T. , L. Van, M. Van-leeuwen, S. Nijssen, A. C. Fierro et al., Ranked Tiling, Proc. of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD-14), pp.2014-98

P. Diaconis, Group representations in probability and statistics, ser. Lecture notes-monograph series, 1988.

L. M. Busse, P. Orbanz, and J. M. Buhmann, Cluster analysis of heterogeneous rank data, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.113-120, 2007.
DOI : 10.1145/1273496.1273511

T. Kamishima, Nantonac collaborative filtering, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.583-588, 2003.
DOI : 10.1145/956750.956823

B. Amir, C. Benny, K. Richard, and Y. Zohar, Discovering Local Structure in Gene Expression Data: The Order- Preserving Submatrix Problem, Journal of Computational Biology, vol.10, pp.3-4, 2003.

K. Deng, S. Han, K. J. Li, and J. S. Liu, Bayesian Aggregation of Order-Based Rank Data, Journal of the American Statistical Association, vol.61, issue.10, pp.1023-1039, 2014.
DOI : 10.1023/A:1009980820262

T. , L. Van, M. Van-leeuwen, S. Nijssen, and L. De-raedt, Rank Matrix Factorisation, Proc. of the 19th Pacific-Asia conference on knowledge discovery and data mining (PAKDD-15, pp.734-746, 2015.

T. , L. Van, M. Van-leeuwen, A. C. Fierro, D. D. Maeyer et al., Simultaneous discovery of cancer subtypes and subtype features by molecular data integration, Bioinformatics, vol.32, pp.445-454, 2016.

S. Henzgen and E. , Mining Rank Data, Proc. of Discovery Science (DS-14, pp.123-134, 2014.
DOI : 10.1007/978-3-319-11812-3_11

J. Vreeken, M. Van-leeuwen, and A. Siebes, Krimp: mining itemsets that compress, Data Mining and Knowledge Discovery, vol.177, issue.1, pp.169-214, 2011.
DOI : 10.1001/jama.1961.03040290005002

D. Skillicorn, Understanding Complex Datasets: Data Mining with Matrix Decompositions, 2007.
DOI : 10.1201/9781584888338

L. Eldén, Matrix Methods in Data Mining and Pattern Recognition, Society for Industrial and Applied Mathematics, 2007.
DOI : 10.1137/1.9780898718867

Y. Koren, R. Bell, and C. Volinsky, Matrix Factorization Techniques for Recommender Systems, Computer, vol.42, issue.8, pp.30-37, 2009.
DOI : 10.1109/MC.2009.263

URL : http://research.yahoo.com/files/ieeecomputer.pdf

J. P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov, Metagenes and molecular pattern discovery using matrix factorization, Proceedings of the National Academy of Sciences, vol.19, issue.90001, pp.4164-4169, 2004.
DOI : 10.1093/bioinformatics/btg1017

URL : http://www.pnas.org/content/101/12/4164.full.pdf

D. D. Lee and H. S. Seung, Learning the parts of objects by nonnegative matrix factorization, Nature, vol.401, issue.6755, pp.788-791, 1999.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online Learning for Matrix Factorization and Sparse Coding, Journal of Machine Learning Research, vol.11, pp.19-60, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00408716

S. C. Madeira and A. L. Oliveira, Biclustering algorithms for biological data analysis: a survey, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.1, issue.1, pp.24-45, 2004.
DOI : 10.1109/TCBB.2004.2

J. I. Marden, Analyzing and Modeling Rank Data, 1995.

P. Miettinen, T. Mielikainen, A. Gionis, G. Das, and H. Mannila, The Discrete Basis Problem, IEEE Transactions on Knowledge and Data Engineering, vol.20, issue.10, pp.1348-1362, 2008.
DOI : 10.1109/TKDE.2008.53

F. Geerts, B. Goethals, and T. Mielikäinen, Tiling Databases, Discovery Science, pp.278-289, 2004.
DOI : 10.1007/978-3-540-30214-8_22

O. Team, OscaR: Scala in OR 2012, available from https

A. Tanay, R. Sharan, and R. Shamir, Discovering statistically significant biclusters in gene expression data, Bioinformatics, vol.18, issue.Suppl 1, pp.136-144, 2002.
DOI : 10.1093/bioinformatics/18.suppl_1.S136

URL : http://www.math.tau.ac.il/~rshamir/papers/bic-ismb02.pdf

Y. Cheng and G. M. Church, Biclustering of expression data, Proc. of the 8th International Conference on Intelligent Systems for Molecular Biology, pp.93-103, 2000.

Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein, Spectral Biclustering of Microarray Data: Coclustering Genes and Conditions, Genome Research, vol.13, issue.4, pp.703-716, 2003.
DOI : 10.1101/gr.648603

H. Turner, T. Bailey, and W. Krzanowski, Improved biclustering of microarray data demonstrated through systematic performance tests, Computational Statistics & Data Analysis, vol.48, issue.2, pp.235-254, 2005.
DOI : 10.1016/j.csda.2004.02.003

S. Hochreiter, U. Bodenhofer, M. Heusel, and A. Mayr, FABIA: factor analysis for bicluster acquisition, Bioinformatics, vol.26, issue.12, pp.1520-1527, 2010.
DOI : 10.1093/bioinformatics/btq227

URL : https://academic.oup.com/bioinformatics/article-pdf/26/12/1520/16895950/btq227.pdf

J. Ihmels, G. Friedlander, S. Bergmann, O. Sarig, Y. Ziv et al., Revealing modular organization in the yeast transcriptional network, Nature Genetics, vol.31, issue.4, pp.370-377, 2002.
DOI : 10.1038/ng941

D. T. Truong, R. Battiti, and M. Brunato, Discovering nonredundant overlapping biclusters on gene expression data, ICDM 2013, pp.747-756, 2013.
DOI : 10.1109/icdm.2013.36

Q. Mo, S. Wang, V. E. Seshan, and . Olshen, Pattern discovery and cancer gene identification in integrated cancer genomic data, Proceedings of the National Academy of Sciences, vol.58, issue.1, pp.4245-50, 2013.
DOI : 10.1214/009053606000000821

B. Wang, A. M. Mezlini, F. Demir, M. Fiume, Z. Tu et al., Similarity network fusion for aggregating data types on a genomic scale, Nature Methods, vol.2, issue.3, pp.333-340, 2014.
DOI : 10.1371/journal.pcbi.1002975

M. Goldman, B. Craft, T. Swatloski, K. Ellrott, M. Cline et al., The UCSC Cancer Genomics Browser: update 2013, Nucleic Acids Research, vol.41, issue.D1, pp.949-954, 2013.
DOI : 10.1093/nar/gks1008

URL : https://academic.oup.com/nar/article-pdf/41/D1/D949/18785485/gks1008.pdf

C. H. Mermel, S. E. Schumacher, B. Hill, M. L. Meyerson, R. Beroukhim et al., GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers, Genome Biology, vol.12, issue.4, 2011.
DOI : 10.1214/aos/1176344136

J. S. Parker, M. Mullins, M. C. Cheang, and S. Leung, Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes, Journal of Clinical Oncology, vol.27, issue.8, pp.1160-1167, 2009.
DOI : 10.1200/JCO.2008.18.1370

S. Lin, Rank aggregation methods, Wiley Interdisciplinary Reviews: Computational Statistics, vol.61, issue.5, pp.555-570, 2010.
DOI : 10.1002/0471721182

F. Rossi, K. B. Venable, and T. Walsh, A Short Introduction to Preferences: Between Artificial Intelligence and Social Choice, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol.5, issue.4, pp.1-102, 2011.
DOI : 10.2200/S00372ED1V01Y201107AIM014

C. Dwork, R. Kumar, M. Naor, D. Sivakumar, T. B. Murphy et al., Rank aggregation methods for the Web Mixtures of distance-based models for ranking data, Proc. of the 10th International Conference on World Wide Web, pp.613-622, 2001.

P. Awasthi, A. Blum, O. Sheffet, and A. Vijayaraghavan, Learning mixtures of ranking models, Advances in Neural Information Processing Systems (NIPS-14), pp.2609-2617, 2014.

W. Ding, P. Ishwar, and V. Saligrama, A topic modeling approach to ranking, Proc. of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS-15), 2015.

F. Chierichetti, A. Dasgupta, R. Kumar, and S. Lattanzi, On Learning Mixture Models for Permutations, Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS '15, p.2015
DOI : 10.1257/jep.9.1.51

S. Agarwal, On ranking and choice models, Proc. of the 25th International Joint Conference on Artificial Intelligence (IJCAI-16), 2016, pp.4050-4053

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, vol.58, pp.267-288, 1994.
DOI : 10.1111/j.1467-9868.2011.00771.x

S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic Decomposition by Basis Pursuit, SIAM Review, vol.43, issue.1, pp.129-159, 2001.
DOI : 10.1137/S003614450037906X

S. Karaev and P. Miettinen, Capricorn: An Algorithm for Subtropical Matrix Factorization, Proceedings of the 2016 SIAM International Conference on Data Mining, pp.702-710, 2016.
DOI : 10.1137/1.9781611974348.79