
HAL Id: hal-01666541
https://inria.hal.science/hal-01666541

Submitted on 18 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining inline cache data to order inferred types in
dynamic languages

Nevena Milojković, Clément Béra, Mohammad Ghafari, Oscar Nierstrasz

To cite this version:
Nevena Milojković, Clément Béra, Mohammad Ghafari, Oscar Nierstrasz. Mining inline cache data to
order inferred types in dynamic languages. Science of Computer Programming, 2018, 161, pp.105-121.
�10.1016/j.scico.2017.11.003�. �hal-01666541�

https://inria.hal.science/hal-01666541
https://hal.archives-ouvertes.fr

Mining Inline Cache Data to Order Inferred Types in
Dynamic Languages

Nevena Milojkovića,∗, Clément Bérab, Mohammad Ghafaria, Oscar Nierstrasza

aSoftware Composition Group, University of Bern, Switzerland
bRMOD-INRIA Lille Nord Europe, France

Abstract

The lack of static type information in dynamically-typed languages often poses
obstacles for developers. Type inference algorithms can help, but inferring precise
type information requires complex algorithms that are often slow.

A simple approach that considers only the locally used interface of variables
can identify potential classes for variables, but popular interfaces can generate
a large number of false positives. We propose an approach called inline-cache
type inference (ICTI) to augment the precision of fast and simple type inference
algorithms. ICTI uses type information available in the inline caches during mul-
tiple software runs, to provide a ranked list of possible classes that most likely
represent a variable’s type. We evaluate ICTI through a proof-of-concept that we
implement in Pharo Smalltalk. The analysis of the top-n+2 inferred types (where
n is the number of recorded run-time types for a variable) for 5486 variables from
four different software systems shows that ICTI produces promising results for
about 75% of the variables. For more than 90% of variables, the correct run-
time type is present among first six inferred types. Our ordering shows a twofold
improvement when compared with the unordered basic approach, i.e., for a signif-
icant number of variables for which the basic approach offered ambiguous results,
ICTI was able to promote the correct type to the top of the list.

Keywords: type inference, dynamically-typed languages, inline caches

DOI: 10.1016/j.scico.2017.11.003

∗Corresponding author
URL: scg.unibe.ch/staff/Milojkovic (Nevena Milojković)

Preprint submitted to Science of Computer Programming December 15, 2017

https://doi.org/10.1016/j.scico.2017.11.003

1. Introduction

Static type information has shown to be of crucial importance to develop-
ers during software maintenance [1, 2]. Inferring type information from source
code in dynamically-typed languages has been extensively researched over the
past decades [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. While some approaches rely only5

on the available static information [3, 4, 13, 8], others use dynamic execution to
collect run-time type information and feed it back to the algorithm [14, 5, 10].

For static type analysis to be precise, it must closely track control and data
flow. However, reliable results are usually achieved by analysing the whole pro-
gram which is very expensive. Besides, modern software systems not only depend10

heavily on libraries, but are often part of a distributed system which may not be
available for analysis. Simpler type inference analyses [8, 4] statically track vari-
able assignments and the set of messages sent1 to a variable in order to determine
which classes either implement those methods, or inherit them from a superclass.
Since they are neither control- nor data-flow sensitive, these approaches tend to15

be less precise, but very fast. Nevertheless, the problem with these simple ap-
proaches in dynamically-typed languages is that they provide a developer with
the set of unordered classes that represent possible type for a variable. Unfortu-
nately, this leaves the burden of looking for the correct type on the developer. To
alleviate this issue, we have investigated a way of ordering the results of a simple20

type inference algorithm by statically analysing the frequency of class usages and
class instantiations in the source code [15]. In that work, the focus was only on
static data, which results in missing certain types when dynamic class loading or
reflection are used [16].

Nowadays many virtual machines for dynamic languages include Just-in-Time25

compilers that use inline caches [17, 18] to achieve high performance. Inline
caches have been exploited for compiler optimisation purposes [14]. Besides the
information about methods that were previously selected to respond to a message
send, these caches also contain receiver type information for the message send,
which could be easily exploited in order to improve current development tools.30

This run-time information about the type of the receiver has already been used
to feed the type back to code, and in case of successful type checking at run
time, to inline the message send, and execute code faster. However, to the best
of our knowledge, it has still not been used to improve static type information

1The terms “message” and “method” originate from Smalltalk, where one “sends a message”
to an object, and the receiver then selects a “method” to respond to that message.

2

for other message sends, for which the receiver type has not been collected from35

inline caches. We believe that this information collected during execution of any
program written in the same language would add productively to the statically
collected knowledge used for inferring a variable’s type. As run-time information
has been read from the virtual machine, no instrumentation is required.

We present an approach called inline cache type inference (ICTI) to exploit40

type information collected from inline caches during program runs from different
systems written in the same language in order to improve static type inference.
We employ a simple static analysis algorithm to infer types of variables. Type
information collected from inline caches during execution of other programs writ-
ten in the same language is then used to order the types of these variables. This45

means that the possible classes for a variable are ordered based on the class usage
frequency during program runs.

We have implemented a proof-of-concept prototype for Pharo2, a dialect of
Smalltalk, a highly reflective dynamically-typed language, which enables fast and
easy implementation of analysis tools [19]. We have used this implementation to50

evaluate our claim that the frequency of class usage as the type of a receiver at
run time can serve as a reliable proxy to statically identify the type of a variable.
We have used a basic static analysis algorithm, i.e., RoelTyper [8], to collect static
type information based on the messages sent to variables and from assignments to
them. We then augmented the results with the help of the inline cache information.55

The results show that the implemented heuristic is reasonably precise for more
than 75% of the variables, and compared to the basic algorithm, ICTI more than
doubled the number of correctly guessed types for a variable. We believe the
improvement achieved by our heuristic can boost the performance of simple static
type inference algorithms, regardless of their various applications in the field.60

This article extends our previous work [20] as follows: (i) we present a mo-
tivating example for ICTI, (ii) we provide a thorough discussion of related work,
(iii) we explain in detail how we gather type information from the runtime, (iv) we
improve ICTI with a heuristic that collects type hints from method argument
names, (v) we evaluate ICTI on 15% larger set of variables, (vi) we compare65

ICTI with the basic algorithm, and (vii) we discuss the results.
Structure of the Paper. We start by giving an overview of the problem in

section 2. We discuss the related work in the field in section 3. Section 4 explains

2http://www.pharo.org Pharo is a Smalltalk IDE, including a large library that contains the core
of the Smalltalk system itself.

3

http://www.pharo.org

the virtual machine used for run-time data collection. Next we define the used
terminology and the implemented heuristic in section 5. Section 6 shows results70

of the evaluation of the prototype. We then describe potential threats to validity in
section 7 before concluding in section 8.

2. Motivation

To explain the contribution of this paper, let us consider the example in List-
ing 1. The example3 is written in Pharo Smalltalk.75

1ComposableModel subclass: #MethodBrowser
2instanceVariableNames: 'listModel textModel toolbarModel'
3classVariableNames: ''
4category: 'Spec−Examples'
580

6MethodBrowser>>#initializePresenter
7listModel whenSelectedItemChanged: [:selection |
8selection
9ifNil: [
10textModel text: ''.85

11textModel behavior: nil.
12toolbarModel method: nil]
13ifNotNil: [:m |
14textModel text: m sourceCode.
15textModel behavior: m methodClass.90

16toolbarModel method: m]].
17self acceptBlock: [:t | self listModel selectedItem inspect].
18self wrapWith: [:item | item methodClass name,'>>#', item selector].

Listing 1: The run-time type of the argument “item” cannot be statically detected by the traditional
approach

Lines 1-4 define a class named MethodBrowser used to browse methods of a
given class, and lines 6-18 define a method named initializePresenter to initialize95

variables of the MethodBrowser class. Suppose that a developer needs to know the
type of the block argument item in the last line of the method initializePresenter,
either to understand which method with selector i.e., the name of the method,

3This code snippet is actual code from the SPEC system:
http://www.smalltalkhub.com/#!/~Pharo/Pharo60/packages/Spec-Examples

4

http://www.smalltalkhub.com/#!/~Pharo/Pharo60/packages/Spec-Examples

methodClass will be invoked, or to understand the behaviour of the method. The
only available information is that this variable needs to understand messages with100

selectors methodClass and selector. Polymorphic selectors are frequently used in
Smalltalk [21] which means that a large number of methods implement these se-
lectors. In the Pharo image4 we used for our experiments, there are 20 methods
with selector methodClass and 67 methods with selector selector. A simple anal-
ysis, such as that offered by RoelTyper, which is used as the basic approach in105

the paper, uses the information about messages sent to the variable, and presents
the developer with fourteen classes whose instances understand both messages.
RoelTyper also uses the information about assignments to the variables, which
is missing in this case. Hence, these fourteen classes are presented to the devel-
oper without any particular order. This number is even higher since a developer is110

presented only with the root classes that understand the corresponding set of mes-
sages. Even though it is obvious to the developer that the type of the variable item
is related to some representation of the method, it is not obvious which method
representation of many is used. Some of them are considered “polymorphic”,
indicating that instances of these classes can be interchangeable.5115

It would be useful for a developer to be presented with a sorted list of classes
that promotes classes likely to be correct to the top of the list. In this paper
we argue that the information collected from inline caches from different soft-
ware runs can be useful to order inferred types in dynamically-typed languages.
For instance, if we use the information available from inline caches, we can120

observe that ten out of fourteen possible classes were used as variable type at
some point in the Smalltalk code execution. Classes that were used the most are,
in that order, CompiledMethod, RBMethodNode, Context and RGMethodDefinition.
CompiledMethod class is present at the first spot, and this class represents the run-
time type of the variable item.125

3. Related work

3.1. Static type inference
The pioneer in this field was Milner [3] who developed a type inference al-

gorithm for ML, a functional programming language. The algorithm supports

4Pharo 6.0 version 60324
5Class comments for the class RGMethodDefinition state that this class “is polymorphic with

CompiledMethod” class.

5

parametric polymorphism, but not subtyping. It infers the type of a variable us-130

ing constraints based on the variable’s usage. The algorithm is sound: if an ML
program is well-typed, it will not produce run-time type errors. Another type
inference algorithm is proposed for the functional language, FL [13]. FL is a
dynamically-typed language, in which a type is considered to be a set of normal-
form expressions.135

Agesen et al. have developed a type inference algorithm [22] for Self, a
dynamically-typed language inspired by Smalltalk [23], but based on cloning ob-
jects rather than instantiating classes, and supporting the possibility for dynamic
and multiple inheritance. This is the first algorithm to consider dynamic and mul-
tiple inheritance.140

The Cartesian Product Algorithm, known as CPA [4], exploits the fact that the
type of the return value of a method usually depends on the types of the method’s
arguments. The algorithm itself has been developed for the Self programming
language [24]. The authors use as a base algorithm the one described by Palsberg
et al. [25] who modelled a program as a set of constraints.145

Starkiller [6] is a type inference algorithm for Python, based on the Cartesian
Product Algorithm. It tries to reconstruct a flow of objects to model the runtime
behavior of a software. Each variable is represented as a node that holds the
information about the possible types that a variable may assume at runtime.

CPA was used in combination with type hints from method argument names in150

Smalltalk [26]. The combination, named CPA∗ increased the size of the analysed
call graph by about 30% and the number of method arguments for which it inferred
the correct type by about 80%.

Spoon et al. developed one of the most precise type inference algorithms [7,
27], a demand-driven algorithm using subgoal pruning. The information used155

for type inferencing is analysed on demand, and the precision of the algorithm
decreases if some of the subgoals required for type inference need to be discarded
for complexity reasons.

A fast and relatively accurate type inference technique was developed by Plu-
quet [8]. The algorithm traverses the set of messages sent to a variable along with160

assignments to the same variable and infers types for it. This approach was used as
a basis for our prototype implementation, as well as for the prototype implemen-
tation of the EATI algorithm, which advocates the idea of using the information
available in the language ecosystem to increase precision [28].

6

3.2. Dynamic type inference165

One of the first uses of inline caching as a way to statically reconstruct the type
of a variable from a running system has been in Self [14]. The authors collect run-
time receiver types seen at each call site, and feed this information back to the
compiler for optimisation purposes. They predict the type of the receiver based
on the receiver’s types seen during previous program runs.170

Static type inference that relies on dynamic collection of data has been de-
veloped for Smalltalk [5]. The algorithm observes types of objects stored in the
variables at run time, and incrementally updates the static type information. The
main assumption needed for this work is that test coverage is “complete” and that
the program of interest is in a runnable state. Obviously, the more frequently the175

variable has been encountered during a program run, the more precise will be the
type information.

A type inference algorithm for Ruby based on source code instrumentation
and dynamic execution of the program has been developed by An et al. [10]. This
approach needs to run the program for which the types of variables have to be180

inferred, and in order for the analysis to be sound, the execution must cover all
possible paths in the control-flow graph. Type constraints are created for a variable
based on the observed run-time types. As the authors state, the current overhead
introduced with this analysis is quite high.

Odgaard et al. present a way of annotating JavaScript code based on the dy-185

namic type information collected from running unit tests [12]. Code is instru-
mented in order to record run-time types of the variables. Instrumentation adds to
software size and increases the execution time.

3.3. Hybrid analysis
The combination of static and dynamic analysis is known as hybrid analy-190

sis [29]. The key idea is to infer conservative information by use of static anal-
ysis, which is further fine-tuned by information collected at run-time. Fast and
precise hybrid type inference has been presented for JavaScript [30], which tries
to infer sound type information by customising static type information to also deal
with types recorded at run time. These approaches are useful in cases where static195

analysis tends to produce too conservative data, or to be unsound due to dynamic
class loading or reflection.

3.4. Gradual typing
Gradual typing allows some of the variables to be typed at compile time, while

other variables may be left untyped. Correctness of typed variables is checked at200

7

compile time, and the type system ensures that these types are not violated at
run time. Gradual typing has been implemented for Racket, a multi-paradigm
programming language [31]. It supports statically-typed Racket programs by sup-
porting existing language idioms. It has been used as an inspiration for Gradu-
altalk, a gradual type system for Smalltalk developed by Allende et al. [11].205

A gradual type system called DRuby [32] has been implemented for Ruby,
allowing developers to annotate and type check selected parts of the code base.

3.5. Optional typing
Optional typing grants to a developer the opportunity to specify the type of a

variable when deemed necessary. Strongtalk is an optional type system developed210

for Smalltalk [33], which was used for optimisation purposes. Pegon [34] is an
optional type system also developed for Smalltalk and inspired by Strongtalk.
A pluggable type system allows a language to support multiple, optional type
systems.

4. Gathering of dynamic type information215

4.1. Dynamic type information gathering
Object-oriented languages are very difficult to optimise statically due to the

dynamic nature of message sends: the method called is unknown at compilation
time. To solve this problem, modern virtual machines rely on a JIT (Just-in-Time
compiler) which speculates on types based on the types met in the previous runs220

of the code to achieve high performance. We built a dynamic type data gatherer
using the same infrastructure to extract types from previous runs of the JIT.

We describe shortly the execution model used by such VMs, especially the
techniques used to extract type information from previous runs. We then explain
how we use the infrastructure provided to gather type information.225

4.2. High-performance virtual machine execution model
There are two main ways to achieve high-performance in object programming

languages in the presence of a large number of message sends.
Part of the community believes that the highest performance can be reached

using a meta-tracing runtime compiler. Such compilers record a linear sequence230

of frequently executed operations and translate them efficiently to machine code.
The most popular open-source production VMs using this design are LuaJIT [35]

8

and Pypy6 [36]. The Pharo VM does not use this design, so we will not discuss
it further. It is not clear whether our dynamic type data gatherer could work with
such VMs as the execution model is quite different.235

The rest of the community believes that the highest performance can be reached
using a method-based runtime compiler. Such compilers optimise frequently-
used methods by using type information of previous runs. The most popular
open-source production VMs using this design are Java’s hotspot VM7 [37] and
Javascript’s V8 engine8 [38]. The Pharo VM implementation is heading toward240

this design, though speculative optimisations have not been introduced yet. For
the rest of this section we will discuss only this design.

4.3. Execution of message sends
Interpreter. Conceptually, the VM executes compiled methods by interpreting the
method’s bytecodes. Each message send causes the bytecode interpreter to at-245

tempt to fetch the method to execute from the receiver class and the message
selector in a global look-up cache, and on a cache miss, it performs the look-up
routine. As the interpreter’s cache is global, it is difficult to provide reliable type
information from interpreted code9.

Baseline JIT. When a method is used multiple times, the baseline JIT (in contrast250

to an optimising JIT) translates it to machine code and the VM subsequently uses
that version. The machine code version of the compiled method produced by
the baseline JIT includes a specific cache for each message send, called an inline
cache [39, 40]. Such caches remember look-up results for a given receiver type,
speeding up the execution and, as discussed later, providing type information for255

the optimising JIT.
An inline cache can be in four main states. If one stops the execution of a typ-

ical production application and analyses the inline caches present in the machine
code generated by the JIT, the inline caches would be present with the following
frequency (please, bear in mind that this is an approximation based on the analysis260

of real production applications to provide orders of magnitude):

6Pypy is mostly used as an alternative virtual machine for Python.
7The hotspot VM is the default virtual machine for Java.
8V8 is mostly used as the Javascript engine for Google Chrome and NodeJS.
9It is possible, but it requires either significant overhead or to use processor-specific machine

code optimisation techniques, implying in this latter case a different version of the code for each
processor supported.

9

• unused: 30% of inline caches remain unused, for example because they
are in a branch that is never reached by the running code. All inline caches
are compiled to unused inline caches, and they become monomorphic when
executed for the first time.265

• monomorphic: 63% of inline caches (90% of used inline caches) contain
a single receiver type. In this case the cache is entirely present in the mes-
sage send’s method machine code. This cache becomes polymorphic when
another receiver type is met.

• polymorphic: 6.3% of inline caches (9% of used inline caches) contain a270

small number of different receiver types (up to 4 in Oracle’s Java virtual
machine, 6 in the Pharo VM). In this case the cache is extended to a remote
jump table, generated in machine code. This case becomes megamorphic
when too many receiver types are met.

• megamorphic: 0.7% of inline caches (1% of used inline caches) are used275

with more than a small number of different receiver types. This latter case
can be implemented in multiple ways, but most in popular implementations
there is no reliable way to extract types from this kind of cache.

When introspecting the machine code of a method, the VM can read the inline
cache’s data. The VM starts by identifying the state of the cache and inferring280

types accordingly. If the cache is unused or megamorphic, no type can be in-
ferred. If the cache is monomorphic or polymorphic, the type of the receiver can
be inferred as a small set of one to six concrete types.

We note that the caches are not guaranteed to contain all the types met for a
given send site. Not all of the possible executions of the send site by the bytecode285

interpreter are recorded. In addition, the inline cache cannot reference methods
not already compiled to machine code, hence if the cache misses and the method
found is interpreted, it is not recorded in the cache. The cache data is normally
used as a hint to direct compiler optimisation and is good enough for this purpose,
but it is not 100% accurate.290

Optimising JIT. Once a method is executed numerous times, the optimising JIT
extracts the type information through machine code introspection and generates a
new machine code version of the method that is faster to execute. Every optimis-
ing JIT performs inlining based on the types speculated, deoptimising the code
on-the-fly if one of the compilation-time speculations happens to be incorrect in295

10

subsequent runs, so the execution of a message send at this point does not really
make sense any more (there is no call at all after inlining).

4.4. Dynamic type information gatherer built
As stated before, the Pharo VM has in production a bytecode interpreter and a

baseline JIT, but the optimising JIT is still a work in progress. The direction taken300

for this work is similar to the Truffle project in the sense that the optimising com-
piler is written in Pharo itself and runs in the same runtime as the optimised ap-
plication. Because of these specifications, it is possible from Pharo to ask the VM
about the inline cache’s values so the optimising JIT can speculate about types.
This was done through a new primitive method10 answering the inline caches val-305

ues for a given method if the method has a machine code version generated by the
baseline JIT. This part of the work is fully implemented, tested and running, hence
it is possible to use it for other applications, such as the dynamic type information
gatherer.

For each send site, the type information provided by the VM consists of an310

array of types and methods next to the bytecode program counter of the send site.
As types are inferred at the AST level in our other heuristics [15], we needed
to leverage that information. The Opal compiler [41] provides a tool to map the
bytecode program counter to AST nodes, which is normally used by the debug-
ger [42] to highlight the code being executed. We used this tool to map the type315

information from the bytecode program counter to the AST nodes.
The VM can provide type information only on methods compiled to machine

code. We added another primitive method, answering an array of all methods
compiled to machine code, i.e., all methods with type information. This way, it is
possible to get the list of methods with runtime type information and collect the320

types of each of those methods for each message send’s receiver.
Our dynamic type data gatherer is scheduled to run regularly (every second)

in the Pharo image,11 in order to ensure that collected data is up-to-date. The
gatherer queries the virtual machine for all the message sends that have recently

10Some messages in the system are responded to primitively. A primitive response is performed
directly by the interpreter rather than by evaluating expressions in the method. Essential primitives,
as opposed to optional primitives available for performance only, cannot be performed in any other
way. For example, Smalltalk without primitives can move values from one variable to another, but
cannot add two SmallIntegers together.

11The term “Pharo image” is used to denote snapshot of the running Pharo system, frozen in
time.

11

been executed, and collects type information of the receiver.325

4.5. Type information and optimising JIT
The current version of the dynamic type data gatherer extracts type informa-

tion from the machine code versions of methods generated by the baseline JIT.
The production Pharo VM features only a bytecode interpreter and a baseline JIT,
hence the type information is extracted easily. However, VMs such as the Java330

virtual machine feature in addition an optimising JIT compiler. Introspection of
the machine code generated by the optimising JIT of such VMs is very difficult
because it is heavily optimised and there is close to no type information available
due to optimisations such as speculative inlining.

The Pharo VM is heading in the same direction as an optimising JIT is under335

development. At this point, we will need another way to extract types in optimised
code. We believe that when the optimising JIT extracts the type information from
previous runs of multiple methods (i.e., the method it optimises as well as the
methods it is inlined in) to speculate on types, it could inform external tools such
as the dynamic type gatherer, about the read types. Therefore, it should be possible340

to implement a similar tool on the incoming releases of the Pharo VM as well as
on the Java virtual machine.

5. Type inference algorithm

5.1. Terminology
To explain ICTI, we introduce a simple set-theoretic model in Figure 1 that345

captures key properties for the entities shown in the UML diagram in the Figure 2.

msg : V → P(S) (1)

sel : M → S (2)

def : M → C (3)

sup : C → C ∪ {null} (4)

assign_types : V → P(C) (5)

under : C ∪ {null} × S → {true, false} (6)

Figure 1: The core model.

12

Given a target programming language, C is the domain of all classes, M is the
domain of all methods, S is the domain of all selectors. V is the domain of all
variables, including instance variables, method arguments and local variables.

Selector

Method

1

1…*

Class

0…*

1

Variable

0…1

superclass 0…*

has selector

defined in

0…*1

receives
0…*

0…*

0..*
is assigned

Figure 2: The core model in UML

Each variable v has a (possibly empty) set of messages msg(v) sent to it within350

its lexical scope12 either directly or through the getter methods (1). We call this set
of messages the interface of the variable v. Each method m has a unique selector
s = sel(m) (2), and is defined in a unique class c = def(m) (3). Each class c has
a unique superclass c′ = sup(c)(4). We define the superclass of Object to be null,
i.e., sup(Object) = null.355

Consider the example class hierarchy in Figure 4. In this example we see
a class HandMorph with an instance variable named temporaryCursor and meth-
ods cursorBounds, showTemporaryCursor:hotSpotOffset: and initialize. Within these
three methods messages sent to the instance variable temporaryCursor are

msg(temporaryCursor) = {extent, offset, ifNil:ifNotNil:}360

12Note that in this paper we consider the scope for instance variables only to be the methods
of the class in which it is defined, but not its subclasses. Considering also the methods of the
subclasses to be part of the lexical scope of a variable can only improve the results.

13

under(c, s) = s ∈ sel(def−1(c)) ∨ under(sup(c), s) (7)

intr(c) = {s ∈ S|under(c, s) = true} (8)

sel_all_types(v) = {c ∈ C|msg(v) ⊆ intr(c)} (9)

roots(C ′) = {c ∈ C|∀n > 0, supn(c) /∈ C ′},where C ′ ∈ P(C) (10)

sel_types(v) = roots(sel_all_types(v)) (11)

Figure 3: Computing possible types for a variable.

HandMorph

- temporaryCursor

+ cursorBounds
+ showTemporaryCursor:hotSpotOffset:

+ initialize

cursorBounds
 temporaryCursor
 ifNil: […]

ifNotNil: […temporaryCursor extent]

initialize
 temporaryCursor := nil.

showTemporaryCursor: cursorOrNil
 hotSpotOffset: hotSpotOffset

…
temporaryCursor := cursorOrNil asCursorForm.
temporaryCursorOffset := temporaryCursor offset

DisplayObject
+ extent
+ offset

+ extent

+ ifNil:ifNotNil

Morph

RubAbstractTextArea
offset

TransformMorph
offset

ImageFillStyle
+ extent
+ offset

Object

Figure 4: Sample class hierarchy

Also, each variable v may have one or more assigned types c ∈ assign_types(v)

14

Expression Inferred type
x = y x == y x < y x > y x <= y x >= y
x = y

Boolean

x msg y, where msg is any of the arithmetic, logarithmic or
trigonometric functions or functions used to round a number

Number

Table 1: Heuristics from RoelTyper [8] used to infer the type of the expression

if the variable v occurs on the left-hand side of an assignment where the right side
of the same assignment is a message send to a class resulting in the creation of
a new object, i.e., is a call to a constructor, or this newly-created object has been
assigned to the variable via setter methods (5). Multiple assignments to the same365

variable are also possible.
We have used a couple of heuristics to guess the type of the expression result

assigned to the variable, as was done with RoelTyper [8]. These heuristics are
listed in Table 1.

We can now query the model to ascertain the set of possible types for every370

variable. Each class c can either understand the selector s or not (6). The class c
understands selector s if it defines a method m ∈ def−1(c) such that sel(m) = s
or its superclass sup(c) understands it (7), as presented in Figure 3. We also
define that under(null, s) = false. The interface of the class c is a set intr(c) of all
the selectors s that class c understands (8). We first create set of all classes which375

understand the interface of the variable v (9), and then take the roots of hierarchies
of this set of classes (10) as possible types for a variable v (11).

In the example in Figure 4 we see that the root classes that understand the set of
messages sent to variable temporaryCursor are classes DisplayObject, ImageFillStyle,
RubAbstractTextArea and TransformMorph, i.e.,380

sel_types(temporaryCursor) = {DisplayObject, ImageFillStyle, RubAbstractTextArea,
TransformMorph}

It is important to emphasise that our aim is not to provide receiver type in-
formation directly from the inline caches, if available, to a developer. This in-
formation, available or not at the moment of inferring variable’s type, may not385

be comprehensive. During the lifetime of the image, we collect the information
about the frequency of use of each class as a type of the receiver in the current
image. Possible classes for a receiver type, which are statically inferred using

15

the message sends and assignments to the variable, are then sorted based on this
frequency.390

5.1.1. Method arguments
A common practice in dynamically-typed languages is to name method ar-

guments (i.e., formal parameters to methods) in such a way as to reveal their
expected type [43, 44, 45]. Type hints in a variable’s name have a positive impact
on program comprehension [2]. Type annotations in method argument names395

are used in several dynamically-typed languages like Python [46], Groovy [47],
Dart [48] and Smalltalk [49]. Smalltalk developers insert the name of the expected
type into a method argument name [23, 43]. For example, a method argument
named aString suggests that the method expects an argument of type String. Re-
cent studies revealed that developers do not practice this pattern consistently [49],400

but it is used as a heuristic. We have implemented the following heuristic that
restricts the set of types inferred for method arguments:

1. first we extract the substring of the argument name starting from the first
uppercase character to the end, e.g., a variable named aBlock would yield
Block405

2. among classes that are inferred from a variable’s interface, we would select
only those classes whose name matches the regular expression
".*",extracted substring,".*"

We apply this heuristic only to the set of types inferred from variable interface,
that is sel_types, as we deem assigned types to the variable to be correct as it is.410

However, this is beyond our small example.

5.2. Dynamic information
Let MS be the set of all message sends in the target programming language.

Each message send has a receiver and a selector sent to the receiver.
Each class occurs as the type of a receiver for a message sent zero or more415

times (12). Based on the inline cache information collected during the image life-
time, we calculate the class_freq (13), as the number of message sends for which
this class occurred as a receiver type during run time. class_freq is a global vari-
able calculated for each class. From this information we calculate class_value(c)
(14) for class c, as the sum of class_freq(c′) for each class c′ which is a subclass420

of c. This information is used to sort the classes that represent possible types for

16

run-time_type : MS→ P(C) (12)

class_freq(c) = |{ms|c ∈ run-time_type(ms)}| (13)

class_value(c) =
∑

c=supn(c′),n∈N
c′∈C

class_freq(c′) (14)

Figure 5: Calculating class value.

a variable. We extract this information from the virtual machine, with the help of
the implemented dynamic type information gatherer.

We convey here the class_values for each of the classes present in the set
sel_types(temporaryCursor), as collected during dynamic type information gath-425

erer phase. In the interest of conciseness, we convey only the class_values of
these classes, and not the lists of message sends for which these classes were
recorded as receiver types at run time. The details of the dynamic type informa-
tion gatherer process will be explained in subsection 6.1.

Dynamically collected information is used to order separately two sets of430

classes: assign_types(v) and sel_types(v). In our example in Figure 4, we en-
counter the following values of the classes DisplayObject, RubAbstractTextArea,
TransformMorph and ImageFillStyle :

class_value(DisplayObject) = 396
class_value(RubAbstractTextArea) = 343

class_value(TransformMorph) = 244
class_value(ImageFillStyle) = 31

Based on the obtained information, we can now sort the possible types for the435

variable temporaryCursor. The list assign_types(temporaryCursor) in our example
has no elements, so there is nothing to sort. But the list sel_types(temporaryCursor)
has four elements that will be sorted as follows:

1. DisplayObject

2. RubAbstractTextArea440

3. TransformMorph

4. ImageFillStyle

17

To present one list of possible types to a developer, we use AssignmentFirst-
Merger from the base approach [8]. This means that we give dominance to as-
signment types rather than selector types. After sorting both lists of types, namely445

assign_types(v) and sel_types(v), we iterate through the list of sel_types(v) and
remove all the classes that are related to any of the classes from assign_types(v),
i.e., are a superclass or a subclass of any of the assignment types. We append the
remainder of the sorted list of selector types to the list of assignment types.

5.3. Class-Based approach450

While it is important for developers to know the possible hierarchy to which
the type of a variable may belong, it is sometimes also important to infer the pre-
cise class that represents the run-time type of the variable. Many of the analysed
variables have an interface understood by many independent hierarchies, i.e., hi-
erarchies whose roots do not have a common superclass understanding the same455

interface, thus we wanted to verify how successfully ICTI would infer the pre-
cise class. A variable can have an interface understood by tens, hundreds, or even
thousands of classes. Obviously, such information presented to a developer is not
helpful. Hence we order them so that we promote the correct class towards the
top of the list.460

Most of the existing type inference algorithms for dynamically-typed lan-
guages focus on the type hierarchy rather than on the precise type.

The hierarchy-based approach has already been explained throughout subsec-
tion 5.1. The class-based approach takes into account all the possible classes
inferred based on the variable’s interface. This means that sorting classes is465

now applied to sel_all_types(v) rather than to sel_types(v). This indicates that
class_value(c) = class_freq(c) for any class c, since we are considering each
class separately as the possible type. Merging with the list of assign_types(v) is
performed in the same manner as in the hierarchy-based approach.

In the example in Figure 4 the interface of the instance variable temporaryCursor470

is understood by four independent hierarchies of classes. If we include as possible
types also their subclasses, we get a set of 20 different classes, which we do not
list here.

Accordingly, we present two types of information to the developer: the one
obtained by a hierarchy-based approach, and the other by a class-based one.475

Let us emphasise here that we do not apply this change to the set assign_types(v),
but only to the set sel_types(v). We consider the set of explicitly assigned types to
a variable to be truthful, as it is. The implications of this decision are discussed in
section 7.

18

6. Evaluation480

6.1. Inline caching type gathering
In previous work type information from inline caches was fed back to the

compiler for the purpose of optimisation. To the best of our knowledge, this is the
first experiment that explores to what extent run-time type information from other
packages is useful when trying to statically infer types in the packages separate485

from those whose run-time types are collected.

Figure 6: Distribution of class_values for recorder run-time types

In order to collect run-time type information from inline caching we have run
almost all the tests available in the Pharo image.13 We ran 815 test classes, which
left us with almost 12 000 test methods. These tests allowed us to collect the
frequency of classes as message receiver types at run time for 4925 out of 7640490

classes available in the image, that is about 65% of classes. The collected data
has been used to calculate the class value, class_value(c) of each class c. We

13Pharo 5.0 version 50761

19

have run the Shapiro-Wilk test [50] on the set of run-time types collected during
tests execution and obtained the p-value to be less than 2.2e-16 which means that
the run-time types are not normally distributed. The distribution of class_values495

can be found in Figure 6. We have measured the test execution times during
data collection and compared them to test execution without inline cache data
collection. The average overhead introduced per method is 0.6 milliseconds, i.e.,
a bit less then 40%. The introduced overhead is acceptable, even though it is high,
since we have run an unoptimised version of the type gatherer. We have run all the500

tests cases at once, and instructed the type gatherer to run every second, to collect
enough of data from inline caches. We believe that in reality the type gatherer can
be instructed to run more seldom, thus the introduced overhead would be much
smaller.

We are fully aware that the distribution of class_values for the classes recorded505

from inline caches during the test executions influences the results to a great ex-
tent. The information collected from the inline caches, even though is correct,
may not be complete. This problem arises from the limited amount of memory
that the virtual machine uses to store the information from the inline caches. For
the purpose of the experiment, we have run all test cases in the image sequentially.510

Because of that, we have instructed the dynamic type gatherer to run every sec-
ond, so that we lose as little run-time information as possible. We have discussed
these limitations in Section 7.

6.2. Projects used for evaluation
For the evaluation we have used four open-source Pharo projects for which515

we were able to collect run-time information that closely depicts their real usage:
Glamour14 [51], Roassal215 [52], Morphic [53] and Moose16 [54, 55, 56]. Glam-
our is a framework for specifying the navigation flow of browsers. Roassal is
an agile visualisation engine that graphically renders objects. Morphic is a User
Interface construction kit, and Moose is a platform for software and data analysis.520

We first statically infer types for the variables defined in these projects, and
proceed by ordering these types based on the class usage frequency collected
from inline caches. On the other hand, we collect run-time types of these vari-
ables, through the execution of example methods. These methods are defined by

14http://www.smalltalkhub.com/#!/~Moose/Glamour
15http://smalltalkhub.com/#!/~ObjectProfile/Roassal2
16http://www.smalltalkhub.com/#!/~Moose/Moose

20

http://www.smalltalkhub.com/#!/~Moose/Glamour
http://smalltalkhub.com/#!/~ObjectProfile/Roassal2
http://www.smalltalkhub.com/#!/~Moose/Moose

developers of these projects, and intended as the examples of how the correspond-525

ing software should be used. Glamour has 83 of these methods, Morphic 29 and
Roassal 952. For Moose we have collected run-time data by performing soft-
ware analysis on a project. We have loaded an MSE file,17 and, after loading the
model, we performed the following analysis of the project: we have searched for
all deprecated classes and deprecated methods. We have also searched for largest530

methods in the model, as well as for the abstract methods and methods that contain
a null check. During the execution of these projects, the information about types
of variables was recorded, and this information was declared to be the ground
truth. In order to recover these run-time types of the variables, the source code
of the projects was instrumented to log the types of the variables as the provided535

examples were executed. To recover dynamic type information we have used a
tool to track the types of variables at run time, built on top of Reflectivity,18 a re-
flection API for annotating AST nodes with metalinks. For each variable in these
five projects, we have compared the list of types statically inferred by ICTI with
the list of types recorded at run time, during the execution of example methods.540

Looking back at the inline cache type gathering phase, we run 815 tests that are
part of the standard Pharo image. Note that two of the projects we have used for
the evaluation, namely Glamour and Morphic, are part of the default Pharo image.
During the inline cache type gathering phase we have omitted tests that belong to
these projects. After removing the 76 tests belonging to these two projects from545

the 891 tests in the Pharo image, we were left with 815 tests.
We use run-time type information collected by running example methods to

represent the ground truth in the evaluation phase, and compare them to statically
inferred types. We do not collect any type information from these four projects
during the inline cache type gathering phase.550

Types of these variables are then inferred using ICTI. Examples that we used
to collect the run-time information about types for which we were able to statically
infer the type, i.e., at least one message was sent to the variable, or there was an
assignment of a newly instantiated type to the variable, covered 179 variables in
Glamour, 257 variables in Moose, 1052 variables in Morphic and 3998 variables555

in Roassal2.

21

Hierarchy-based approach

Project
name

#of
analysed
variables

#of
guessed
variables

#of
guessed
variables
- library

type

#of
guessed
variables
- package

type

#of
near-

guessed
variables

#of in-
correctly-
guessed
variables

#of
Object
type

Roassal 3998 2401 1411 987 513 776 308
Glamour 179 108 50 57 24 14 33
Morphic 1052 705 442 263 175 66 106
Moose 257 158 144 14 34 50 15
SUM 5486 3372

(61.5%)
2047
(61%)

1321
(39%)

746
(13.6%)

906
(16.5%)

462
(7.9%)

Table 2: Inline cache heuristic

6.3. Overall results — Hierarchy-Based approach
If the class at the top of the list of sorted types is a superclass of the class which

represents actual run-time type of a variable, we label such a variable guessed.
Around 20% of variables used for the evaluation were recorded to have more560

than one run-time type. In this case, we applied the following criterion. Let us
denote with n > 1 the number of recorded run-time types. We define m ≥ 1
to be the size of the smallest set of statically inferred classes whose combined
subhierarchies include all run-time types of the variable, and label this set with
CT (correct types). If CT set is equal to the set of first m classes of the statically565

inferred list, we consider the variable to be guessed.
Overall results are presented in Table 2. Results are presented per package, as

well as in total. The results show that the heuristic of ordering types based on the
frequency of a type being seen as the run-time type is able to guess type in around
61.5% of cases. Deeper analysis revealed that, expectedly, ICTI improved type570

inference of library types more than type inference of project-related types.
If ICTI failed to guess the type of a variable, but the correct type is present the

top three classes, we call such a variable near-guessed. If the variable has n run-
time types, where n > 1, we consider it as near-guessed if the set of first m + 2

17MSE is an exchange format for Moose models, analogous to XML
18http://www.smalltalkhub.com/#!/~RMoD/Reflectivity

22

http://www.smalltalkhub.com/#!/~RMoD/Reflectivity

Circle

Rectangle

Square

Triangle Parallelogram

Object

Figure 7: Sample class hierarchy

types of the statically inferred list of types is a superset of CT . That is we allow575

ourselves to make two mistakes, and miss the correct types by two spots. For
example, let us imagine a hierarchy of classes presented in Figure 7. Let us also
imagine that a variable has Rectangle and Square as run-time types, and statically-
inferred list of types included in the first three positions, respectively, Circle, Tri-
angle and Parallelogram. Both run-time types are contained in the subhierarchy580

of the Parallelogram class, thus m = 1. The set of the first m statically-inferred
classes, i.e., the Circle class, does not include in its subhierarchy all the run-time
types of the variable, so the variable cannot be labeled as guessed. Combined
subhierarchies of the classes Circle and Triangle do not include all run-time types.
But, the combined subhierarchies of the classes Circle, Triangle and Parallelogram585

do include all run-time types, thus the variable is considered to be near-guessed.
In this case we miss the correct type by two. On the other hand, if the variable
has Rectangle and Square as run-time types, and statically-inferred list of types
includes in the first four spots, respectively, Circle, Triangle, Square and Rectangle
we also consider it to be near-guessed. In this case m = 2 as two statically-590

inferred classes, i.e.,Square and Rectangle are needed to cover all run-time types.
We have also missed the correct types by two, as the classes Circle and Triangle do
not include in their subhierarchies either of the recorded types.

ICTI was additionally able to near-guess the type for about 13.6% of variables,
thus making the results optimal for 75% of variables in total.595

23

In all other situations, that is, if the variables is neither guessed nor near-
guessed, the variable is labeled as incorrectly-guessed.

As for the remaining set, we find 462 variables for which we were not able to
infer any other type than Object. This means that no assignment was performed to
the variable, nor was any message sent other than messages defined in Object class.600

We argue that these results could be discarded since they are easily identifiable
and they do not provide any useful information to the developer. Aside from 441
methods already defined in the Object class in Pharo, it is also possible to add user-
defined methods in library classes. For example, the selector rtValue: is specific
to the Roassal2 package, but it is implemented in the Object class, and thus can605

be sent to any object in the image. This leaves us with 906 variables that are
incorrectly-guessed.

To be able to assess the improvement of ICTI compared to the basic algorithm,
we have compared these results with the scenarios in which the basic algorithm
infers nothing but the correct type of a variable. This comparison also allows us610

to evaluate the differences between ICTI and an existing type inference algorithm,
i.e., RoelTyper [8]. The comparison is presented in Table 3. These results show
that ICTI inferred correct types as the first ones on the list of possible types for
significantly more variables than the basic algorithm i.e., 132% improvement. The
idea behind ICTI is to promote the correct type to the top of the list, and reduce the615

number of classes in the list that are present on the list before the correct type of
a variable. In its current state, the basic algorithm succeeds to infer unambiguous
results for a bit more than a quarter of all variables. For the remaining of variables,
the provided list of possible classes contains in some cases more than a hundred
inferred types. Such an unordered list may not be useful to a developer. The620

aim of ICTI is to promote the correct type to the top of the list, and decrease the
number of classes that are falsely ordered before the correct one.

One may argue that the obtained precision of ICTI may not seem to be very
high. However, we aimed for a way to improve the precision of a simple type
inference algorithm, regardless of its intended purpose. ICTI, as one of these625

ways, was able to double the number of variables for which it inferred correct
type information when compared with the underlying approach. For that reason,
we deem the obtained trade-off between precision and speed as acceptable.

6.4. Difference in between basic algorithm and ICTI
The basic algorithm does not provide any ordering of the possible types of630

variables but presents them in random order. When it infers as possible types a set
of classes that is a superset of the correct variable types, this information may lead

24

Correctly inferred types
Basic algorithm ICTI
1453 3372

Table 3: Comparison with basic algorithm

to wasted developer effort and cause more harm than good. Promoting the correct
type to the top of the list can be quite challenging without any flow analysis. We
consequently investigate how large are the lists of possible types for variables for635

which the basic algorithm was not able to infer the correct type, and which were
guessed by ICTI, i.e., for 1919 variables. In Figure 8 we can see around 19% of
variables, i.e., 377 variables out of 1919 have two statically inferred types. For the
remaining majority, the number of possible types is 3 or larger. If we remember
that these types represent only hierarchy roots, the importance of promoting the640

right type to the top of the list is even higher. The median length of these lists
is seven, and the maximum is 1882, indicating that ICTI was able to promote the
correct type to the top of the list even for lists larger than a hundred.

6.5. Not guessed variables
We provide a deeper analysis of the reasons why for 906, i.e., 16.5% of vari-645

ables ICTI was not able to correctly infer types.

6.5.1. Run-time types are not inferable without flow-sensitive analysis
A bit less than 6% of incorrectly guessed variables, i.e., 54 have an interface

which is not understood by any of their run-time types. Nine of these variables
have an interface which is not understood by any class in the image. After closer650

investigation, we have discovered that these variables in most cases have an in-
terface containing type predicates, i.e., message sends that ask the variable for
its type and program execution continues based on the answer. One of the most
frequently occurring examples is presented in the Listing 2 where the temporary
variable myselfRescoped is queried for its type, and the execution flow is then di-655

vided according to whether it is a Collection or not. In this example, the type pred-
icate isCollection is implemented in two classes: Collection, in which the method
simply returns true, and Object, in which it returns false. This is the most common
scenario, which indicates that these messages can be understood by any class.

19FAMIXNamedEntity>>moosechefEqualsTo: anEntity moduloScope: aScope660

20| entityRescoped myselfRescoped |

25

Figure 8: Statically inferred type sizes frequency

21...
22myselfRescoped isCollection
23ifTrue: [...]
24ifFalse: [...]665

25...
Listing 2: Type predicate isCollection usage example

Recent analysis [57] revealed that type predicates are used in almost all anal-
ysed projects to perform explicit type dispatch. Every 50th line of code contains
a type predicate. However, the analysis of type predicates is not performed by the
simple approach we have used in the basic algorithm.670

6.5.2. Known duck-typed combinations
Duck-typing [58] refers to the usage of variables to refer to objects of distinct

classes which understand the same set of messages, without a common superclass
understanding the same set. A classical example of duck-typing in Smalltalk
is interchangeable usage of Symbols and BlockClosures, since instances of both675

26

classes understand the message value:. Beside Symbols and BlockClosures, the
most commonly occurring pairs of classes are Array and OrderedCollection, and
CompiledMethod and ReflectiveMethod. We have found 38 variables used to point
to both of types included in a duck-typed pair. These variables demand flow-
sensitive algorithms for their precise inference. Otherwise, simple type inference680

algorithm may be improved for a specific language by including common duck-
typed pairs into the analysis.

Figure 9: Position of correct type in the list

6.6. Position of the correct type
We have investigated what is the distribution of k where k is the position of

the correct type in the list of possible types. If we omit variables for which it is685

not possible to infer any other type than Object, the distribution of k reveals that
in 88% of cases the correct type was present in the first three spots of the list.
For 3372 variables the correct type was present at the top of the list, while for
575 variables, the correct type was in second place. We present the distribution

27

Class-based approach

Project
name

#of
analysed
variables

#of
guessed
variables

#of
guessed

variables,
library
type

#of
guessed

variables,
package

type

#of
near-

guessed
variables

#of in-
correctly-
guessed
variables

#of
Object
type

Roassal 3’998 1534 586 947 314 1842 308
Glamour 179 74 35 39 17 55 33
Morphic 1052 351 258 92 107 488 106
Moose 257 100 97 3 29 113 15
SUM 5486 2059

(37.5%)
976
(47.4%)

1081
(52.5%)

468
(8.5%)

2498
(45.5%)

462
(8.4%)

Table 4: The inline cache heuristic

of positions three and onward in Figure 9. For more than 90% of variables the690

correct type is present within the first six inferred types.

6.7. Overall results — Class-Based approach
Results of the class-based approach are presented in Table 4. As expected,

control- and data-flow insensitivity of the algorithm took their toll. ICTI was able
to correctly infer the precise type of the variable in 37% of cases, and to near-695

guess it for only 8.5% more variables. To the best of our knowledge, there is one
other simple approach that tries to infer the precise type for a variable [15], and it
shows very similar results.

7. Threats to validity

Construct validity. In order to implement ICTI for a dynamically-typed language,700

it suffices to be able to query the structure of the code to create a list of possible
types for the variable, and to collect the type information from inline caches.

There are a couple of drawbacks when it comes to the virtual machine.
We are not always able to access all the types encountered at run time. In

practice, the Cog virtual machine has an executable machine code zone, contain-705

ing all the machine code versions of frequently used methods. Most frequently
used methods and types are always present in the machine code zone with inline
cache information. However, uncommon types may not be present. Indeed, if a

28

method was executed a single time, it may have been interpreted and hence not
provide any type, since only methods executed multiple times are eligible to be710

present in the machine code zone. In addition, the machine code zone has a fixed
size. Hence, when the zone is full, the garbage collector frees one quarter of the
machine code zone, starting from the least used to the most used methods, losing
all the type information present. To partially solve the garbage collection problem,
we doubled the size of the machine code zone for our experiments.715

Internal validity. The main threat to validity comes from the collected run-time
information from inline caches. If a class represents a variable’s run-time type,
but was not used during previous system runs, it would be missed, and results will
not be correct. We have tried to address this problem by running all the tests in
the image, to collect as much type information as possible.720

Our choice to treat the assignment types of a variable to be truthful as they are,
without considering the subtypes, may have influenced the results in class-based
approach. If subtypes were to be considered as potential types, the results could be
influenced in two ways: the number of correctly inferred variables might decrease
due to the increased number of possible types for a variable, or they might increase725

if the run-time type of a variable is actually a subtype of the assigned type.
We have used only intra-procedural analysis in our algorithm. Application of

inter-procedural analysis would certainly improve the results.
Another problem is that the run-time type information provides only a subset

of the concrete types. For instance, if a method is present in Collection, and the730

current code uses it only in two subclasses, namely, OrderedCollection and Set,
the type feedback will provide an array with OrderedCollection and Set as types
and will provide neither the abstract type (Collection) nor the other concrete types
coming from other subclasses, such as Array or Dictionary.

External validity. We have chosen projects Roassal2, Glamour, Morphic and735

Moose to evaluate ICTI since we were able to run these projects in a way that
closely resembles their real usage. It is an open question whether we have col-
lected all possible run-time types for variables.

We have chosen Pharo Smalltalk, since Smalltalk represents a “pure object-
oriented, dynamically-typed language” while Pharo allows an easy implementa-740

tion of the analysis tools. We cannot claim that the approach would retain the
same efficiency in other dynamically-typed languages. When it comes to the dy-

29

namic type gatherer, theoretically, it may be constructed for any programming lan-
guage that has a method-based runtime compiler, such as V8 for JavaScript [38].
However, we are not aware of the level of difficulty it would produce. There is a745

question of how to implement a dynamic type data gatherer for VMs using a meta-
tracing runtime compiler, such as LuaJIT [35] and Pypy [36], as their execution
model is different than the method-based one. As for the static code analysis, it
may not be trivial to do in other object-oriented languages, due to the need for
external tools to analyse the source code and obtain the AST of the code, e.g.,750

Moose [59] or Rascal [60].

8. Conclusion

Having type information at compile time can be useful when performing pro-
gram maintenance tasks. In order to provide accurate information, type inference
algorithms are often very complex, and still they suffer from the problem of false755

positives. On the other hand there exist lightweight algorithms that tend to work
fast, and do not require whole program analysis, but which tend to be less precise.

In this paper we have presented a simple heuristic (ICTI) that aims to pro-
duce precise type information by using easily accessible information from inline
caches. It collects the information about the frequency of class usage as receiver760

type from inline caches, and sorts statically inferred types based on this frequency.
ICTI succeeds into promoting the correct type to the top of the list, whereas the
basic algorithm produces unordered results. ICTI needs no instrumentation. It
was evaluated using a prototype implemented in Pharo Smalltalk. We have fo-
cused our attention not only on inferring the root type of the variable, but also the765

correct subclass.
ICTI was able to increase the number of variables for which it correctly in-

ferred types by more than 100% when compared with the basic approach.

Acknowledgements
We gratefully acknowledge the financial support of the Swiss National Science770

Foundation for the project “Agile Software Analysis” (SNSF project No. 200020-
162352, Jan 1, 2016 - Dec. 30, 2018).

This work was supported by Ministry of Higher Education and Research,
Nord-Pas de Calais Regional Council, CPER Nord-Pas de Calais/FEDER DATA
Advanced data science and technologies 2015-2020.775

We thank Eliot Miranda for helping us to implement the primitives we added
in the Pharo VM and reviewing all our related commits.

30

References

[1] S. Kleinschmager, S. Hanenberg, R. Robbes, E. Tanter, A. Stefik, Do static
type systems improve the maintainability of software systems? An empiri-780

cal study, in: 2012 IEEE 20th International Conference on Program Com-
prehension (ICPC), 2012, pp. 153 –162. doi:10.1109/ICPC.2012.
6240483.

[2] S. Spiza, S. Hanenberg, Type names without static type checking already
improve the usability of APIs (as long as the type names are correct): An785

empirical study, in: Proceedings of the 13th International Conference on
Modularity, MODULARITY ’14, ACM, New York, NY, USA, 2014, pp.
99–108. doi:10.1145/2577080.2577098.
URL http://doi.acm.org/10.1145/2577080.2577098

[3] R. Milner, A theory of type polymorphism in programming, Journal of Com-790

puter and System Sciences 17 (1978) 348–375.

[4] O. Agesen, The Cartesian product algorithm, in: W. Olthoff (Ed.), Proceed-
ings ECOOP ’95, Vol. 952 of LNCS, Springer-Verlag, Aarhus, Denmark,
1995, pp. 2–26.

[5] P. Rapicault, M. Blay-Fornarino, S. Ducasse, A.-M. Dery, Dynamic type795

inference to support object-oriented reengineering in Smalltalk, in: Pro-
ceedings of the ECOOP ’98 International Workshop Experiences in Object-
Oriented Reengineering, abstract in Object-Oriented Technology (ECOOP
’98 Workshop Reader forthcoming LNCS), 1998, pp. 76–77.
URL http://scg.unibe.ch/archive/famoos/Rapi98a/type.pdf800

[6] M. Salib, Faster than C: Static type inference with Starkiller, in: in PyCon
Proceedings, Washington DC, SpringerVerlag, 2004, pp. 2–26.

[7] S. A. Spoon, O. Shivers, Demand-driven type inference with subgoal prun-
ing: Trading precision for scalability, in: Proceedings of ECOOP’04, 2004,
pp. 51–74.805

[8] F. Pluquet, A. Marot, R. Wuyts, Fast type reconstruction for dynamically
typed programming languages, in: DLS ’09: Proceedings of the 5th Sympo-
sium on Dynamic languages, ACM, New York, NY, USA, 2009, pp. 69–78.
doi:10.1145/1640134.1640145.

31

http://dx.doi.org/10.1109/ICPC.2012.6240483
http://dx.doi.org/10.1109/ICPC.2012.6240483
http://dx.doi.org/10.1109/ICPC.2012.6240483
http://doi.acm.org/10.1145/2577080.2577098
http://doi.acm.org/10.1145/2577080.2577098
http://doi.acm.org/10.1145/2577080.2577098
http://doi.acm.org/10.1145/2577080.2577098
http://doi.acm.org/10.1145/2577080.2577098
http://dx.doi.org/10.1145/2577080.2577098
http://doi.acm.org/10.1145/2577080.2577098
http://scg.unibe.ch/archive/famoos/Rapi98a/type.pdf
http://scg.unibe.ch/archive/famoos/Rapi98a/type.pdf
http://scg.unibe.ch/archive/famoos/Rapi98a/type.pdf
http://scg.unibe.ch/archive/famoos/Rapi98a/type.pdf
http://dx.doi.org/10.1145/1640134.1640145

[9] J. Davies, D. M. Germán, M. W. Godfrey, A. Hindle, Software bertillonage:810

Finding the provenance of an entity, in: MSR’11: Proceedings of the 8th
International Working Conference on Mining Software Repositories, 2011,
pp. 183–192. doi:doi.acm.org/10.1145/1985441.1985468.

[10] D. An, A. Chaudhuri, J. Foster, M. Hicks, Dynamic inference of static types
for Ruby, in: Proceedings of the 38th ACM Symposium on Principles of815

Programming Languages (POPL’11), ACM, 2011, pp. 459–472.

[11] E. Allende, O. Callaú, J. Fabry, É. Tanter, M. Denker, Gradual typing for
Smalltalk, Science of Computer Programmingdoi:10.1016/j.scico.
2013.06.006.
URL http://hal.inria.fr/hal-00862815820

[12] M. P. Odgaard, JavaScript type inference using dynamic analysis, Master’s
thesis, Aarhus University (2014).
URL http://cs.au.dk/fileadmin/site_files/cs/Masters_and_diplomas/

MortenPassowOdgaard.pdf

[13] A. Aiken, B. Murphy, Static type inference in a dynamically typed language,825

in: Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’91, ACM, New York, NY, USA,
1991, pp. 279–290. doi:10.1145/99583.99621.
URL http://doi.acm.org/10.1145/99583.99621

[14] U. Hölzle, D. Ungar, Optimizing dynamically-dispatched calls with run-time830

type feedback, in: Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation, PLDI ’94, ACM, New
York, NY, USA, 1994, pp. 326–336. doi:10.1145/178243.178478.

[15] N. Milojković, O. Nierstrasz, Exploring cheap type inference heuristics in
dynamically typed languages, in: Proceedings of the 2016 ACM Interna-835

tional Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software, Onward! 2016, ACM, New York, NY, USA, 2016,
pp. 43–56. doi:10.1145/2986012.2986017.
URL http://scg.unibe.ch/archive/papers/Milo16b.pdf

[16] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-840

Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, D. Vardoulakis, In
defense of soundiness: A manifesto, Commun. ACM 58 (2) (2015) 44–46.

32

http://dx.doi.org/doi.acm.org/10.1145/1985441.1985468
http://hal.inria.fr/hal-00862815
http://hal.inria.fr/hal-00862815
http://hal.inria.fr/hal-00862815
http://dx.doi.org/10.1016/j.scico.2013.06.006
http://dx.doi.org/10.1016/j.scico.2013.06.006
http://dx.doi.org/10.1016/j.scico.2013.06.006
http://hal.inria.fr/hal-00862815
http://cs.au.dk/fileadmin/site_files/cs/Masters_and_diplomas/MortenPassowOdgaard.pdf
http://cs.au.dk/fileadmin/site_files/cs/Masters_and_diplomas/MortenPassowOdgaard.pdf
http://cs.au.dk/fileadmin/site_files/cs/Masters_and_diplomas/MortenPassowOdgaard.pdf
http://cs.au.dk/fileadmin/site_files/cs/Masters_and_diplomas/MortenPassowOdgaard.pdf
http://doi.acm.org/10.1145/99583.99621
http://dx.doi.org/10.1145/99583.99621
http://doi.acm.org/10.1145/99583.99621
http://dx.doi.org/10.1145/178243.178478
http://scg.unibe.ch/archive/papers/Milo16b.pdf
http://scg.unibe.ch/archive/papers/Milo16b.pdf
http://scg.unibe.ch/archive/papers/Milo16b.pdf
http://dx.doi.org/10.1145/2986012.2986017
http://scg.unibe.ch/archive/papers/Milo16b.pdf
http://doi.acm.org/10.1145/2644805
http://doi.acm.org/10.1145/2644805
http://doi.acm.org/10.1145/2644805

doi:10.1145/2644805.
URL http://doi.acm.org/10.1145/2644805

[17] L. P. Deutsch, A. M. Schiffman, Efficient implementation of the Smalltalk-845

80 system, in: Proceedings POPL ’84, Salt Lake City, Utah, 1984. doi:
10.1145/800017.800542.
URL http://webpages.charter.net/allanms/popl84.pdf

[18] U. Hölzle, C. Chambers, D. Ungar, Ecoop’91 european conference on
object-oriented programming: Geneva, switzerland, july 15–19, 1991 pro-850

ceedings, in: Proceedings of the European Conference on Object-Oriented
Programming, Springer Berlin Heidelberg, Berlin, Heidelberg, 1991, pp.
21–38. doi:10.1007/BFb0057013.
URL http://dx.doi.org/10.1007/BFb0057013

[19] B. Foote, R. E. Johnson, Reflective facilities in Smalltalk-80, in: Proceed-855

ings OOPSLA ’89, ACM SIGPLAN Notices, Vol. 24, 1989, pp. 327–336.

[20] N. Milojković, C. Béra, M. Ghafari, O. Nierstrasz, Inferring types by min-
ing class usage frequency from inline caches, in: Proceedings of Interna-
tional Workshop on Smalltalk Technologies (IWST 2016), 2016, pp. 6:1–
6:11. doi:10.1145/2991041.2991047.860

URL http://scg.unibe.ch/archive/papers/Milo16a.pdf

[21] N. Milojković, A. Caracciolo, M. Lungu, O. Nierstrasz, D. Röthlisberger,
R. Robbes, Polymorphism in the spotlight: Studying its prevalence in Java
and Smalltalk, in: Proceedings of the 2015 IEEE 23rd International Con-
ference on Program Comprehension, IEEE Press, 2015, pp. 186–195, pub-865

lished. doi:10.1109/ICPC.2015.29.
URL http://scg.unibe.ch/archive/papers/Milo15a.pdf

[22] O. Agesen, J. Palsberg, M. I. Schwartzbach, Type inference of SELF: Anal-
ysis of objects with dynamic and multiple inheritance, in: O. Nierstrasz
(Ed.), Proceedings ECOOP ’93, Vol. 707 of LNCS, Springer-Verlag, Kaiser-870

slautern, Germany, 1993, pp. 247–267.
URL http://www.cs.purdue.edu/homes/palsberg/publications.html

[23] A. Goldberg, D. Robson, Smalltalk 80: the Language and its Implementa-
tion, Addison Wesley, Reading, Mass., 1983.
URL http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf875

33

http://dx.doi.org/10.1145/2644805
http://doi.acm.org/10.1145/2644805
http://webpages.charter.net/allanms/popl84.pdf
http://webpages.charter.net/allanms/popl84.pdf
http://webpages.charter.net/allanms/popl84.pdf
http://dx.doi.org/10.1145/800017.800542
http://dx.doi.org/10.1145/800017.800542
http://dx.doi.org/10.1145/800017.800542
http://webpages.charter.net/allanms/popl84.pdf
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1007/BFb0057013
http://scg.unibe.ch/archive/papers/Milo16a.pdf
http://scg.unibe.ch/archive/papers/Milo16a.pdf
http://scg.unibe.ch/archive/papers/Milo16a.pdf
http://dx.doi.org/10.1145/2991041.2991047
http://scg.unibe.ch/archive/papers/Milo16a.pdf
http://scg.unibe.ch/archive/papers/Milo15a.pdf
http://scg.unibe.ch/archive/papers/Milo15a.pdf
http://scg.unibe.ch/archive/papers/Milo15a.pdf
http://dx.doi.org/10.1109/ICPC.2015.29
http://scg.unibe.ch/archive/papers/Milo15a.pdf
http://www.cs.purdue.edu/homes/palsberg/publications.html
http://www.cs.purdue.edu/homes/palsberg/publications.html
http://www.cs.purdue.edu/homes/palsberg/publications.html
http://www.cs.purdue.edu/homes/palsberg/publications.html
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf

[24] D. Ungar, R. B. Smith, Self: The power of simplicity, in: Proceedings OOP-
SLA ’87, ACM SIGPLAN Notices, Vol. 22, 1987, pp. 227–242. doi:
10.1145/38765.38828.

[25] J. Palsberg, M. I. Schwartzbach, Object-oriented type inference, in: Proceed-
ings OOPSLA ’91, ACM SIGPLAN Notices, Vol. 26, 1991, pp. 146–161.880

URL http://www.cs.purdue.edu/homes/palsberg/publications.html

[26] N. Milojković, M. Ghafari, O. Nierstrasz, Exploiting type hints in method
argument names to improve lightweight type inference, in: 25th IEEE Inter-
national Conference on Program Comprehension, 2017. doi:10.1109/
ICPC.2017.33.885

URL http://scg.unibe.ch/archive/papers/Milo17a.pdf

[27] S. A. Spoon, O. Shivers, Dynamic data polyvariance using source-tagged
classes, in: R. Wuyts (Ed.), Proceedings of the Dynamic Languages Sympo-
sium’05, ACM Digital Library, 2005, pp. 35–48.

[28] B. Spasojević, M. Lungu, O. Nierstrasz, Mining the ecosystem to improve890

type inference for dynamically typed languages, in: Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software, Onward! ’14, ACM, New York, NY,
USA, 2014, pp. 133–142. doi:10.1145/2661136.2661141.
URL http://scg.unibe.ch/archive/papers/Spas14c.pdf895

[29] R. Cartwright, M. Fagan, Soft typing, in: PLDI ’91: Proceedings of the
ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation, ACM, New York, NY, USA, 1991, pp. 278–292. doi:
10.1145/113445.113469.

[30] B. Hackett, S.-y. Guo, Fast and precise hybrid type inference for JavaScript,900

in: Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, ACM, New York, NY,
USA, 2012, pp. 239–250. doi:10.1145/2254064.2254094.
URL http://doi.acm.org/10.1145/2254064.2254094

[31] S. Tobin-Hochstadt, V. St-Amour, The typed Racket guide,905

http://docs.racket-lang.org/ts-guide/.

34

http://dx.doi.org/10.1145/38765.38828
http://dx.doi.org/10.1145/38765.38828
http://dx.doi.org/10.1145/38765.38828
http://www.cs.purdue.edu/homes/palsberg/publications.html
http://www.cs.purdue.edu/homes/palsberg/publications.html
http://scg.unibe.ch/archive/papers/Milo17a.pdf
http://scg.unibe.ch/archive/papers/Milo17a.pdf
http://scg.unibe.ch/archive/papers/Milo17a.pdf
http://dx.doi.org/10.1109/ICPC.2017.33
http://dx.doi.org/10.1109/ICPC.2017.33
http://dx.doi.org/10.1109/ICPC.2017.33
http://scg.unibe.ch/archive/papers/Milo17a.pdf
http://scg.unibe.ch/archive/papers/Spas14c.pdf
http://scg.unibe.ch/archive/papers/Spas14c.pdf
http://scg.unibe.ch/archive/papers/Spas14c.pdf
http://dx.doi.org/10.1145/2661136.2661141
http://scg.unibe.ch/archive/papers/Spas14c.pdf
http://dx.doi.org/10.1145/113445.113469
http://dx.doi.org/10.1145/113445.113469
http://dx.doi.org/10.1145/113445.113469
http://doi.acm.org/10.1145/2254064.2254094
http://dx.doi.org/10.1145/2254064.2254094
http://doi.acm.org/10.1145/2254064.2254094

[32] M. Furr, Combining static and dynamic typing in Ruby, Ph.D. thesis, Uni-
versity of Maryland (2009).
URL https://www.cs.umd.edu/~jfoster/papers/thesis-furr.pdf

[33] J. O. Graver, R. E. Johnson, A type system for Smalltalk, in: Proceedings of910

the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’90, ACM, New York, NY, USA, 1990, pp. 136–
150. doi:10.1145/96709.96722.
URL http://doi.acm.org/10.1145/96709.96722

[34] R. Smit, Pegon, https://sourceforge.net/projects/pegon/.915

[35] M. Pall, The LuaJIT Project, http://luajit.org/ (2005).

[36] C. F. Bolz, A. Cuni, M. Fijalkowski, A. Rigo, Tracing the meta-level: PyPy’s
tracing JIT compiler, in: ICOOOLPS ’09: Proceedings of the 4th Workshop
on the Implementation, Compilation, Optimization of Object-Oriented Lan-
guages and Programming Systems, ACM, New York, NY, USA, 2009, pp.920

18–25. doi:10.1145/1565824.1565827.

[37] M. Paleczny, C. Vick, C. Click, The Java hotspotTM server compiler, in:
Proceedings of the 2001 Symposium on JavaTM Virtual Machine Research
and Technology Symposium - Volume 1, JVM’01, USENIX Association,
Berkeley, CA, USA, 2001, pp. 1–1.925

URL http://dl.acm.org/citation.cfm?id=1267847.1267848

[38] Google, Google’s high performance, open source, javascript engine.,
https://developers.google.com/v8/ (2008).

[39] L. P. Deutsch, A. M. Schiffman, Efficient Implementation of the Smalltalk-
80 system, in: Principles of Programming Languages, POPL ’84, 1984.930

doi:10.1145/800017.800542.
URL http://webpages.charter.net/allanms/popl84.pdf

[40] U. Hölzle, C. Chambers, D. Ungar, Optimizing Dynamically-Typed Object-
Oriented Languages With Polymorphic Inline Caches, in: European Con-
ference on Object-Oriented Programming, ECOOP ’91, London, UK, UK,935

1991.

[41] C. Bera, S. Ducasse, A. Bergel, D. Cassou, J. Laval, Handling exceptions,
in: Deep Into Pharo, Square Bracket Associates, 2013, p. 38.

35

https://www.cs.umd.edu/~jfoster/papers/thesis-furr.pdf
https://www.cs.umd.edu/~jfoster/papers/thesis-furr.pdf
http://doi.acm.org/10.1145/96709.96722
http://dx.doi.org/10.1145/96709.96722
http://doi.acm.org/10.1145/96709.96722
http://dx.doi.org/10.1145/1565824.1565827
http://dl.acm.org/citation.cfm?id=1267847.1267848
http://dl.acm.org/citation.cfm?id=1267847.1267848
http://webpages.charter.net/allanms/popl84.pdf
http://webpages.charter.net/allanms/popl84.pdf
http://webpages.charter.net/allanms/popl84.pdf
http://dx.doi.org/10.1145/800017.800542
http://webpages.charter.net/allanms/popl84.pdf

[42] A. Chiş, T. Gîrba, O. Nierstrasz, The Moldable Debugger: A framework
for developing domain-specific debuggers, in: B. Combemale, D. J. Pearce,940

O. Barais, J. J. Vinju (Eds.), Software Language Engineering, Vol. 8706
of Lecture Notes in Computer Science, Springer International Publishing,
2014, pp. 102–121. doi:10.1007/978-3-319-11245-9_6.
URL http://scg.unibe.ch/archive/papers/Chis14b-MoldableDebugger.pdf

[43] K. Beck, Smalltalk Best Practice Patterns, Prentice-Hall, 1997.945

URL http://stephane.ducasse.free.fr/FreeBooks/BestSmalltalkPractices/

Draft-Smalltalk%20Best%20Practice%20Patterns%20Kent%20Beck.pdf

[44] M. Zandstra, PHP Objects, Patterns, and Practice, 4th Edition, Apress,
Berkely, CA, USA, 2013.

[45] M. Bolin, Closure: The Definitive Guide: Google Tools to Add Power to950

Your JavaScript, O’Reilly Media, 2010.
URL https://books.google.ch/books?id=p7uyWPcVGZsC

[46] Z. Xu, X. Zhang, L. Chen, K. Pei, B. Xu, Python probabilistic type in-
ference with natural language support, in: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software En-955

gineering, FSE 2016, ACM, New York, NY, USA, 2016, pp. 607–618.
doi:10.1145/2950290.2950343.
URL http://doi.acm.org/10.1145/2950290.2950343

[47] C. Souza, E. Figueiredo, How do programmers use optional typing? An
empirical study, in: Proceedings of the 13th International Conference on960

Modularity, MODULARITY ’14, ACM, New York, NY, USA, 2014, pp.
109–120. doi:10.1145/2577080.2582208.
URL http://doi.acm.org/10.1145/2577080.2582208

[48] M. Faldborg, T. L. Nielsen, B. Thomsen, Type systems and programmers: A
look at optional typing in Dart, Master’s thesis, Aalborg University (2015).965

[49] B. Spasojević, M. Lungu, O. Nierstrasz, A case study on type hints in
method argument names in Pharo Smalltalk projects, in: Proceedings of
the 23rd IEEE International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1, 2016, pp. 283–292. doi:10.1109/
SANER.2016.41.970

URL http://scg.unibe.ch/archive/papers/Spas16a.pdf

36

http://scg.unibe.ch/archive/papers/Chis14b-MoldableDebugger.pdf
http://scg.unibe.ch/archive/papers/Chis14b-MoldableDebugger.pdf
http://scg.unibe.ch/archive/papers/Chis14b-MoldableDebugger.pdf
http://dx.doi.org/10.1007/978-3-319-11245-9_6
http://scg.unibe.ch/archive/papers/Chis14b-MoldableDebugger.pdf
http://stephane.ducasse.free.fr/FreeBooks/BestSmalltalkPractices/Draft-Smalltalk%20Best%20Practice%20Patterns%20Kent%20Beck.pdf
http://stephane.ducasse.free.fr/FreeBooks/BestSmalltalkPractices/Draft-Smalltalk%20Best%20Practice%20Patterns%20Kent%20Beck.pdf
http://stephane.ducasse.free.fr/FreeBooks/BestSmalltalkPractices/Draft-Smalltalk%20Best%20Practice%20Patterns%20Kent%20Beck.pdf
http://stephane.ducasse.free.fr/FreeBooks/BestSmalltalkPractices/Draft-Smalltalk%20Best%20Practice%20Patterns%20Kent%20Beck.pdf
https://books.google.ch/books?id=p7uyWPcVGZsC
https://books.google.ch/books?id=p7uyWPcVGZsC
https://books.google.ch/books?id=p7uyWPcVGZsC
https://books.google.ch/books?id=p7uyWPcVGZsC
http://doi.acm.org/10.1145/2950290.2950343
http://doi.acm.org/10.1145/2950290.2950343
http://doi.acm.org/10.1145/2950290.2950343
http://dx.doi.org/10.1145/2950290.2950343
http://doi.acm.org/10.1145/2950290.2950343
http://doi.acm.org/10.1145/2577080.2582208
http://doi.acm.org/10.1145/2577080.2582208
http://doi.acm.org/10.1145/2577080.2582208
http://dx.doi.org/10.1145/2577080.2582208
http://doi.acm.org/10.1145/2577080.2582208
http://scg.unibe.ch/archive/papers/Spas16a.pdf
http://scg.unibe.ch/archive/papers/Spas16a.pdf
http://scg.unibe.ch/archive/papers/Spas16a.pdf
http://dx.doi.org/10.1109/SANER.2016.41
http://dx.doi.org/10.1109/SANER.2016.41
http://dx.doi.org/10.1109/SANER.2016.41
http://scg.unibe.ch/archive/papers/Spas16a.pdf

[50] S. S. SHAPIRO, M. B. WILK, An analysis of variance test for
normality (complete samples), Biometrika 52 (3-4) (1965) 591.
arXiv:/oup/backfile/content_public/journal/biomet/
52/3-4/10.1093/biomet/52.3-4.591/2/52-3-4-591.pdf,975

doi:10.1093/biomet/52.3-4.591.
URL +http://dx.doi.org/10.1093/biomet/52.3-4.591

[51] P. Bunge, Scripting browsers with Glamour, Master’s thesis, University of
Bern (Apr. 2009).
URL http://scg.unibe.ch/archive/masters/Bung09a.pdf980

[52] V. P. Araya, A. Bergel, D. Cassou, S. Ducasse, J. Laval, Agile visualization
with Roassal, in: Deep Into Pharo, Square Bracket Associates, 2013, pp.
209–239.

[53] H. Fernandes, S. Stinckwich, Morphic, les interfaces utilisateurs selon
Squeak (Jan. 2007).985

[54] T. Gîrba, The Moose book (2010).
URL http://www.themoosebook.org/book

[55] S. Ducasse, T. Gîrba, M. Lanza, S. Demeyer, Moose: a collaborative and
extensible reengineering environment, in: Tools for Software Maintenance
and Reengineering, RCOST / Software Technology Series, Franco Angeli,990

Milano, 2005, pp. 55–71.
URL http://scg.unibe.ch/archive/papers/Duca05aMooseBookChapter.pdf

[56] S. Ducasse, M. Lanza, S. Tichelaar, Moose: an extensible language-
independent environment for reengineering object-oriented systems, in: Pro-
ceedings of CoSET ’00 (2nd International Symposium on Constructing Soft-995

ware Engineering Tools), 2000.
URL http://scg.unibe.ch/archive/papers/Duca00bMooseCoset.pdf

[57] O. Callaú, R. Robbes, É. Tanter, D. Röthlisberger, A. Bergel, On the use of
type predicates in object-oriented software: The case of Smalltalk, in: Pro-
ceedings of the 10th ACM Dynamic Languages Symposium (DLS 2014),1000

ACM Press, Portland, OR, USA, 2014, pp. 135–146. doi:10.1145/
2661088.2661091.
URL http://pleiad.dcc.uchile.cl/papers/2014/callauAl-dls2014.pdf

37

+ http://dx.doi.org/10.1093/biomet/52.3-4.591
+ http://dx.doi.org/10.1093/biomet/52.3-4.591
+ http://dx.doi.org/10.1093/biomet/52.3-4.591
http://arxiv.org/abs//oup/backfile/content_public/journal/biomet/52/3-4/10.1093/biomet/52.3-4.591/2/52-3-4-591.pdf
http://arxiv.org/abs//oup/backfile/content_public/journal/biomet/52/3-4/10.1093/biomet/52.3-4.591/2/52-3-4-591.pdf
http://arxiv.org/abs//oup/backfile/content_public/journal/biomet/52/3-4/10.1093/biomet/52.3-4.591/2/52-3-4-591.pdf
http://dx.doi.org/10.1093/biomet/52.3-4.591
+ http://dx.doi.org/10.1093/biomet/52.3-4.591
http://scg.unibe.ch/archive/masters/Bung09a.pdf
http://scg.unibe.ch/archive/masters/Bung09a.pdf
http://www.themoosebook.org/book
http://www.themoosebook.org/book
http://scg.unibe.ch/archive/papers/Duca05aMooseBookChapter.pdf
http://scg.unibe.ch/archive/papers/Duca05aMooseBookChapter.pdf
http://scg.unibe.ch/archive/papers/Duca05aMooseBookChapter.pdf
http://scg.unibe.ch/archive/papers/Duca05aMooseBookChapter.pdf
http://scg.unibe.ch/archive/papers/Duca00bMooseCoset.pdf
http://scg.unibe.ch/archive/papers/Duca00bMooseCoset.pdf
http://scg.unibe.ch/archive/papers/Duca00bMooseCoset.pdf
http://scg.unibe.ch/archive/papers/Duca00bMooseCoset.pdf
http://pleiad.dcc.uchile.cl/papers/2014/callauAl-dls2014.pdf
http://pleiad.dcc.uchile.cl/papers/2014/callauAl-dls2014.pdf
http://pleiad.dcc.uchile.cl/papers/2014/callauAl-dls2014.pdf
http://dx.doi.org/10.1145/2661088.2661091
http://dx.doi.org/10.1145/2661088.2661091
http://dx.doi.org/10.1145/2661088.2661091
http://pleiad.dcc.uchile.cl/papers/2014/callauAl-dls2014.pdf

[58] D. Thomas, C. Fowler, A. Hunt, Programming Ruby 1.9: The Pragmatic
Programmers’ Guide, 3rd Edition, Pragmatic Bookshelf, 2009.1005

[59] S. Ducasse, T. Gîrba, O. Nierstrasz, Moose: an agile reengineering environ-
ment, in: Proceedings of ESEC/FSE 2005, 2005, pp. 99–102, tool demo.
doi:10.1145/1081706.1081723.
URL http://scg.unibe.ch/archive/papers/Duca05fMooseDemo.pdf

[60] M. Hills, P. Klint, J. J. Vinju, Scripting a refactoring with rascal and eclipse,1010

in: Proceedings of the Fifth Workshop on Refactoring Tools, WRT ’12,
ACM, New York, NY, USA, 2012, pp. 40–49. doi:10.1145/2328876.
2328882.
URL http://doi.acm.org/10.1145/2328876.2328882

38

http://scg.unibe.ch/archive/papers/Duca05fMooseDemo.pdf
http://scg.unibe.ch/archive/papers/Duca05fMooseDemo.pdf
http://scg.unibe.ch/archive/papers/Duca05fMooseDemo.pdf
http://dx.doi.org/10.1145/1081706.1081723
http://scg.unibe.ch/archive/papers/Duca05fMooseDemo.pdf
http://doi.acm.org/10.1145/2328876.2328882
http://dx.doi.org/10.1145/2328876.2328882
http://dx.doi.org/10.1145/2328876.2328882
http://dx.doi.org/10.1145/2328876.2328882
http://doi.acm.org/10.1145/2328876.2328882

	Introduction
	Motivation
	Related work
	Static type inference
	Dynamic type inference
	Hybrid analysis
	Gradual typing
	Optional typing

	Gathering of dynamic type information
	Dynamic type information gathering
	High-performance virtual machine execution model
	Execution of message sends
	Dynamic type information gatherer built
	Type information and optimising JIT

	Type inference algorithm
	Terminology
	Method arguments

	Dynamic information
	Class-Based approach

	Evaluation
	Inline caching type gathering
	Projects used for evaluation
	Overall results — Hierarchy-Based approach
	Difference in between basic algorithm and ICTI
	Not guessed variables
	Run-time types are not inferable without flow-sensitive analysis
	Known duck-typed combinations

	Position of the correct type
	Overall results — Class-Based approach

	Threats to validity
	Conclusion

