, the linear relaxation of

the MIPSG problem equals the convex hull of the feasible integer solutions when there is only one adversary.

The total amount of defender’ strategies increase exponentially with the number of targets and resources.

Without additional feasibility constraints, the size of the set of possible defender strategies equals
(
Q
N

)
. This

leads to problems that are too big to solve in a standard computer. It is therefore necessary to find a way

to generate only the strategies are used by the model.

3. Column Generation for MIPSG

A column generation method on MIPSG aims at solving the linear relaxation of the problem by gradually

considering more variables associated to the large set of defender strategies. The linear relaxation of MIPSG

relaxes the integrality constraints and considers variables that satisfy 0 ≤ zθij , q
θ
j ∈ R and xi ∈ R. Note

that since
∑
i∈X

∑
j∈Q z

θ
ij = 1 we still have that zθij , q

θ
j , xi ∈ [0, 1]. Below we give the dual problem of the

linear relaxation of the MIPSG problem, using the dual variables identified in the statement of the MIPSG

problem:

7

min
∑
i∈Θ

πθ (22)

pθRθij ≤ πθ + σθj + βθi +
∑
k∈Q

(Cθij − Cθik)αθjk ∀i, j, θ (23)

σθj = 0 ∀j, θ (24)∑
θ∈Θ

βθi = 0 ∀i (25)

αθjk ≤ 0 ∀j, k, θ (26)

In the LP relaxation of MIPSG the constraint
∑
i∈X z

θ
ij = qθj becomes redundant as it defines the value

of qθj , but this variable no longer has to be integer variable. This fact is reflected in that the corresponding

dual variable σθj has a value of zero.

We now outline the column generation procedure that we propose for MIPSG. We begin by solving a

version of the MIPSG problem in which only a set X̄ ⊂ X of defender strategies are considered. This means

that variables zθij and xi with i 6∈ X̄ are not considered in the master problem and assumed fixed at 0.

After solving the reduced master problem, the method looks for profitable strategies in X \ X̄. To identify

a profitable strategy i ∈ X we should look for a variable zθij or xi with positive reduced cost. From linear

programming duality we have that a positive reduced cost corresponds to a violated dual constraint. Indeed,

the process of column generation in a problem is equivalent to generating the corresponding dual constraints

in the dual problem [1]. Therefore to identify which variables (and corresponding strategies i ∈ X) to add

to the master, our method requires we identify constraints, either (23) or (25), in this dual problem that are

not being satisfied at the current dual optimal solution. Once the new variables are added to the master,

we re-optimize the master problem until there are no violated dual constraints.

However, the generic column generation method described above cannot be implemented. As written, to

determine the reduced cost of a variable zθij or xi, with i 6∈ X̄, we need to know the dual variable βθi . This

is the dual variable corresponding to constraint (18) that is not present if strategy i 6∈ X̄ is not considered

in the reduced master and therefore not defined.

We now address this difficulty by introducing the following problem which is based on the dual problem

8

of MIPSG.

max
v,e

∑
θ

fθ (27)

fθ ≤ pθR(vj)
θ − πθ +Mθ(1− eθj)−

∑
k∈Q

(C(vj)
θ − C(vk)θ)αθjk ∀j, θ (28)

∑
r∈|S|

ur ≤ N (29)

∑
j∈Q

eθj = 1 ∀θ (30)

∑
r∈|S|

tjrur = vj ∀j (31)

vj ∈ {0, 1}, eθj ∈ {0, 1} ∀j (32)

ur ∈ {0, 1} ∀r (33)

The resulting solution is a vector of joint schedules that are chosen from the set S of possible options. Let

ur be a binary variable that is 1 if the schedule r = 1, ..., |S| is used for the new strategy v and 0 otherwise.

These ur must sum up to N , which is the number of resources available to assign. The parameter tjr

indicates which targets j ∈ Q are covered by the schedule r ∈ |S|, i.e. it is a binary representation of the set

schedule sr ∈ S. Finally, the variable eθj is just an auxiliary variable that defines which is the best target j

for each θ.

For dealing with βθi we use that the sum of these variables over θ ∈ Θ is zero. If the subproblem finds a

new column with optimal objective value less than zero, then there exists βθi that satisfy the dual constraints.

Thus, this allows us to not include these variables in the model and to determine when the column generation

finishes.

In this model, the utility of defender from strategy v is R(vj)
θ = Pdθj + vj(Rd

θ
j − Pdθj), and the utility

of the attacker is C(vj)
θ = Raθj − vj(Raθj − Paθj). We also have chosen an appropriate Mθ for all θ ∈ Θ,

such that the constraint would work with every arbitrary parameters and be as tight as possible. Moreover,

we want a value for Mθ small that does not make the subproblem infeasible.

Proposition 3.1. For all θ ∈ Θ, the smallest value of Mθ that does not eliminate any feasible patrol is

given by

Mθ = pθ(max
j
Rdθj −min

j
Pdθj)− 2|Q| min

jk
αθjk (max

j
Raθj −min

j
Paθj) ∀θ (34)

Proof FO: FIX THIS The Mθ are the minimum value the constraint (28) can get plus Mθ be greater

than the maximum value, for all θ ∈ Θ. For every v the model has, this constraint is guaranteed will be

satisfied. We need to prove that given j ∈ Q and θ ∈ Θ, the values for Mθ need to satisfy the next equation:

9

Mθ + min
j

pθR(vj)
θ − πθ −

∑
k∈Q

(Cθij − Cθik)αθjk

 ≥ max
j

pθR(vj)
θ − πθ −

∑
k∈Q

(Cθij − Cθik)αθjk

 ∀θ

(35)

For all θ we have,

max
j

pθR(vj)
θ −

∑
k∈Q

(Cθij − Cθik)αθjk

−min
j

pθR(vj)
θ −

∑
k∈Q

(Cθij − Cθik)αθjk


≤pθ(max

j
Rdθj −min

j
Pdθj)− 2 max

j

∑
k∈Q

(Cθij − Cθik)αθjk

≤pθ(max
j
Rdθj −min

j
Pdθj)− 2|Q|max

j
Raθj min

jk
αθjk + 2|Q|max

j
max
k

{
Cθikα

θ
jk

}
≤pθ(max

j
Rdθj −min

j
Pdθj)− 2|Q| min

jk
αθjk (max

j
Raθj −min

j
Paθj)

≤Mθ

�

This subproblem searches the maximum joint reduced cost of MIPSG for a new strategy, the optimal

solution of the problem. Once we have the best strategy to add, we check whether the objective function,

f̄ =
∑
θ f

θ is positive. In that case, that strategy must be incorporated into the master problem, because

that column is violating a constraint in the dual. In order to show this statement, we define F θij .

Let F θij a value such as takes for all i, j, θ and πθ, αθjk fixed, the follow expression:

F θij = pθRθij − πθ −
∑
k∈Q

(Cθij − Cθik)αθjk (36)

It is easy to check that if f̄ = max
∑
θ f

θ = max
∑
θ F

θ
j is greater than zero, then we can not satisfy the

dual. In fact,

pθRθij ≤ πθ + σθj + βθi +
∑
k∈Q

(Cθij − Cθik)αθjk

pθRθij − πθ − σθj −
∑
k∈Q

(Cθij − Cθik)αθjk ≤ βθi

∑
θ

pθRθij − πθ − σθj −∑
k∈Q

(Cθij − Cθik)αθjk

 ≤∑
θ

βθi

f̄ =
∑
θ

F θj ≤
∑
θ

βθi = 0

f̄ ≤ 0

10

In this set of equations we are using that σθj = 0, from the dual equation (24), when qθj ∈ R, i.e., when

there are no integer conditions.

We show the condition we need in order to determinate whether we can terminate the column generation

or not. This condition is sufficient to guarantee optimality.

Proposition 3.2. If f̄ = max
∑
θ∈Θ f

θ =
∑
θ∈Θ maxF θij ≤ 0 for a new strategy i in the subproblem, then

there is no new column that mus be included to the master problem. This problem does not need more columns

to be solved optimally.

Proof The first thing we should notice is the βθi values can take arbitrary values because their primal

constraint is always feasible. Indeed,
∑
j z

θ
ij = xi is true for all strategy in or out of the master problem at

any iteration. Hence, if we find some βθi arbitrary that satisfy the dual problem for a non positive reduced

cost strategy i, then it is not necessary to include that strategy.

In fact, we know that in the dual problem we have to satisfy:

F θij ≤ βθi ∀j, θ (37)∑
θ∈Θ

βθi = 0 (38)

We can take an arbitrary θ̄ ∈ Θ and set βθ̄i such that βθ̄i = −
∑
θ∈Θ\{θ̄} maxF θij , and for all remaining

θ ∈ Θ\{θ̄} set βθi = maxF θij .

These βθ̄i for strategy i satisfies:

f̄ =
∑
θ∈Θ

maxF θij ≤ 0

maxF θ̄ij +
∑

θ∈Θ\{θ̄}

maxF θij ≤ 0

maxF θ̄ij ≤ βθ̄i

Using this last inequality it is easy to verify that for all j, θ, the values we have set for βθi meets the first

set of constraints in (37) and also
∑
θ∈Θ β

θ
i = 0. Therefore, when f̄ ≤ 0 we have the conditions necessary to

finish the column generation. �

3.1. Upper and Lower Bounds

Good upper and lower bounds can make the column generation and the branching process much more

efficient. Moreover, if we set optimality tolerances, then tight gaps lead to faster running times we can take

advantage of. We therefore are very interested in being able to bound well the distance between the optimal

and the current solution.

11

Let L be the Lagrangian relaxation of MIPSG obtained by relaxing the adversaries best response con-

straint with a Lagrangian multiplier of αθjk. This relaxation is therefore a function of α and will be updated

every step, providing an upper bound for our problem. Next, we could write this function as follows,

L(α) = max
z,x

∑
i∈X

∑
θ∈Θ

∑
j∈Q

pθRθij −∑
k∈Q

(Cθij − Cθik)αθjk

 zθij

∑
i∈X

∑
j∈Q

zθij = 1 ∀θ

∑
j∈Q

zθij = xi ∀i, θ

zθij ∈ [0, 1] ∀i, j, θ

≤
∑
θ∈Θ

max
i∈X,j∈Q

pθRθij −∑
k∈Q

(Cθij − Cθik)αθjk


=
∑
θ∈Θ

πθ +
∑
θ∈Θ

max
j∈Q,i∈X

F θij

The inequality in the second line is because we removed the constraints that involved the xi variables.

This further relaxed problem gives a value greater than the L(α). In this way, we know in every iteration the

optimal value is greater than
∑
θ∈Θ π

θ and less than
∑
θ∈Θ π

θ +
∑
θ∈Θ maxj∈Q,i∈X F

θ
ij , therefore, the gap is

f̄ =
∑
θ∈Θ maxj∈Q,i∈X F

θ
ij , the objective function of the subproblem. We have also shown by an alternative

way that when f̄ ≤ 0 we have reach the optimal solution with the column generation.

So far, we have described how to identify new columns in our problem when the integrality constraints of

the primal are relaxed, i.e., when qθj ∈ R. We have not discussed how to generate columns (how to conduct

pricing) when branching starts. Fortunately, for this problem we are able to show that this branch and price

is very straightforward for MIPSG.

3.2. Branching scheme

When the variable q is relaxed, we solve the master problem and the subproblem until the optimal

solution is reached. However, the q variable must be integer for the general case, so we implement a branch

and price scheme, a very standard approach. At every node we solve the relaxed problem using column

generation and then, if any of the integer variables is fractional, we branch on it.

In the dual MIPSG model we posed at (22) - (26), there is a dual variable σθj relate to qθj primal variable.

If this primal variable is relaxed, the dual variable is equal to zero. However, when we branch on qθj , it is

no longer zero, and then it has to be included into the subproblem. Hence, as we branch tree’s node in the

branch and price some of these σθj become active, which changes the subproblem.

The condition for terminating the column generation we state says f̄ ≤ 0. In the branched nodes this

condition still holds, but the σθj variables active might change the value of f̄ .

12

The strategy we follow to implement the branch and price is going through the tree from top to bottom,

instead of left to right along nodes. In other words, we quickly find integer solutions, lower bounds of the

problem and then check other branches. We also identify the variables those values are close to 0.5 in the

first place, because they might be more decisive in the objective function.

3.3. Column Generation Stabilization by Dual Price Smoothing

Solving the LP relaxation of a model using column generation has shown some drawbacks when converging

solutions. Vanderbeck [18] listed some of the typical issues that arise when implementing a column generation

due to dual variables. Among them are: (i) a slow convergence, a phenomenon called the tailing-off effect;

(ii) first iterations produce irrelevant columns; (iii) the restricted master solution value keeps constant for

several iterations; (iv) dual values that change considerably from one iteration to another; (v) Langrangian

dual bounds do not convergence monotonically.

Some techniques have been developed in order to deal with these undesirable converging behaviour.

Lubbbecke and Desrosiers [12] described the three most important methods, Weighted Danzing-Wolfe de-

composition, Trust region method and Stabilization approach using primal and dual strategies. We will

use the first one because it has shown a very good performance solving classical problems and it is easy to

implement.

Pessoa et al. [15] give a very complete description and analysis of weighting method. They also show how

this algorithm improves the runtime for solving typical large problems, such as, Machine Scheduling, Bin

Packing and Capacitated Vehicle Routing. Some instances even reduces their solving time by a factor of 5.

They also develop a smoothing technique which uses a hybridization of column generation with sub-gradient

method.

The smoothing technique in its simpler version is as follows. Let yt be the dual solution at stage t and

0 ≤ α ≤ 1 be a weighting parameter, then the dual ỹt for the pricing problem for next iteration is,

ỹt = αŷt + (1− α)yt (39)

where ŷ is the dual associated to the best dual solution so far.

For this smoothing scheme we can have three situations: (i) updated duals give us a positive reduced cost

column; (ii) we get a new dual bound and so we improve the optimality gap; or (iii) it occurs a mis-pricing

and the smoothed prices of the next iterate get closer to yt. A mis-pricing happens when the subproblem

finds a solution with reduced cost non positive with ŷt, which is positive when we use yt. Under this

conditions, Pessoa et al. [15] proved that in finite number of iterations column generation with smoothing

pricing converges to an optimal solution.

A fix α leads a smoothing scheme that convergences after some iterations. A better approach considerer

an auto-adaptive α, which increases and decreases as upper-lower bound gap changes. In [15] they propose

13

an algorithm for this situation, which is based on a sub-gradient information and a mis-pricing sequence for

a given initial α.

Algorithm 1: Mis-pricing sequence

1 k = 1; y0 = ŷt;

2 ᾱ = α;

3 while ᾱ 6= 0 do

4 ᾱ = [1− k · (1− α)]+;

5 ŷt = ᾱŷt + (1− ᾱ)yt;

6 k = k + 1;

7 Solve subproblem using ŷt;

8 if mis-pricing doesn’t occurs then

9 Let t = t+ 1, solve the master and

continue sub-gradient algorithm;

Algorithm 2: Sub-gradient routine

1 α0 = α; t = 0;

2 while reduced cost > 0 do

3 Solve the master problem;

4 Call subproblem with

ŷt = ᾱŷt + (1− ᾱ)yt;

5 if mis-pricing occurs then

6 Start the mis-pricing schedule

(Algorithm 1);

7 else

8 Let gt be the sub-gradient;

9 if gt(ŷt − yt) > 0 then

10 αt = finc(α);

11 else

12 αt = fdec(α);

13 t = t+ 1;

Function for increasing and decreasing α are: finc(αt) = αt + (1 − αt) · 0.1, while fdec(αt) = αt/1.1 if

αt ∈ [0.5, 1) and fdec(αt) = max{0, αt− (1−αt) · 0.1} otherwise. The gt sub-gradient value for a given dual

yt = [π, α] solution is computed as follows,

gtyt =
∑
θ∈Θ

Mθ(1− eθj)− πθ −
∑
k∈Q

C(vj))
θ − C(vk)θ)αθjk (40)

The values of eθj and vj for gt are those we find through the subproblem at iteration t.

3.4. Greedy Algorithm for Subproblem

While the master problem is choosing the best mixed strategy for the leader, the subproblem is finding

the best schedules to include for a new column. In each iteration we solve the master problem, we get new

duals and then we use them for the subproblem. This subproblem has a limited number of resources to add,

probably those with highest value for the objective function.

Henceforth, it is reasonably to think this problem as a knapsack one, since we need to find the most

profitable schedules for a given capacity. A greedy algorithm is a good approach, we describe it in Algorithm

4. We use this algorithm as a speed up additional routine for the column generation.

14

In the greedy algorithm, we basically try all the schedules over set S and we finally add to the new

strategy only those with the highest reduced cost. We repeat this process until no more resources can be

assigned. Then, we return the best strategy and its reduced cost.

Algorithm 3: Column Generation Greedy

1 Include the initial set of basic strategies;

2 while reduced cost > 0 do

3 Solve the Master problem and get the

new dual variables;

4 Get reduced cost from Greedy

subroutine;

5 if reduced cost > 0 then

6 Include the new column;

7 else

8 Get reduced cost from subproblem;

9 if reduced cost > 0 then

10 Include the new column

Algorithm 4: Greedy subroutine

1 Let v be a new strategy vector;

2 reduced cost = value(v);

3 for i = 1; i ≤ N ; i = i+ 1 do

4 index = 0; best = −∞;

5 for r = 1; r ≤ |S|; r = r + 1 do

6 Set schedule sr temporally to

vector v;

7 if best < value(v) then

8 best = value(v);

9 index = r;

10 Include schedule index into v;

11 reduced cost = value(v);

12 return reduced cost and vector v;

However, this greedy does not guarantee we are going to find the optimal solution. Indeed, if it returns

a non positive reduced cost when it finishes, we cannot be sure the optimal solution is reached. Thus, the

subproblem model we describe in (27) - (33) it must be used for checking optimality at the last step. The

algorithm we implement is the Algorithm 3.

4. Computational Results

We randomly generate a set of instances to be solved for each model. The models we consider for the

computational experiments are MIPSG and ERASER, both using column generation. In addition we solve

these instances with the greedy algorithm and the dual stabilization approach presented. In summary our

computational results will compare four solution methods.

As base case we have 70 different zones or targets, one adversary, 5 resources for allocating, 600 schedules

to choose and each of this schedules covers 5 targets. In total we study 1000 instances, given by the four

dimensions of factors in the following way,

• Zones: 50, 60, 70, 80, 90, 100

• Schedules: 200, 400, 600, 800, 1000

15

• Resources: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

• Cover targets per schedule: 2, 3, 4, 5

Then, we can study how each method responds when we change the parameters of the model in one of the

dimensions. We generate random instances, by randomly generating the reward and penalties for both the

leader and the attacker and also generating a random set of initial patrols. We generate the reward values for

both the defender and the attacker using a log-normal distribution. In this way, reward is always positive.

For the penalty, we let it be minus the value obtained for the reward. This way the penalty is always a

negative value. This guarantees that the penalty is less than reward for every attacker and defender. On

the other hand, the patrol set is sampled from a discrete random variable in such a way we do not have two

patrols that are the same. We used the Log-normal to generate the rewards because we can easily modify the

samples obtained and because this distribution has two parameters that provide concise expression for the

coefficient of variation. This coefficient is set to 2 and it can be easily computed as cv = standard deviation
mean .

A coefficient of variation of 2 corresponds to a large input variability.

We use CPLEX 12.4 and maximum runtime is set to 2 hours.

4.1. Algorithm Comparison

In Table 1 we have computed the average number of columns generated by each algorithm for each

resource number. The parameters we have considered correspond to case base’s parameters: 70 targets, 600

feasible schedules and 5 targets covered by schedule.

Resources MISPG-C ERASER-C GREEDY STAB
2 - 130 - -
4 474 326 312 495
6 - 874 - -
8 450 378 386 242
10 230 135 219 225

Table 1: Number of columns: Targets: 70, Schedules: 600, T/S: 5

The only column generation algorithm that can find one or more solutions for every instance is ERASER

the other algorithms cannot solve any instance for 2 and 6 resources. From this table we can see that the

number of columns is not directly related to the number of resources. The ERASER column shows that for

2 and 10 resources the number of needed columns is not too large, about 130, but for 4 the algorithm needs

many more. We also see that the number of columns for MIPSG-c and MIPSG stab is more than the greedy

version generates.

In Figure 1, 2 and 3 we have plotted the average solving running time for each algorithm. When we

vary the number of resources is not clear which is the fastest solving method, however it shows that more

16

10

20

30

40

50

60

70

2 4 6 8 10

Number of Resources

R
u
n
ti
m
e
(1

0
0
o
f
se
co

n
d
s)

MIPSG-C

ERASER-C

GREEDY

STAB

Figure 1: Comparison (Targets: 70, Schedules: 600, T/S: 5)

resources make the problem faster to solve. With 8 or 10 resources the average time is about the half of the

cases with fewer number.

When we plot the number of available schedules, the running time seems stable.

10

20

30

40

50

60

70

200 400 600 800 1000

Number of Schedules

R
u
n
ti
m
e
(1

0
0
o
f
se
co

n
d
s)

MIPSG-C

ERASER-C

GREEDY

STAB

Figure 2: Comparison (Targets: 70, Resources: 5, T/S: 5)

In Figure 3 we can see how the number of targets affects the total solving time. More targets make the

problem harder to solve.

4.2. MIPSG Column Generation Results

In Table 2 we have the average number of columns generated by MIPSG for the case base considering

different number of resources and targets/schedule. As before, not all cases can be solved, for some param-

eters the algorithm cannot solve any of the instances. In particular, for 3 T/S, there are three cases where

no instance was able to be solved.

In Figures

17

10

20

30

40

50

60

70

50 60 70 80 90 100

Number of Targets

R
u
n
ti
m
e
(1

0
0
o
f
se
co

n
d
s)

MIPSG-C

ERASER-C

GREEDY

STAB

Figure 3: Comparison (Schedules: 600, Resources: 5, T/S: 5)

Resources 2 T/S 3 T/S 4 T/S 5 T/S
2 671 659 627 -
4 112 - - 474
6 180 246 - -
8 547 - 679 450
10 - - 286 230

Table 2: Number of columns: Targets: 70, Schedules: 600 for MIPSG-C

1 2 3 4 5 6 7 8 9 10

Number of Resources

R
u
n
ti
m
e
(1

0
0
o
f
se
co

n
d
s)

10

20

30

40

50

60

70
2 T/S

3 T/S

4 T/S

5 T/S

Figure 4: Comparison (Schedules: 600, Targets: 70) for MIPSG-C

18

50 60 70 80 90 100

Number of Targets

R
u
n
ti
m
e
(1

0
0
o
f
se
co

n
d
s)

10

20

30

40

50

60

70
2 T/S

3 T/S

4 T/S

5 T/S

Figure 5: Comparison (Schedules: 600, Resources: 5) for MIPSG-C

200 400 600 800 1000

Number of Schedules

R
u
n
ti
m
e
(1

0
0
o
f
se
co

n
d
s)

10

20

30

40

50

60

70
2 T/S

3 T/S

4 T/S

5 T/S

Figure 6: Comparison (Targets: 70, Resources: 5) for MIPSG-C

19

5. Conclusions

20

[1] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, 1997.

[2] M. Breton, A. Alj, and A. Haurie. Sequential stackelberg equilibria in two-person games. Journal of

Optimization Theory and Applications, 59(1):71–97, 1988.

[3] C. Casorrán-Amilburu, B. Fortz, M. Labbé, and F. Ordóñez. Novel formulations for stackelberg security

games. Working paper, Département d’Informatique, Université Libre de Bruxelles, 2014.

[4] V. Conitzer and T. Sandholm. Computing the optimal strategy to commit to. In Proc. of the 7th ACM

conference on Electronic commerce, pages 82–90, 2006.

[5] D. S. Hochbaum, C. Lyu, and F. Ordóñez. Security routing games with multivehicle chinese postman

problem. Networks, 64(3):181–191, 2014.

[6] M. Jain, E. Kardes, C. Kiekintveld, F. Ordóñez, and M. Tambe. Security games with arbitrary schedules:

A branch and price approach. In Proc. of The 24th AAAI Conference on Artificial Intelligence, pages

792–797, 2010.

[7] M. Jain, C. Kiekintveld, and M. Tambe. Quality-bounded solutions for finite bayesian Stackelberg

games: scaling up. In Proc. of The 10th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS), 2011.

[8] M. Jain, D. Korzhyk, O. Vanek, M. Pechoucek, V. Conitzer, and M. Tambe. A double oracle algorithm

for zero-sum security games on graphs. In Proc. of The 10th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), 2011.

[9] M. Jain, J. Tsai, J. Pita, C. Kiekintveld, S. Rathi, M. Tambe, and F. Ordóñez. Software assistants for

randomized patrol planning for the LAX airport police and the federal air marshal service. Interfaces,

40:267–290, 2010.

[10] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, M. Tambe, and F. Ordóñez. Computing optimal random-

ized resource allocations for massive security games. In Proc. of The 8th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS), pages 689–696, 2009.

[11] M. Labbé, P. Marcotte, and G. Savard. A bilevel model of taxation and its application to optimal

highway pricing. Management Science, 44(12-part 1):1608–1622, 1998.

[12] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations Research,

53(6):1007–1023, 2005.

21

[13] P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. Ordóñez, and S. Kraus. Playing games with

security: An efficient exact algorithm for Bayesian Stackelberg games. In Proc. of The 7th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 895–902, 2008.

[14] P. Paruchuri, J. P. Pearce, M. Tambe, F. Ordóñez, and S. Kraus. An efficient heuristic approach for

security against multiple adversaries. In Proc. of The 6th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), pages 311–318, 2007.

[15] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. In-out separation and column generation stabi-

lization by dual price smoothing. In Experimental Algorithms, pages 354–365. Springer, 2013.

[16] J. Pita, M. Tambe, C. Kiekintveld, S. Cullen, and E. Steigerwald. GUARDS - game theoretic security

allocation on a national scale. In Proc. of The 10th International Conference on Autonomous Agents

and Multiagent Systems (AAMAS), pages 37–44, 2011.

[17] E. Shieh, B. An, R. Yang, M. Tambe, C. Baldwin, J. DiRenzo, B. Maule, and G. Meyer. PROTECT:

A deployed game theoretic system to protect the ports of the United States. In Proc. of The 11th

International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2012.

[18] F. Vanderbeck. Implementing mixed integer column generation. In Column Generation, pages 331–358.

Springer, 2005.

[19] H. von Stackelberg. Market Structure and Equilibrium. Springer-Verlag, Berlin Heidelberg, 2011. Trans-

lation from the German language edition: ”Marktform und Gleichgewicht” by H. von Stackelberg,

Springer-Verlag Wien New York 1934.

[20] R. Yang, A. X. Jiang, M. Tambe, and F. Ordóñez. Scaling-up security games with boundedly rational

adversaries: A cutting-plane approach. In Proc. of the 24nd International Joint Conference on Artificial

Intelligence (IJCAI), 2013.

[21] Z. Yin, D. Korzhyk, C. Kiekintveld, V. Conitzer, and M. Tambe. Stackelberg vs. Nash in security

games: interchangeability, equivalence, and uniqueness. In Proc. of The 9th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS), pages 1139–1146, 2010.

22

