F. Neidhardt, Bacterial growth: constant obsession with dn/dt, J. Bacteriol, vol.181, pp.7405-7408, 1999.

I. Fishov, A. Zaritsky, and N. Grover, On microbial states of growth???, Molecular Microbiology, vol.114, issue.5, pp.789-794, 1995.
DOI : 10.1016/0022-2836(71)90447-5

T. Hwa and M. Scott, 2011 Bacterial growth laws and their applications, Curr. Opin. Biotechnol, vol.22, pp.559-565

M. Ehrenberg, H. Bremer, and P. Dennis, 2013 Mediumdependent control of the bacterial growth rate

O. Maaløe and N. Kjeldgaard, 1966 Control of macromolecular synthesis: a study of DNA, RNA, and protein synthesis in bacteria

H. Bremer and P. Dennis, 2013 Modulation of chemical composition and other parameters of the cell at different exponential growth rates, Ecosal plus: cellular and molecular biology of E. coli, Salmonella, and the Enterobacteriaceae

J. Forchhammer and L. Lindahl, Growth rate of polypeptide chains as a function of the cell growth rate in a mutant of Escherichia coli 15, Journal of Molecular Biology, vol.55, issue.3, pp.563-568
DOI : 10.1016/0022-2836(71)90337-8

K. Gausing, Regulation of ribosome production in Escherichia coli: Synthesis and stability of ribosomal RNA and of ribosomal protein messenger RNA at different growth rates, Journal of Molecular Biology, vol.115, issue.3, pp.335-354, 1977.
DOI : 10.1016/0022-2836(77)90158-9

M. Scott, C. Gunderson, E. Mateescu, Z. Zhang, and T. Hwa, 2010 Interdependence of cell growth rsif.royalsocietypublishing, J. R. Soc. Interface, vol.14, p.20170502

S. Levy and N. Barkai, Coordination of gene expression with growth rate: A feedback or a feed-forward strategy?, FEBS Letters, vol.5, issue.24, pp.3974-3978, 2009.
DOI : 10.1016/S0968-0004(99)01460-7

V. Chubukov, L. Gerosa, K. Kochanowski, and U. Sauer, Coordination of microbial metabolism, Nature Reviews Microbiology, vol.6, issue.5, pp.327-340
DOI : 10.1038/msb.2010.10

A. Marr, 1991 Growth rate of Escherichia coli, Microbiol. Rev, vol.55, pp.316-333

D. Nierlich, Regulation of Bacterial Growth, Science, vol.184, issue.4141, 1974.
DOI : 10.1126/science.184.4141.1043

H. Brunschede, T. Dove, and H. Bremer, Establishment of exponential growth after a nutritional shift-up in Escherichia coli B/r: accumulation of deoxyribonucleic acid, ribonucleic acid, and protein, J. Bacteriol, vol.129, pp.1020-1033, 1977.

H. Link, T. Fuhrer, L. Gerosa, N. Zamboni, and U. Sauer, 2015 Real-time metabolome profiling of the metabolic switch between starvation and growth, Nat. Methods, vol.12, pp.1091-1097

A. Zaslaver, A. Bren, M. Ronen, S. Itzkovitz, I. Kikoin et al., A comprehensive library of fluorescent transcriptional reporters for Escherichia coli, Nature Methods, vol.297, issue.8, pp.623-628
DOI : 10.1038/nmeth895

S. Gama-castro, RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond, Nucleic Acids Research, vol.44, issue.D1, pp.133-143, 1156.
DOI : 10.1093/nar/gkv1156

URL : https://hal.archives-ouvertes.fr/hal-01460125

B. Görke and J. Stülke, Carbon catabolite repression in bacteria: many ways to make the most out of nutrients, Nature Reviews Microbiology, vol.280, issue.8, pp.613-624, 2008.
DOI : 10.1111/j.1365-2958.2007.06071.x

C. You, Coordination of bacterial proteome with metabolism by cyclic AMP signalling, Nature, vol.250, issue.7462, pp.301-306
DOI : 10.1073/pnas.76.3.1099

M. Kafri, E. Metzl-raz, J. F. Barkai, and N. , 2016 Rethinking cell growth models, FEMS Yeast Res, vol.16, pp.1-6
DOI : 10.1093/femsyr/fow081

A. Kremling, J. Geiselmann, D. Ropers, and H. De-jong, Understanding carbon catabolite repression in Escherichia coli using quantitative models, Trends in Microbiology, vol.23, issue.2, pp.99-109
DOI : 10.1016/j.tim.2014.11.002

URL : https://hal.archives-ouvertes.fr/hal-01103556

M. Scott, S. Klumpp, E. Mateescu, and T. Hwa, Emergence of robust growth laws from optimal regulation of ribosome synthesis, Molecular Systems Biology, vol.10, issue.8, pp.747-757, 20145379.
DOI : 10.15252/msb.20145379

H. Kacser, J. Welch, and . Clegg, On Parts and Wholes in Metabolism, The Organization of Cell Metabolism NATO ASI Series, pp.327-364, 1986.
DOI : 10.1007/978-1-4684-5311-9_28

C. Hinshelwood, 136. On the chemical kinetics of autosynthetic systems, Journal of the Chemical Society (Resumed), pp.745-755, 1952.
DOI : 10.1039/jr9520000745

M. Shuler, S. Leung, and C. Dick, 1979 A mathematical model for the growth of a single cell, Ann. N. Y

M. Shuler, P. Foley, and J. Atlas, Modeling a Minimal Cell, Methods Mol. Biol, vol.881, pp.573-610
DOI : 10.1007/978-1-61779-827-6_20

D. Kompala, D. Ramkrishna, N. Jansen, and G. Tsao, Investigation of bacterial growth on mixed substrates: Experimental evaluation of cybernetic models, Biotechnology and Bioengineering, vol.23, issue.7, pp.1044-1055, 1986.
DOI : 10.1002/bit.260280715

D. Kompala, D. Ramkrishna, and G. Tsao, Cybernetic modeling of microbial growth on multiple substrates, Biotechnology and Bioengineering, vol.97, issue.11, pp.1272-1281, 1984.
DOI : 10.1016/B978-0-12-040305-9.50010-8

D. Ramkrishna and H. Song, 2012 Dynamic models of metabolism: review of the cybernetic approach

M. Tomita, E-CELL: software environment for whole-cell simulation, Bioinformatics, vol.15, issue.1, pp.72-84, 1999.
DOI : 10.1093/bioinformatics/15.1.72

URL : https://academic.oup.com/bioinformatics/article-pdf/15/1/72/9731972/150072.pdf

J. Karr, J. Sanghvi, D. Macklin, M. Gutschow, J. Jacobs et al., A Whole-Cell Computational Model Predicts Phenotype from Genotype, Cell, vol.150, issue.2, pp.389-401
DOI : 10.1016/j.cell.2012.05.044

URL : https://doi.org/10.1016/j.cell.2012.05.044

O. Brien, E. Lerman, J. Chang, R. Hyduke, D. Palsson et al., 2013 Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction, Mol. Syst. Biol

E. Bosdriesz, D. Molenaar, B. Teusink, and F. Bruggeman, How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization, FEBS Journal, vol.42, issue.10, pp.2029-2044
DOI : 10.1016/j.molcel.2011.05.004

URL : http://onlinelibrary.wiley.com/doi/10.1111/febs.13258/pdf

N. Giordano, F. Mairet, J. Gouzé, J. Geiselmann, and H. De-jong, Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies, PLOS Computational Biology, vol.31, issue.3, p.1004802
DOI : 10.1371/journal.pcbi.1004802.s006

URL : https://hal.archives-ouvertes.fr/hal-01332394

D. Molenaar, R. Van-berlo, D. De-ridder, and B. Teusink, Shifts in growth strategies reflect tradeoffs in cellular economics, Molecular Systems Biology, vol.8, 2009.
DOI : 10.1099/00221287-19-3-592

A. Weiße, D. Oyarzún, V. Danos, and P. Swain, 2015 Mechanistic links between cellular trade-offs, gene expression, and growth, Proc. Natl Acad. Sci. USA, pp.1038-1047

A. Zaslaver, S. Kaplan, A. Bren, A. Jinich, A. Mayo et al., Invariant Distribution of Promoter Activities in Escherichia coli, PLoS Computational Biology, vol.33, issue.10, p.1000545, 2009.
DOI : 10.1371/journal.pcbi.1000545.s023

M. Campos, I. Surovtsev, S. Kato, A. Paintdakhi, B. Beltran et al., A Constant Size Extension Drives Bacterial Cell Size Homeostasis, Cell, vol.159, issue.6, pp.1433-1446
DOI : 10.1016/j.cell.2014.11.022

URL : https://doi.org/10.1016/j.cell.2014.11.022

M. Osella, E. Nugent, and M. Cosentinolagomarsino, 2014 Concerted control of Escherichia coli cell division, Proc. Natl Acad. Sci. USA, pp.3431-3435

S. Taheri-araghi, S. Bradde, J. Sauls, N. Hill, P. Levin et al., Cell-Size Control and Homeostasis in Bacteria, Current Biology, vol.25, issue.3, pp.385-391, 2015.
DOI : 10.1016/j.cub.2014.12.009

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501259/pdf

B. Volkmer and M. Heinemann, 2011 Conditiondependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling, PLoS ONE, vol.6

L. Robert, M. Hoffmann, N. Krell, S. Aymerich, J. Robert et al., Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism, BMC Biology, vol.12, issue.1, pp.17-27
DOI : 10.1088/0266-5611/25/4/045008

URL : https://hal.archives-ouvertes.fr/hal-00981312

J. Bailey, Mathematical Modeling and Analysis in Biochemical Engineering: Past Accomplishments and Future Opportunities, Biotechnology Progress, vol.14, issue.1, pp.8-20, 1998.
DOI : 10.1021/bp9701269

H. Blanch, INVITED REVIEW MICROBIAL GROWTH KINETICS, Chemical Engineering Communications, vol.12, issue.4-6, pp.181-211, 1981.
DOI : 10.1002/bit.260120406

D. Kiviet, P. Nghe, N. Walker, S. Boulineau, V. Sunderlikova et al., Stochasticity of metabolism and growth at the single-cell level, Nature, vol.108, issue.7522, pp.376-379
DOI : 10.1073/pnas.1100059108

O. Kotte, B. Volkmer, J. Radzikowski, and M. Heinemann, Phenotypic bistability in Escherichia coli's central carbon metabolism, Molecular Systems Biology, vol.10, issue.7, pp.736-746, 20135022.
DOI : 10.15252/msb.20135022

URL : http://msb.embopress.org/content/msb/10/7/736.full.pdf

J. Van-heerden, 2014 Lost in transition: Startup of glycolysis yields subpopulations of nongrowing cells, Science, vol.343

S. Klumpp, Z. Zhang, and T. Hwa, Growth Rate-Dependent Global Effects on Gene Expression in Bacteria, Cell, vol.139, issue.7, pp.1366-1375
DOI : 10.1016/j.cell.2009.12.001

S. Mcguffee and A. Elcock, 2010 Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm, PLoS Comput. Biol

S. Zimmerman and S. Trach, Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli, Journal of Molecular Biology, vol.222, issue.3, pp.599-620, 1991.
DOI : 10.1016/0022-2836(91)90499-V

M. Basan, M. Zhu, X. Dai, M. Warren, D. Sévin et al., 2015 Inflating bacterial cells by increased protein synthesis, Mol. Syst. Biol, 20156178.
DOI : 10.15252/msb.20156178

URL : http://msb.embopress.org/content/msb/11/10/836.full.pdf

T. Afroz, K. Biliouris, Y. Kaznessis, and C. Beisel, 2014 Bacterial sugar utilization gives rise to distinct single-cell behaviours, Mol. Microbiol, vol.93, pp.1093-1103
DOI : 10.1111/mmi.12695

URL : http://onlinelibrary.wiley.com/doi/10.1111/mmi.12695/pdf

Y. Zhou, A. Vazquez, A. Wise, T. Warita, K. Warita et al., Carbon catabolite repression correlates with the maintenance of near invariant molecular crowding in proliferating E. coli cells, BMC Systems Biology, vol.7, issue.1, pp.138-148
DOI : 10.1073/pnas.98.1.31

A. Narang and S. Pilyugin, Bacterial gene regulation in diauxic and non-diauxic growth, Journal of Theoretical Biology, vol.244, issue.2, 2007.
DOI : 10.1016/j.jtbi.2006.08.007

URL : http://arxiv.org/pdf/q-bio/0608021

C. Tan, P. Marguet, and L. You, Emergent bistability by a growth-modulating positive feedback circuit, Nature Chemical Biology, vol.179, issue.11, pp.842-848, 2009.
DOI : 10.2144/000112018

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908482/pdf

A. Campbell, 1957 Synchronization of cell division, Bacteriol. Rev, vol.21, pp.263-272

R. Heinrich and S. Schuster, The regulation of cellular systems, 1996.
DOI : 10.1007/978-1-4613-1161-4

D. Gillespie, Stochastic Simulation of Chemical Kinetics, Annual Review of Physical Chemistry, vol.58, issue.1, pp.35-55, 2007.
DOI : 10.1146/annurev.physchem.58.032806.104637

A. Kremling, 2013 Systems biology: mathematical modeling and model analysis, Boca Raton

W. Chen, M. Niepel, and P. Sorger, Classic and contemporary approaches to modeling biochemical reactions, Genes & Development, vol.24, issue.17, pp.1861-1876, 1945410.
DOI : 10.1101/gad.1945410

URL : http://genesdev.cshlp.org/content/24/17/1861.full.pdf

L. Segel and M. Slemrod, The Quasi-Steady-State Assumption: A Case Study in Perturbation, SIAM Review, vol.31, issue.3, pp.446-477
DOI : 10.1137/1031091

J. Monod, The growth of bacterial cultures, 1949.

G. Aidelberg, B. Towbin, D. Rothschild, E. Dekel, A. Bren et al., 2014 Hierarchy of non-glucose sugars in Escherichia coli, BMC Syst. Biol, vol.8

W. Harder and L. Dijkhuizen, Strategies of Mixed Substrate Utilization in Microorganisms [and Discussion], Philosophical Transactions of the Royal Society B: Biological Sciences, vol.297, issue.1088, pp.459-480, 1982.
DOI : 10.1098/rstb.1982.0055

R. Hermsen, H. Okano, C. You, N. Werner, and T. Hwa, 2015 A growth-rate composition formula for the growth of E. coli on co-utilized carbon substrates

R. Ramakrishna, D. Ramkrishna, and A. Konopka, Cybernetic modeling of growth in mixed, substitutable substrate environments: Preferential and simultaneous utilization, AID-BIT14.3.0.CO, pp.141-51, 1996.
DOI : 10.1111/j.1574-6968.1990.tb04084.x

G. Bastin and D. Dochain, On-line estimation and adaptive control of bioreactors, Analytica Chimica Acta, vol.243, 1990.
DOI : 10.1016/S0003-2670(00)82585-4

G. Stephanopoulos, A. Aristidou, and J. Nielsen, Metabolic engineering: principles and methodologies, 1998.

J. Godon, L. Arcemisbéhère, R. Escudié, J. Harmand, E. Miambi et al., Overview of the Oldest Existing Set of Substrate-optimized Anaerobic Processes: Digestive Tracts, BioEnergy Research, vol.152, issue.3, pp.1063-1081
DOI : 10.1007/BF00689726

R. Muñoz-tamayo, B. Laroche, E. Walter, J. Doré, and M. Leclerc, Mathematical modelling of carbohydrate degradation by human colonic microbiota, Journal of Theoretical Biology, vol.266, issue.1, pp.189-202, 2010.
DOI : 10.1016/j.jtbi.2010.05.040

M. Ashyraliyev, F. Nanfack, Y. Kaandorp, J. Blom, and J. , Systems biology: parameter estimation for biochemical models, FEBS Journal, vol.7, issue.4, pp.886-902, 2009.
DOI : 10.1093/bib/bbl040

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2008.06844.x/pdf

S. Berthoumieux, M. Brilli, D. Kahn, H. De-jong, and E. Cinquemani, On the identifiability of metabolic network models, Journal of Mathematical Biology, vol.2, issue.25, pp.1795-1832
DOI : 10.1109/TAC.2002.808494

URL : https://hal.archives-ouvertes.fr/hal-00762620

A. Villaverde and J. Banga, 2013 Reverse engineering and identification in systems biology: strategies, perspectives and challenges, J. R. Soc. Interface, vol.11, 20130505.
DOI : 10.1098/rsif.2013.0505

URL : http://rsif.royalsocietypublishing.org/content/royinterface/11/91/20130505.full.pdf

W. Gottstein, B. Olivier, F. Bruggeman, and B. Teusink, 2016 Top-down analysis of temporal hierarchy in biochemical reaction networks, J. R. Soc. Interface, vol.13

B. Palsson, 2015 Systems biology: constraint-based reconstruction and analysis, 2nd edn

N. Price, J. Reed, and B. Palsson, Genome-scale models of microbial cells: evaluating the consequences of constraints, Nature Reviews Microbiology, vol.83, issue.11, pp.886-897, 1023.
DOI : 10.1074/jbc.M403782200

A. Feist and B. Palsson, The biomass objective function, Current Opinion in Microbiology, vol.13, issue.3, pp.344-349
DOI : 10.1016/j.mib.2010.03.003

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912156/pdf

I. Nookaew, M. Jewett, A. Meechai, C. Thammarongtham, K. Laoteng et al., The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism, BMC Systems Biology, vol.2, issue.1, pp.71-81, 2008.
DOI : 10.1186/1752-0509-2-71

B. Teusink, A. Wiersma, D. Molenaar, C. Francke, W. De-vos et al., Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model, J. Biol. Chem, vol.281, issue.40, pp.41-81, 2006.

K. Larrabee, J. Phillips, G. Williams, and A. Larrabee, The relative rates of protein synthesis and degradation in a growing culture of Escherichia coli, J. Biol. Chem, vol.255, pp.4125-4130, 1980.

R. Mosteller, R. Goldstein, and K. Nishimoto, Metabolism of individual proteins in exponentially growing Escherichia coli, J. Biol. Chem, vol.255, pp.2524-2532, 1980.

H. Taymaz-nikerel, D. Mey, M. Baart, G. Maertens, J. Heijnen et al., 2013 Changes in substrate availability in Escherichia coli lead to rapid metabolite, flux and growth rate responses

V. Baldazzi, D. Ropers, Y. Markowicz, D. Kahn, J. Geiselmann et al., The Carbon Assimilation Network in Escherichia coli Is Densely Connected and Largely Sign-Determined by Directions of Metabolic Fluxes, PLoS Computational Biology, vol.11, issue.6, p.1000812
DOI : 10.1371/journal.pcbi.1000812.s003

URL : https://hal.archives-ouvertes.fr/hal-00793021

C. Schilling, S. Schuster, B. Palsson, and R. Heinrich, Metabolic Pathway Analysis: Basic Concepts and Scientific Applications in the Post-genomic Era, Biotechnology Progress, vol.15, issue.3, pp.296-303, 1999.
DOI : 10.1021/bp990048k

M. Antoniewicz, Methods and advances in metabolic flux analysis: a mini-review, Journal of Industrial Microbiology & Biotechnology, vol.45, issue.4, pp.317-325
DOI : 10.1002/bit.260450403

A. Provost and G. Bastin, Dynamic metabolic modelling under the balanced growth condition, Journal of Process Control, vol.14, issue.7, 2004.
DOI : 10.1016/j.jprocont.2003.12.004

J. Orth, I. Thiele, and B. Palsson, What is flux balance analysis?, Nature Biotechnology, vol.19, issue.3, pp.245-248
DOI : 10.1038/nrmicro1949

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108565/pdf

A. Bordbar, J. Monk, Z. King, and B. Palsson, Constraint-based models predict metabolic and associated cellular functions, Nature Reviews Genetics, vol.84, issue.2, pp.107-120
DOI : 10.1038/ng.2355

J. Edwards, R. Ibarra, and B. Palsson, In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data, Nature Biotechnology, vol.19, issue.2, pp.125-130, 2001.
DOI : 10.1038/84379

R. Ibarra, J. Edwards, and B. Palsson, Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth, Nature, vol.143, issue.6912, pp.186-189, 1149.
DOI : 10.1002/bit.10047

R. Mahadevan, J. Edwards, and F. Doyle, Dynamic Flux Balance Analysis of Diauxic Growth in Escherichia coli, Biophysical Journal, vol.83, issue.3, pp.1331-1340, 2002.
DOI : 10.1016/S0006-3495(02)73903-9

W. Megchelenbrink, M. Huynen, and E. Marchiori, 2014 optGpSampler: an improved tool for uniformly sampling the solution-space of genome-scale metabolic networks, PLoS ONE, vol.9

N. Price, J. Schellenberger, and B. Palsson, Uniform Sampling of Steady-State Flux Spaces: Means to Design Experiments and to Interpret Enzymopathies, Biophysical Journal, vol.87, issue.4, pp.2172-2186, 2004.
DOI : 10.1529/biophysj.104.043000

S. Schuster, D. Fell, and T. Dandekar, A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks, Nature Biotechnology, vol.15, issue.3, pp.326-332
DOI : 10.1093/bioinformatics/15.3.251

S. Kelk, B. Olivier, L. Stougie, and F. Bruggeman, 2012 Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks

R. Schuetz, L. Kuepfer, and U. Sauer, Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli, Molecular Systems Biology, vol.101, pp.119-129, 2007.
DOI : 10.1042/bj2380781

S. Schuster, T. Pfeiffer, and D. Fell, Is maximization of molar yield in metabolic networks favoured by evolution?, Journal of Theoretical Biology, vol.252, issue.3, pp.497-504, 2008.
DOI : 10.1016/j.jtbi.2007.12.008

V. De-lorenzo, : Revisiting the central dogma, BioEssays, vol.3, issue.3, pp.226-235
DOI : 10.1038/msb4100156

R. Adadi, B. Volkmer, R. Milo, M. Heinemann, and T. Shlomi, 2012 Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters, PLoS Comput. Biol

Q. Beg, A. Vazquez, J. Ernst, M. De-menezes, Z. Bar-joseph et al., Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity, Proc. Natl Acad. Sci. USA, pp.663-675, 2007.
DOI : 10.1128/JB.186.15.4921-4930.2004

M. Covert, N. Xiao, T. Chen, and J. Karr, Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli, Bioinformatics, vol.24, issue.18, pp.2044-2050, 2008.
DOI : 10.1093/bioinformatics/btn352

URL : https://academic.oup.com/bioinformatics/article-pdf/24/18/2044/16882342/btn352.pdf

A. Goelzer and V. Fromion, Bacterial growth rate reflects a bottleneck in resource allocation, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1810, issue.10, pp.978-988, 2011.
DOI : 10.1016/j.bbagen.2011.05.014

URL : https://hal.archives-ouvertes.fr/hal-00753127

M. Mori, T. Hwa, O. Martin, D. Martino, A. Marinari et al., 2016 Constrained allocation flux balance analysis, PLoS Comput. Biol
DOI : 10.1371/journal.pcbi.1004913

URL : https://doi.org/10.1371/journal.pcbi.1004913

S. Waldherr, D. Oyarzún, and A. Bockmayr, Dynamic optimization of metabolic networks coupled with gene expression, Journal of Theoretical Biology, vol.365, pp.469-485
DOI : 10.1016/j.jtbi.2014.10.035

K. Zhuang, G. Vemuri, and R. Mahadevan, Economics of membrane occupancy and respirofermentation, Mol. Syst. Biol, 2011.
DOI : 10.1038/msb.2011.34

URL : http://msb.embopress.org/content/msb/7/1/500.full.pdf

T. Gánti, Organization of chemical reactions into dividing and metabolizing units: The chemotons, Biosystems, vol.7, issue.1, pp.15-21, 1975.
DOI : 10.1016/0303-2647(75)90038-6

A. Koch, Why can't a cell grow infinitely fast?, Canadian Journal of Microbiology, vol.34, issue.4, pp.421-426, 1988.
DOI : 10.1139/m88-074

R. Stengel, Optimal control and estimation, 1994.

K. Potrykus and M. Cashel, (p)ppGpp: Still Magical?, Annual Review of Microbiology, vol.62, issue.1, pp.35-51
DOI : 10.1146/annurev.micro.62.081307.162903

T. Bollenbach, S. Quan, R. Chait, R. Kishony, H. Berg et al., Nonoptimal microbial response to antibiotics underlies suppressive drug interactions Optimal allocation of building blocks between nutrient uptake systems in a microbe, Cell J. Math. Biol, vol.139, issue.44, pp.707-718, 2002.

H. Kaltenbach and J. Stelling, Modular Analysis of Biological Networks, Adv. Exp. Med. Biol, vol.736, pp.3-17
DOI : 10.1007/978-1-4419-7210-1_1

C. Baroukh, R. Muñoz-tamayo, J. Steyer, and O. Bernard, DRUM: A New Framework for Metabolic Modeling under Non-Balanced Growth. Application to the Carbon Metabolism of Unicellular Microalgae, PLoS ONE, vol.8, issue.257, p.104499
DOI : 10.1371/journal.pone.0104499.s009

URL : https://hal.archives-ouvertes.fr/hal-01123224

N. Jamshidi and B. Palsson, Top-Down Analysis of Temporal Hierarchy in Biochemical Reaction Networks, PLoS Computational Biology, vol.92, issue.9, 2008.
DOI : 10.1371/journal.pcbi.1000177.s003

J. Gunawardena, Models in biology: ???accurate descriptions of our pathetic thinking???, BMC Biology, vol.12, issue.1, pp.29-39, 2014.
DOI : 10.1242/dev.063735

E. Bigan, L. Paulevé, J. Steyaert, and S. Douady, Necessary and sufficient conditions for protocell growth, Journal of Mathematical Biology, vol.89, issue.7, pp.1627-1664
DOI : 10.1002/bit.20408

URL : https://hal.archives-ouvertes.fr/hal-01338156

I. Surovstev, J. Morgan, and P. Lindahl, Wholecell modeling framework in which biochemical dynamics impact aspects of cellular geometry, 2007.

V. Noireaux, Y. Maeda, and A. Libchaber, 2011 Development of an artificial cell, from selforganization to computation and self-reproduction

H. De-jong, J. Geiselmann, and D. Ropers, Resource Reallocation in Bacteria by Reengineering the Gene Expression Machinery, Trends in Microbiology, vol.25, issue.6, pp.480-493
DOI : 10.1016/j.tim.2016.12.009

URL : https://hal.archives-ouvertes.fr/hal-01420729

F. Si, Invariance of Initiation Mass and Predictability of Cell Size in Escherichia coli, Current Biology, vol.27, issue.9, pp.1278-1287, 2017.
DOI : 10.1016/j.cub.2017.03.022

W. Spiesser, C. Müller, G. Schreiber, M. Krantz, and E. Klipp, 2012 Size homeostasis can be intrinsic to growing cell populations and explained without size sensing or signalling, FEBS J, vol.279, pp.4111-4145
DOI : 10.1111/febs.12014

URL : http://onlinelibrary.wiley.com/doi/10.1111/febs.12014/pdf

M. Kaern, T. Elston, W. Blake, and J. Collins, Stochasticity in gene expression: from theories to phenotypes, Nature Reviews Genetics, vol.8706, issue.6, pp.451-464, 2005.
DOI : 10.1073/pnas.0400673101

J. Carrera and M. Covert, 2015 Why build whole-cell models? Trends Cell Biol, pp.719-722
DOI : 10.1016/j.tcb.2015.09.004

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4663153/pdf

D. Goodsell, The machinery of life, 2009.

J. Utrilla, O. Brien, E. Chen, K. Mccloskey, D. Cheung et al., 2016 Global rebalancing of cellular resources by pleiotropic point mutations illustrates a multi-scale mechanism of adaptive evolution, Cell Syst. J. R. Soc. Interface, vol.2, issue.14, pp.260-271