Semiring Rank Matrix Factorization

Abstract : Rank data, in which each row is a complete or partial ranking of available items (columns), is ubiquitous. Among others, it can be used to represent preferences of users, levels of gene expression, and outcomes of sports events. It can have many types of patterns, among which consistent rankings of a subset of the items in multiple rows, and multiple rows that rank the same subset of the items highly. In this article, we show that the problems of finding such patterns can be formulated within a single generic framework that is based on the concept of semiring matrix factorisation. In this framework, we employ the max-product semiring rather than the plus-product semiring common in traditional linear algebra. We apply this semiring matrix factorisation framework on two tasks: sparse rank matrix factorisation and rank matrix tiling. Experiments on both synthetic and real world datasets show that the framework is capable of discovering different types of structure as well as obtaining high quality solutions.
Type de document :
Article dans une revue
IEEE Transactions on Knowledge and Data Engineering, Institute of Electrical and Electronics Engineers, 2017, 29 (8), pp.1737 - 1750. 〈10.1109/TKDE.2017.2688374〉
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01666755
Contributeur : Team Magnet <>
Soumis le : lundi 18 décembre 2017 - 16:26:36
Dernière modification le : vendredi 13 avril 2018 - 01:28:51

Fichier

RMFx.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Thanh Le Van, Siegfried Nijssen, Matthijs Van Leeuwen, Luc De Raedt. Semiring Rank Matrix Factorization. IEEE Transactions on Knowledge and Data Engineering, Institute of Electrical and Electronics Engineers, 2017, 29 (8), pp.1737 - 1750. 〈10.1109/TKDE.2017.2688374〉. 〈hal-01666755〉

Partager

Métriques

Consultations de la notice

147

Téléchargements de fichiers

37