Ranked Tiling, Proc. of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD-14), pp.2014-98 ,
Group representations in probability and statistics, ser. Lecture notes-monograph series, 1988. ,
Cluster analysis of heterogeneous rank data, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.113-120, 2007. ,
DOI : 10.1145/1273496.1273511
Nantonac collaborative filtering, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.583-588, 2003. ,
DOI : 10.1145/956750.956823
Discovering Local Structure in Gene Expression Data: The Order- Preserving Submatrix Problem, Journal of Computational Biology, vol.10, pp.3-4, 2003. ,
Bayesian Aggregation of Order-Based Rank Data, Journal of the American Statistical Association, vol.61, issue.10, pp.1023-1039, 2014. ,
DOI : 10.1023/A:1009980820262
Rank Matrix Factorisation, Proc. of the 19th Pacific-Asia conference on knowledge discovery and data mining (PAKDD-15, pp.734-746, 2015. ,
Simultaneous discovery of cancer subtypes and subtype features by molecular data integration, Bioinformatics, vol.32, pp.445-454, 2016. ,
Mining Rank Data, Proc. of Discovery Science (DS-14, pp.123-134, 2014. ,
DOI : 10.1007/978-3-319-11812-3_11
Krimp: mining itemsets that compress, Data Mining and Knowledge Discovery, vol.177, issue.1, pp.169-214, 2011. ,
DOI : 10.1001/jama.1961.03040290005002
Understanding Complex Datasets: Data Mining with Matrix Decompositions, 2007. ,
DOI : 10.1201/9781584888338
Matrix Methods in Data Mining and Pattern Recognition, Society for Industrial and Applied Mathematics, 2007. ,
DOI : 10.1137/1.9780898718867
Matrix Factorization Techniques for Recommender Systems, Computer, vol.42, issue.8, pp.30-37, 2009. ,
DOI : 10.1109/MC.2009.263
URL : http://research.yahoo.com/files/ieeecomputer.pdf
Metagenes and molecular pattern discovery using matrix factorization, Proceedings of the National Academy of Sciences, vol.19, issue.90001, pp.4164-4169, 2004. ,
DOI : 10.1093/bioinformatics/btg1017
URL : http://www.pnas.org/content/101/12/4164.full.pdf
Learning the parts of objects by nonnegative matrix factorization, Nature, vol.401, issue.6755, pp.788-791, 1999. ,
Online Learning for Matrix Factorization and Sparse Coding, Journal of Machine Learning Research, vol.11, pp.19-60, 2009. ,
URL : https://hal.archives-ouvertes.fr/inria-00408716
Biclustering algorithms for biological data analysis: a survey, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.1, issue.1, pp.24-45, 2004. ,
DOI : 10.1109/TCBB.2004.2
Analyzing and Modeling Rank Data, 1995. ,
The Discrete Basis Problem, IEEE Transactions on Knowledge and Data Engineering, vol.20, issue.10, pp.1348-1362, 2008. ,
DOI : 10.1109/TKDE.2008.53
Tiling Databases, Discovery Science, pp.278-289, 2004. ,
DOI : 10.1007/978-3-540-30214-8_22
OscaR: Scala in OR 2012, available from https ,
Discovering statistically significant biclusters in gene expression data, Bioinformatics, vol.18, issue.Suppl 1, pp.136-144, 2002. ,
DOI : 10.1093/bioinformatics/18.suppl_1.S136
URL : http://www.math.tau.ac.il/~rshamir/papers/bic-ismb02.pdf
Biclustering of expression data, Proc. of the 8th International Conference on Intelligent Systems for Molecular Biology, pp.93-103, 2000. ,
Spectral Biclustering of Microarray Data: Coclustering Genes and Conditions, Genome Research, vol.13, issue.4, pp.703-716, 2003. ,
DOI : 10.1101/gr.648603
Improved biclustering of microarray data demonstrated through systematic performance tests, Computational Statistics & Data Analysis, vol.48, issue.2, pp.235-254, 2005. ,
DOI : 10.1016/j.csda.2004.02.003
FABIA: factor analysis for bicluster acquisition, Bioinformatics, vol.26, issue.12, pp.1520-1527, 2010. ,
DOI : 10.1093/bioinformatics/btq227
URL : https://academic.oup.com/bioinformatics/article-pdf/26/12/1520/16895950/btq227.pdf
Revealing modular organization in the yeast transcriptional network, Nature Genetics, vol.31, issue.4, pp.370-377, 2002. ,
DOI : 10.1038/ng941
Discovering nonredundant overlapping biclusters on gene expression data, ICDM 2013, pp.747-756, 2013. ,
DOI : 10.1109/icdm.2013.36
Pattern discovery and cancer gene identification in integrated cancer genomic data, Proceedings of the National Academy of Sciences, vol.58, issue.1, pp.4245-50, 2013. ,
DOI : 10.1214/009053606000000821
Similarity network fusion for aggregating data types on a genomic scale, Nature Methods, vol.2, issue.3, pp.333-340, 2014. ,
DOI : 10.1371/journal.pcbi.1002975
The UCSC Cancer Genomics Browser: update 2013, Nucleic Acids Research, vol.41, issue.D1, pp.949-954, 2013. ,
DOI : 10.1093/nar/gks1008
URL : https://academic.oup.com/nar/article-pdf/41/D1/D949/18785485/gks1008.pdf
GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers, Genome Biology, vol.12, issue.4, 2011. ,
DOI : 10.1214/aos/1176344136
Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes, Journal of Clinical Oncology, vol.27, issue.8, pp.1160-1167, 2009. ,
DOI : 10.1200/JCO.2008.18.1370
Rank aggregation methods, Wiley Interdisciplinary Reviews: Computational Statistics, vol.61, issue.5, pp.555-570, 2010. ,
DOI : 10.1002/0471721182
A Short Introduction to Preferences: Between Artificial Intelligence and Social Choice, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol.5, issue.4, pp.1-102, 2011. ,
DOI : 10.2200/S00372ED1V01Y201107AIM014
Rank aggregation methods for the Web Mixtures of distance-based models for ranking data, Proc. of the 10th International Conference on World Wide Web, pp.613-622, 2001. ,
Learning mixtures of ranking models, Advances in Neural Information Processing Systems (NIPS-14), pp.2609-2617, 2014. ,
A topic modeling approach to ranking, Proc. of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS-15), 2015. ,
On Learning Mixture Models for Permutations, Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS '15, p.2015 ,
DOI : 10.1257/jep.9.1.51
On ranking and choice models, Proc. of the 25th International Joint Conference on Artificial Intelligence (IJCAI-16), 2016, pp.4050-4053 ,
Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, vol.58, pp.267-288, 1994. ,
DOI : 10.1111/j.1467-9868.2011.00771.x
Atomic Decomposition by Basis Pursuit, SIAM Review, vol.43, issue.1, pp.129-159, 2001. ,
DOI : 10.1137/S003614450037906X
Capricorn: An Algorithm for Subtropical Matrix Factorization, Proceedings of the 2016 SIAM International Conference on Data Mining, pp.702-710, 2016. ,
DOI : 10.1137/1.9781611974348.79