A. Bankevich, S. Nurk, D. Antipov, A. Alexey, M. Gurevich et al., SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing, Journal of Computational Biology, vol.19, issue.5, p.455477, 2012.
DOI : 10.1089/cmb.2012.0021

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342519/pdf

M. Boetzer, C. V. Henkel, H. J. Jansen, D. Butler, and W. Pirovano, Scaffolding pre-assembled contigs using SSPACE, Bioinformatics, vol.27, issue.4, pp.578-579, 2011.
DOI : 10.1093/bioinformatics/btq683

URL : https://academic.oup.com/bioinformatics/article-pdf/27/4/578/16902132/btq683.pdf

R. Chikhi and G. Rizk, Space-efficient and exact de Bruijn graph representation based on a Bloom filter, Algorithms for Molecular Biology, vol.8, issue.1, p.22, 2013.
DOI : 10.1101/gr.131383.111

URL : https://hal.archives-ouvertes.fr/hal-00868805

S. François, R. Andonov, H. Djidjev, and D. Lavenier, Global optimization methods for genome scaffolding, 8th International Network Optimization Conference (INOC), 2017. to appear in the special issue of Electronic Notes in Discrete Mathematics (ENDM) V. 64

A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler, QUAST: quality assessment tool for genome assemblies, Bioinformatics, vol.29, issue.8, pp.1072-1075, 2013.
DOI : 10.1093/bioinformatics/btt086

URL : https://academic.oup.com/bioinformatics/article-pdf/29/8/1072/17106244/btt086.pdf

W. Huang, L. Li, J. R. Myers, T. Gabor, and . Marth, ART: a next-generation sequencing read simulator, Bioinformatics, vol.28, issue.4, pp.593-594, 2011.
DOI : 10.1093/bioinformatics/btr708

URL : https://academic.oup.com/bioinformatics/article-pdf/28/4/593/16911715/btr708.pdf

W. Huang, L. Li, J. R. Myers, and G. T. Marth, ART: a next-generation sequencing read simulator, Bioinformatics, vol.28, issue.4, pp.593-594, 2012.
DOI : 10.1093/bioinformatics/btr708

URL : https://academic.oup.com/bioinformatics/article-pdf/28/4/593/16911715/btr708.pdf

H. Daniel, K. Huson, E. W. Reinert, and . Myers, The greedy path-merging algorithm for contig scaffolding, J. ACM, vol.49, issue.5, pp.603-615, 2002.

H. Li, Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences, Bioinformatics, vol.32, issue.14, pp.2103-2110, 2016.
DOI : 10.1093/bioinformatics/btw152

URL : https://academic.oup.com/bioinformatics/article-pdf/32/14/2103/19567911/btw152.pdf

P. Medvedev, S. Pham, M. Chaisson, G. Tesler, and P. Pevzner, Paired de Bruijn Graphs: A Novel Approach for Incorporating Mate Pair Information into Genome Assemblers, Journal of Computational Biology, vol.18, issue.11, pp.1625-1634
DOI : 10.1089/cmb.2011.0151

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216098/pdf

B. Nicolas, C. Annie, R. Coletta, P. Simon-de-givry, S. Leleux et al., An integer linear programming approach for genome scaffolding, Workshop on Constraint based Methods for Bioinformatics, 2015.

P. A. Pevzner, H. Tang, and M. S. Waterman, An Eulerian path approach to DNA fragment assembly, Proceedings of the National Academy of Sciences, vol.291, issue.5507, pp.989748-9753, 2001.
DOI : 10.1126/science.1058040

URL : http://www.pnas.org/content/98/17/9748.full.pdf

A. Rahman and L. Pachter, Swalo: scaffolding with assembly likelihood optimization. bioRxiv, 2016.
DOI : 10.1101/081786

K. Sahlin, F. Vezzi, B. Nystedt, J. Lundeberg, and L. Arvestad, BESST - Efficient scaffolding of large fragmented assemblies, BMC Bioinformatics, vol.15, issue.1, p.281, 2014.
DOI : 10.1186/1471-2105-15-281

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-15-281?site=bmcbioinformatics.biomedcentral.com

L. James, E. W. Weber, and . Myers, Human whole-genome shotgun sequencing

M. Weller, A. Chateau, and R. Giroudeau, Exact approaches for scaffolding, BMC Bioinformatics, vol.16, issue.Suppl 14, pp.401-409, 1997.
DOI : 10.1186/1471-2105-16-S14-S2

URL : https://hal.archives-ouvertes.fr/lirmm-01219627