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Abstract

In the problem of edge sign prediction, we are
given a directed graph (representing a social
network), and our task is to predict the bi-
nary labels of the edges (i.e., the positive or
negative nature of the social relationships).
Many successful heuristics for this problem
are based on the troll-trust features, estimat-
ing at each node the fraction of outgoing and
incoming positive/negative edges. We show
that these heuristics can be understood, and
rigorously analyzed, as approximators to the
Bayes optimal classifier for a simple proba-
bilistic model of the edge labels. We then
show that the maximum likelihood estimator
for this model approximately corresponds to
the predictions of a Label Propagation algo-
rithm run on a transformed version of the
original social graph. Extensive experiments
on a number of real-world datasets show that
this algorithm is competitive against state-of-
the-art classifiers in terms of both accuracy
and scalability. Finally, we show that troll-
trust features can also be used to derive online
learning algorithms which have theoretical
guarantees even when edges are adversarially
labeled.

1 Introduction

Connections in social networks are mostly driven by the
homophily assumption: linked individuals tend to be
similar, sharing personality traits, attitudes, or inter-
ests. However, homophily alone is clearly not su�cient
to explain the variety of social links. In fact, sociolo-
gists have long studied networks, hereafter called signed
social networks, where also negative relationships —like
dissimilarity, disapproval or distrust— are explicitly
displayed. The presence of negative relationships is
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also a feature of many technology-mediated social net-
works. Known examples are Ebay, where users trust
or distrust agents in the network based on their per-
sonal interactions, Slashdot, where each user can tag
another user as friend or foe, and Epinion, where users
can rate positively or negatively not only products,
but also other users. Even in social networks where
connections solely represent friendships, negative links
can still emerge from the analysis of online debates
among users.

When the social network is signed, specific challenges
arise in both network analysis and learning. On the one
hand, novel methods are required to tackle standard
tasks (e.g., user clustering, link prediction, targeted ad-
vertising/recommendation, analysis of the spreading of
diseases in epidemiological models). On the other hand,
new problems such as edge sign prediction, which we
consider here, naturally emerge. Edge sign prediction
is the problem of classifying the positive or negative na-
ture of the links based on the network topology. Prior
knowledge of the network topology is often a realistic
assumption, for in several situations the discovery of
the link sign can be more costly than acquiring the
topological information of the network. For instance,
when two users of an online social network communi-
cate on a public web page, we immediately detect a
link. Yet, the classification of the link sign as positive
or negative may require complex techniques.

From the modeling and algorithmic viewpoints, be-
cause of the huge amount of available networked data,
a major concern in developing learning methods for
edge sign prediction is algorithmic scalability. Many
successful, yet simple heuristics for edge sign prediction
are based on the troll-trust features, i.e., on the frac-
tion of outgoing negative links (trollness) and incoming
positive links (trustworthiness) at each node. We study
such heuristics by defining a probabilistic generative
model for the signs on the directed links of a given
network, and show that these heuristics can be un-
derstood and analyzed as approximators to the Bayes
optimal classifier for our generative model. We also
gather empirical evidence supporting our probabilistic
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model by observing that a logistic model trained on
trollness and trustworthiness features alone is able to
learn weights that, on all datasets considered in our ex-
periments, consistently satisfy the properties predicted
by our model.

We then introduce suitable graph transformations defin-
ing reductions from edge sign prediction to node sign
prediction problems. This opens up the possibility of
using the arsenal of known algorithmic techniques de-
veloped for node classification. In particular, we show
that a Label Propagation algorithm, combined with
our reduction, approximates the maximum likelihood
estimator of our probabilistic generative model. Exper-
iments on real-world data show the competitiveness of
our approach in terms of both prediction performance
(especially in the regime when training data are scarce)
and scalability.

Finally, we point out that the notions of trollness and
trustworthiness naturally define a measure of complex-
ity, or learning bias, for the signed network that can
also be used to design online (i.e., sequential) learn-
ing algorithms for the edge sign prediction problem.
The learning bias encourages settings where the nodes
in the network have polarized features (e.g., troll-
ness/trustworthiness are either very high or very low).
Our online analysis holds under adversarial conditions,
namely, without any stochastic assumption on the as-
signment of signs to the network links.

1.1 Related work

Interest in signed networks can be traced back to the
psychological theory of structural balance [4, 12] with
its weak version [10]. The advent of online signed social
networks has enabled a more thorough and quantita-
tive understanding of that phenomenon. Among the
several approaches related to our work, some extend
the spectral properties of a graph to the signed case in
order to find good embeddings for classification [18, 33].
However, the use of the adjacency matrix usually re-
quires a quadratic running time in the number of nodes,
which makes those methods hardly scalable to large
graphs. Another approach is based on mining ego
networks with SVM. Although this method seems to
deliver good results [23], the running time makes it
often impractical for large real-world datasets. An al-
ternative approach, based on local features only and
proposed in [19], relies on the so-called status theory
for directed graphs [11]. Some works in active learning,
using a more sophisticated bias based on the correlation
clustering (CC) index [6, 5], provide strong theoretical
guarantees. However, the bias used there is rather
strong, since it assumes the existence of a 2-clustering
of the nodes with a small CC index.

Whereas our focus will be on binary prediction, re-

searchers have also considered a weighted version of
the problem, where edges measure the amount of trust
or distrust between two users (e.g., [11, 28, 25]). Other
works have also considered versions of the problem
where side information related to the network is avail-
able to the learning system. For instance, [24] uses the
product purchased on Epinion in conjunction with a
neural network, [8] identifies trolls by analysing the
textual content of their post, and [32] uses SVM to
perform transfer learning from one network to another.
While many of these approaches have interesting per-
formances, they often require extra information which
is not always available (or reliable) and, in addition,
may face severe scaling issues. The recent survey [29]
contains pointers to many papers on edge sign predic-
tion for signed networks, especially in the Data Mining
area. Additional references, more closely related to our
work, will be mentioned at the end of Section 4.1.

2 Notation and Preliminaries

In what follows, we let G = (V,E) be a directed
graph, whose edges (i, j) 2 E carry a binary label
yi,j 2 {�1,+1}. The edge labeling will sometimes be
collectively denoted by the |V |⇥ |V | matrix Y = [Yi,j ],
where Yi,j = yi,j if (i, j) 2 E, and Yi,j = 0, other-
wise. The corresponding edge-labeled graph will be de-
noted by G(Y ) = (V,E(Y )). We use E

in

(i) and E
out

(i)
to denote, respectively, the set of edges incoming to
and outgoing from node i 2 V , with d

in

(i) =
��E

in

(i)
��

and d
out

(i) =
��E

out

(i)
�� being the in-degree and the

out-degree of i. Moreover, d+
in

(i) is the number of
edges (k, i) 2 E

in

(i) such that yk,i = +1. We de-
fine d�

in

(i), d+
out

(i), and d�
out

(i) similarly, so that, for
instance, d�

out

(i)/d
out

(i) is the fraction of outgoing
edges from node i whose label in G(Y ) is �1. We
call tr(i) = d�

out

(i)/d
out

(i) the trollness of node i, and
un(i) = d�

in

(i)/d
in

(i) the untrustworthiness of node i.
Finally, we also use the notation N

in

(i) and N
out

(i) to
represent, respectively, the in-neighborhood and the
out-neighborhood of node i 2 V .

Given the directed graph G = (V,E), we define two
edge-to-node reductions transforming the original graph
G into other graphs. As we see later, these reductions
are useful in turning the edge sign prediction problem
into a node sign prediction problem (often called node
classification problem), for which many algorithms are
indeed available —see, e.g., [3, 34, 13, 14, 7]. Although
any node classification method could in principle be
used, the reductions we describe next are essentially
aimed at preparing the ground for quadratic energy-
minimization approaches computed through a Label
Propagation algorithm (e.g., [34, 2]).

The first reduction, called G! G0, builds an undirected
graph G0 = (V 0, E0) as follows. Each node i 2 V has
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two copies in V 0, call them i
in

and i
out

. Each directed
edge (i, j) in E is associated with one node, call it ei,j ,
in V 0, along with the two undirected edges (i

out

, ei,j)
and (ei,j , jin). Hence |V 0| = 2|V | + |E| and |E0| =
2|E|. Moreover, if G = G(Y ) is edge labeled, then this
labeling transfers to the subset of nodes ei,j 2 V 0, so
that G0 is a graph G0(Y ) = (V 0(Y ), E0) with partially-
labeled nodes. The second reduction, called G! G00,
builds an undirected and weighted graphG00 = (V 00, E00).
Specifically, we have V 00 ⌘ V 0 and E00 � E0, where the
set E00 also includes edges (i

out

, j
in

) for all i and j such
that (i, j) 2 E. The edges in E0 have weight 2, whereas
the edges in E00 \E0 have weight �1. Finally, as in the
G! G0 reduction, if G = G(Y ) is edge labeled, then
this labeling transfers to the subset of nodes ei,j 2 V 00.
Graph G0, which will not be used in this paper, is an
intermediate structure between G and G00 and provides
a conceptual link to the standard cutsize measure in
node sign classification. Figure 1 illustrates the two
reductions.

These reductions are meaningful only if they are able
to approximately preserve label regularity when moving
from edges to nodes. That is, if the edge sign predic-
tion problem is easy for a given G(Y ) = (V,E(Y )),
then the corresponding node sign prediction problems
on G0(Y ) = (V 0(Y ), E0) and G00(Y ) = (V 00(Y ), E) are
also easy, and vice versa. While we could make this ar-
gument more quantitative, here we simply observe that
if each node in G tends to be either troll or trustworthy,
then few labels from the incoming and outgoing edges
of each such node are su�cient to predict the labels on
the remaining edges in G, and this translates to a small
cutsize1 of G0(Y ) over the nodes corresponding to the
edges in G (the colored squares in Figure 1 (b)). Again,
we would like to point out that these reductions serve
two purposes: First, they allow us to use the many
algorithms designed for the better studied problem of
node sign prediction. Second, the reduction G! G00

with the specific choice of edge weights is designed
to make the Label Propagation solution approximate
the maximum likelihood estimator associated with our
generative model (see Section 4.1).Note also that ef-
ficient Label Propagation implementations exist that
can leverage the sparsity of G00.

We consider two learning settings associated with the
problem of edge sign prediction: a batch setting and
an online setting. In the batch setting, we assume that
a training set of edges E

0

has been drawn uniformly
at random without replacement from E, we observe
the labels in E

0

, and we are interested in predicting
the sign of the remaining edges E \ E

0

by making as

1 Recall that the cutsize of an undirected node-labeled
graph G0(Y ) is the number of edges in G0 connecting nodes
having mismatching labels.

few prediction mistakes as possible. The specific batch
setting we study here assumes that labels are produced
by a generative model which we describe in the next
section, and our label regularity measure is a quadratic
function (denoted by  2

G00(Y ) —see Section 6 for a
definition), related to this model.  2

G00(Y ) is small
just when all nodes in G tend to be either troll or
trustworthy.

On the other hand, the online setting we consider is the
standard mistake bound model of online learning [20]
where all edge labels are assumed to be generated by
an adversary and sequentially presented to the learner
according to an arbitrary permutation. For an online
learning algorithm A, we are interested in measuring
the total number of mistakes MA(Y ) the algorithm
makes over G(Y ) when the worst possible presentation
order of the edge labels in Y is selected by the adver-
sary. Also in the online setting our label regularity
measure, denoted here by  G(Y ), is small when nodes
in G tend to be either troll or trustworthy. Formally, for
fixed G and Y , let  

in

(j, Y ) = min
�
d�
in

(j), d+
in

(j)
 
and

 
out

(i, Y ) = min
�
d�
out

(i), d+
out

(i)
 
. Let also  

in

(Y ) =P
j2V  in

(j, Y ) and  
out

(Y ) =
P

i2V  out

(i, Y ).

Then we define  G(Y ) = min
�
 

in

(Y ), 
out

(Y )
 
. The

two measures  2

G00(Y ) and  G(Y ) are conceptually
related. Indeed, their value on real data is quite simi-
lar(see Table 2 in Section 6).

3 Generative Model for Edge Labels

We now define the stochastic generative model for edge
labels we use in the batch learning setting. Given
the graph G = (V,E), let the label yi,j 2 {�1,+1}
of directed edge (i, j) 2 E be generated as follows.
Each node i 2 V is endowed with two latent pa-
rameters pi, qi 2 [0, 1], which we assume to be gen-
erated, for each node i, by an independent draw from a
fixed but unknown joint prior distribution µ(p, q) over
[0, 1]2. Each label yi,j 2 {�1,+1} is then generated by
an independent draw from the mixture of pi and qj ,
P
�
yi,j = 1

�
= pi+qj

2

. The basic intuition is that the
nature yi,j of a relationship i! j is stochastically de-
termined by a mixture between how much node i tends
to like other people (pi) and how much node j tends to
be liked by other people (qj). In a certain sense, 1�tr(i)
is the empirical counterpart to pi, and 1� un(j) is the
empirical counterpart to qj .2 Notice that the Bayes op-
timal prediction for yi,j is y⇤(i, j) = sgn

�
⌘(i, j)� 1

2

�
,

where ⌘(i, j) = P
�
yi,j = 1

�
. Moreover, the probability

of drawing at random a +1-labeled edge from E
out

(i)

2 One might view our model as reminiscent of standard
models for link generation in social network analysis, like
the classical p

1

model from [15]. Yet, the similarity falls
short, for all these models aim at representing the likelihood
of the network topology, rather than the probability of edge
signs, once the topology is given.
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Figure 1: (a) A directed edge-labeled graph G. (b) Its corresponding graph G0 resulting from the G ! G0

reduction. The square nodes in G0 correspond to the edges in G, and carry the same labels as their corresponding
edges. On the other hand, the 2|V | circle nodes in G0 are unlabeled. Observe that some nodes in G0 are isolated
(and thus unimportant); these are exactly the nodes in G0 corresponding to the nodes having in G no outgoing or
no incoming edges —see, e.g., nodes 3 and 4 in G. (c) The weighted graph resulting from the G! G00 reduction.

and the probability of drawing at random a +1-labeled
edge from E

in

(j) are respectively equal to

1

2

 
pi+

1

d
out

(i)

X

j2N
out

(i)

qj

!
and

1

2

 
qj+

1

d
in

(j)

X

i2N
in

(j)

pi

!
.

(1)

4 Algorithms in the Batch Setting

Given G(Y ) = (V,E(Y )), we have at our disposal a
training set E

0

of labeled edges from E(Y ), our goal
being that of building a predictive model for the labels
of the remaining edges.

Our first algorithm is an approximation to the Bayes
optimal predictor y⇤(i, j). Let us denote by btr(i) and
cun(i) the trollness and the untrustworthiness of node
i when both are computed on the subgraph induced
by the training edges. We now design and analyze an
edge classifier of the form

sgn

⇣�
1� btr(i)

�
+
�
1� cun(j)

�
� 1

2

� ⌧
⌘
, (2)

where ⌧ � 0 is the only parameter to be trained. De-
spite its simplicity, this classifier works reasonably well
in practice, as demonstrated by our experiments (see
Section 6). Moreover, unlike previous edge sign predic-
tion methods for directed graphs, our classifier comes
with a rigorous theoretical motivation, since it approxi-
mates the Bayes optimal classifier y⇤(i, j) with respect
to the generative model defined in Section 3. It is
important to point out that when we use 1� btr(i) and
1�cun(j) to estimate pi and qj , an additive bias shows
up due to (1). This motivates the need of a threshold
parameter ⌧ to cancel this bias. Yet, the presence of a
prior distribution µ(p, q) ensures that this bias is the
same for all edges (i, j) 2 E.

Our algorithm works under the assumption that for
given parameters Q (a positive integer) and ↵ 2 (0, 1)
there exists a set3 EL ✓ E of size 2Q

↵ where each vertex

3 EL is needed to find an estimate b⌧ of ⌧ in (2) —see

i 2 V appearing as an endpoint of some edge in EL

occurs at most once as origin —i.e., (i, j)— and at
most once as destination —i.e., (j, i). Moreover, we
assume E

0

has been drawn from E at random without
replacement, with m = |E

0

| = ↵ |E|. The algorithm
performs the following steps:

1. For each j 2 V , let cun(j) = bd�
in

(j)/bd
in

(j), i.e., the
fraction of negative edges found in E

in

(j) \ E
0

.

2. For each i 2 V , let btr(i) = bd�
out

(i)/bd
out

(i), i.e., the
fraction of negative edges found in E

out

(i) \ E
0

.
3. Let b⌧ be the fraction of positive edges in EL \ E

0

.
4. Any remaining edge (i, j) 2 E \E

0

is predicted as

by(i, j) = sgn

⇣�
1� btr(i)

�
+
�
1� cun(j)

�
� 1

2

� b⌧
⌘
.

The next result4 shows that if the graph is not too
sparse, then the above algorithm can approximate the
Bayes optimal predictor on nodes whose in-degree and
out-degree is not too small.

Theorem 1. Let G(Y ) = (V,E(Y )) be a directed graph
with labels on the edges generated according to the model
in Section 3. If the algorithm is run with parameter
Q = ⌦(ln |V |), and ↵ 2 (0, 1) such that the above
assumptions are satisfied, then by(i, j) = y⇤(i, j) holds
with high probability simultaneously for all test edges
(i, j) 2 E such that d

out

(i), d
in

(j) = ⌦(ln |V |), and
⌘(i, j) = P(yi,j = 1) is bounded away from 1

2

.

The approach leading to Theorem 1 lets us derive the
blc(tr, un) algorithm assessed in our experiments of
Section 6, but it needs the graph to be su�ciently dense
and the bias ⌧ to be the same for all edges. In order to
address these limitations, we now introduce a second
method based on label propagation.

Step 3 of the algorithm. Any undirected matching of G of
size O(log |V |) can be used. In practice, however, we never
computed EL, and estimated ⌧ on the entire training set
E

0

.
4 All proofs are in the supplementary material.
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4.1 Approximation to Maximum Likelihood

via Label Propagation

For simplicity, assume the joint prior distribution
µ(p, q) is uniform over [0, 1]2 with independent
marginals, and suppose that we draw at ran-
dom without replacement the training set E

0

=�
(i

1

, j
1

), yi
1

,j
1

), ((i
2

, j
2

), yi
2

,j
2

), . . . , ((im, jm), yim,jm

�
,

with m = |E
0

|. Then a reasonable approach to
approximate y⇤(i, j) would be to resort to a maximum

likelihood estimator of the parameters {pi, qi}|V |
i=1

based
on E

0

. As showed in the supplementary material, the

gradient of the log-likelihood function w.r.t. {pi, qi}|V |
i=1

satisfies

@ log P
⇣
E

0

��� {pi, qi}|V |
i=1

⌘

@p`
(3)

=

mX

k=1

I {ik = `, y`,jk = +1}
p` + qjk

�
mX

k=1

I {ik = `, y`,jk = �1}
2� p` � qjk

,

@ log P
⇣
E

0

��� {pi, qi}|V |
i=1

⌘

@q`
(4)

=

mX

k=1

I {jk = `, yik,` = +1}
pik + q`

�
mX

k=1

I {jk = `, yik,` = �1}
2� pik � q`

,

where I {·} is the indicator function of the event at
argument. Unfortunately, equating (3) and (4) to zero,

and solving for parameters {pi, qi}|V |
i=1

gives rise to a
hard set of nonlinear equations. Moreover, some such
parameters may never occur in these equations, namely
whenever E

out

(i) or E
in

(j) are not represented in E
0

for some i, j 2 V . Our first approximation is therefore
to replace the nonlinear equations resulting from (3)
and (4) by the following set of linear equations5, one
for each ` 2 V :

mX

k=1

I {ik = `, y`,jk = +1} (2� p` � qjk)

=
mX

k=1

I {ik = `, y`,jk = �1} (p` + qjk)

mX

k=1

I {jk = `, yik,` = +1} (2� pik � q`)

=
mX

k=1

I {jk = `, yik,` = �1} (pik + q`) .

The solution to these equations are precisely the points

where the gradient w.r.t. (p, q) = {pi, qi}|V |
i=1

of the
quadratic function

fE
0

(p, q) =
X

(i,j)2E
0

✓
1 + yi,j

2
� pi + qj

2

◆
2

vanishes. We follow a label propagation approach by
adding to fE

0

the corresponding test set function fE\E
0

,

5Details are provided in the supplementary material.

and treat the sum of the two as the function to be
minimized during training w.r.t. both (p, q) and all
yi,j 2 [�1,+1] for (i, j) 2 E \ E

0

, i.e.,

min
(p,q),yi,j2[�1,+1], (i,j)2E\E

0

�
fE

0

(p, q) + fE\E
0

(p, q)
�
.

(5)
Binary ±1 predictions on the test set E \ E

0

are then
obtained by thresholding the obtained values yi,j at 0.

We now proceed to solve (5) via label propagation [34]
on the graph G00 obtained through the G ! G00 re-
duction of Section 2.However, because of the presence
of negative edge weights in G00, we first have to sym-
metrize6 variables pi, qi, yi,j so as they all lie in the
interval [�1,+1]. After this step, one can see that,
once we get back to the original variables, label propa-
gation computes the harmonic solution minimizing the
function

bf
�
p, q, yi,j

(i,j)2E\E
0

�
= fE

0

(p, q) + fE\E
0

(p, q)

+
1

2

X

i2V

✓
d
out

(i)
⇣
pi �

1

2

⌘
2

+d
in

(i)
⇣
qi �

1

2

⌘
2

◆
.

The function bf is thus a regularized version of the
target function fE

0

+ fE\E
0

in (5), where the regular-
ization term tries to enforce the extra constraint that
whenever a node i has a high out-degree then the corre-
sponding pi should be close to 1/2. Thus, on any edge
(i, j) departing from i, the Bayes optimal predictor
y⇤(i, j) = sgn(pi + qj � 1) will mainly depend on qj
being larger or smaller than 1

2

(assuming j has small
in-degree). Similarly, if i has a high in-degree, then
the corresponding qi should be close to 1/2 implying
that on any edge (j, i) arriving at i the Bayes optimal
predictor y⇤(j, i) will mainly depend on pj (assuming
j has small out-degree). Put di↵erently, a node having
a huge out-neighborhood makes each outgoing edge
“count less” than a node having only a small number
of outgoing edges, and similarly for in-neighborhoods.
The label propagation algorithm operating on G00 does
so (see again Figure 1 (c)) by iteratively updating as
follows:

pi  
�
P

j2N
out

(i) qj +
P

j2N
out

(i)(1 + yi,j)

3 d
out

(i)
8i 2 V

qj  
�
P

i2N
in

(j) pi +
P

i2N
in

(j)(1 + yi,j)

3 d
in

(j)
8j 2 V

yi,j  
pi + qj

2
8(i, j) 2 E \ E

0

.

The algorithm is guaranteed to converge [34] to the

minimizer of bf . Notice that the presence of negative

6While we note here that such linear transformation of
the variables does not change the problem, we provide more
details in Section 1.3 of the supplementary material.
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weights on the edges of G00 does not prevent label
propagation from converging. This is the algorithm we
will be championing in our experiments of Section 6.

Further related work. The vast majority of existing
edge sign prediction algorithms for directed graphs
are based on the computation of local features of
the graph. These features are evaluated on the sub-
graph induced by the training edges, and the result-
ing values are used to train a supervised classifica-
tion algorithm (e.g., logistic regression). The most
basic set of local features used to classify a given edge
(i, j) are defined by d+

in

(j), d�
in

(j), d+
out

(i), d�
out

(i) com-
puted over the training set E

0

, and by the embed-
dedness coe�cient

��E
out

(i) \ E
in

(j)
��. In turn, these

can be used to define more complicated features, such

as
d+

in

(j)+|E+|U
in

(j)
d
in

(j)+U
in

(j) and d+

out

(i)+p+U
out

(i)
d
out

(i)+U
out

(i) introduced

in [27], together with their negative counterparts, where
|E+| is the overall fraction of positive edges, and
U
in

(j), U
out

(i) are, respectively, the number of test
edges outgoing from i and the number of test edges
incoming to j. Other types of features are derived from
social status theory (e.g., [19]), and involve the so-called
triads; namely, the triangles formed by (i, j) together
with (i, w) and (w, j) for any w 2 N

out

(i) \N
in

(j). A
third group of features is based on node ranking scores.
These scores are computed using a variery of meth-
ods, including Prestige [35], exponential ranking [30],
PageTrust [16], Bias and Deserve [22], TrollTrust [31],
and generalizations of PageRank and HITS to signed
networks [26]. Examples of features using such scores
are reputation and optimism [26], defined for a node

i by
P

j2N
in

(i) yj,i�(j)P
j2N

in

(i) �(j)
and

P
j2N

out

(i) Yi,j�(j)P
j2N

out

(i) �(j)
, where

�(j) is the ranking score assigned to node j. Some of
these algorithms will be used as representative com-
petitors in our experimental study of Section 6.

5 Algorithms in the Online Setting

For the online scenario, we have the following result.

Theorem 2. There exists a randomized online predic-
tion algorithm A whose expected number of mistakes

satisfies EMA(Y ) =  G(Y ) + O
⇣p

|V | G(Y ) + |V |
⌘

on any edge-labeled graph G(Y ) = (V,E(Y )).

The algorithm used in Theorem 2 is a combination of
randomized Weighted Majority instances. Details are
reported in the supplementary material. We comple-
ment the above result by providing a mistake lower
bound. Like Theorem 2, the following result holds for
all graphs, and for all label irregularity levels  G(Y ).

Theorem 3. Given any edge-labeled graph G(Y ) =

(V,E(Y )) and any integer K 
⌅ |E|

2

⇧
, a randomized

labeling Y 2 {�1,+1}|E| exists such that  G(Y )  K,
and the expected number of mistakes that any online

algorithm A can be forced to make satisfies EMA(Y ) �
K
2

. Moreover, as K
|E| ! 0 then EMA(Y ) = K.

6 Experimental Analysis

We now evaluate our edge sign classification methods
on representative real-world datasets of varying density
and label regularity, showing that our methods com-
pete well against existing approaches in terms of both
predictive and computational performance. We are
especially interested in small training set regimes, and
have restricted our comparison to the batch learning
scenario since all competing methods we are aware of
have been developed in that setting only.

Datasets. We considered five real-world classifica-
tion datasets. The first three are directed signed
social networks widely used as benchmarks for this
task (e.g.,[19, 26, 31]): In Wikipedia, there is an edge
from user i to user j if j applies for an admin position
and i votes for or against that promotion. In Slash-

dot, a news sharing and commenting website, member
i can tag other members j as friends or foes. Finally,
in Epinion, an online shopping website, user j reviews
products and, based on these reviews, another user i
can display whether he considers j to be reliable or
not. In addition to these three datasets, we consid-
ered two other signed social networks where the signs
are inferred automatically. In Wik. Edits [21], an
edge from Wikipedia user i to user j indicates whether
they edited the same article in a constructive manner
or not.7 Finally, in the Citations [17] network, an
author i cites another author j by either endorsing or
criticizing j’s work. The edge sign is derived by classify-
ing the citation sentiment with a simple, yet powerful,
keyword-based technique using a list of positive and
negative words. See [17] for more details.8

Table 1 summarizes statistics for these datasets. We
note that most edge labels are positive. Hence, test set
accuracy is not an appropriate measure of prediction
performance. We instead evaluated our performance
using the so-called Matthews Correlation Coe�cient
(MCC) (e.g., [1]), defined as

MCC =
tp⇥ tn� fp⇥ fnp

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
.

MCC combines all the four quantities found in a binary
confusion matrix (true positive, true negative, false
positive and false negative) into a single metric which
ranges from �1 (when all predictions are incorrect) to
+1 (when all predictions are correct).

7 This is the KONECT version of the “Wikisigned”
dataset, from which we removed self-loops.

8 We again removed self-loops and merged multi-edges
which are all of the same sign.
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Table 1: Dataset properties. The 5th column gives the fraction of positive labels. The last two columns provide
two di↵erent measures of label regularity —see main text.

Dataset |V | |E| |E|
|V |

|E+|
|E|

 

2

G00 (Y )

|E|
 G(Y )

|E|

Citations 4,831 39,452 8.1 72.33% .076 .191
Wikipedia 7,114 103,108 14.5 78.79% .063 .142
Slashdot 82,140 549,202 6.7 77.40% .059 .143
Wik. Edits 138,587 740,106 5.3 87.89% .034 .086
Epinion 131,580 840,799 6.4 85.29% .031 .074

Although the semantics of the edge signs is not the
same across these networks, we can see from Table 1
that our generative model essentially fits all of them.
Specifically, the last two columns of the table report the
rate of label (ir)regularity, as measured by  2

G00(Y )/|E|
(second-last column) and  G(Y )/|E| (last column),
where

 2

G00(Y ) = min
(p,q)

�
fE

0

(p, q) + fE\E
0

(p, q)
�
,

fE
0

and fE\E
0

being the quadratic criterions of Sec-
tion 4.1, viewed as functions of both (p, q), and yi,j ,
and  G(Y ) is the label regularity measure adopted in
the online setting, as defined in Section 2. It is reason-
able to expect that higher label irregularity corresponds
to lower prediction performance. This trend is in fact
confirmed by our experimental findings: whereas Epin-
ion tends to be easy, Citations tends to be hard,
and this holds for all algorithms we tested, even if
they do not explicitly comply with our inductive bias
principles. Moreover,  2

G00(Y )/|E| tends to be propor-
tional to  G(Y )/|E| across datasets, hence confirming
the anticipated connection between the two regularity
measures.

Algorithms and parameter tuning. We compared
the following algorithms:
1. The label propagation algorithm of Section 4.1 (re-
ferred to as L. Prop.). The actual binarizing threshold
was set by cross-validation on the training set.
2. The algorithm analyzed at the beginning of Sec-
tion 4, which we call blc(tr, un) (Bayes Learning Clas-
sifier based on trollness and untrustworthiness). After
computing btr(i) and cun(i) on training set E

0

for all
i 2 V (or setting those values to 1

2

in case there is
no outgoing or incoming edges for some node), we use
Eq. (2) and estimate ⌧ on E

0

.
3. A logistic regression model where each edge (i, j) is
associated with the features [1� btr(i), 1� cun(j)] com-
puted again on E

0

(we call this method LogReg). Best
binary thresholding is again computed on E

0

. Experi-
menting with this logistic model serves to support the
claim we made in the introduction that our generative
model in Section 3 is a good fit for the data.

4. The solution obtained by directly solving the unreg-
ularized problem (5) through a fast constrained mini-
mization algorithm (referred to as Unreg.). Again, the
actual binarizing threshold was set by cross-validation

on the training set.9

5. The matrix completion method from [9] based on
LowRank matrix factorization. Since the authors
showed their method to be robust to the choice of the
rank parameter k, we picked k = 7 in our experiments.
6. A logistic regression model built on 16 Triads

features derived from status theory [19].
7. The PageRank-inspired algorithm from [31], where
a recursive notion of trollness is computed by solving a
suitable set of nonlinear equations through an iterative
method, and then used to assign ranking scores to
nodes, from which (un)trustworthiness features are
finally extracted for each edge. We call this method
RankNodes. As for hyperparameter tuning (� and
�
1

in [31]), we closely followed the authors’ suggestion
of doing cross validation.
8. The last competitor is the logistic regression model
whose features have been build according to [27]. We
call this method Bayesian.

The above methods can be roughly divided into local
and global methods. A local method hinges on build-
ing local predictive features, based on neighborhoods:
blc(tr, un), LogReg, 16 Triads, and Bayesian es-
sentially fall into this category. The remaining methods
are global in that their features are designed to depend
on global properties of the graph topology.

Results. Our main results are summarized in Table 2,
reporting MCC test set performance after training on
sets of varying size (from 5% to 25%). Results have
been averaged over 12 repetitions. Because scalability
is a major concern on sizeable datasets, we also give
an idea of relative training times (in milliseconds) by
reporting the time it took to train a single run of each
algorithm on a training set of size10 15% of |E|, and
then predict on the test set. Though our experiments
are not conclusive, some trends can be spotted:

1. Global methods tend to outperform local methods
in terms of prediction performance, but are also signifi-

9 We have also tried to minimize (5) by removing the
[�1,+1] constraints, but got similar MCC results as the
ones we report for Unreg.

10 Comparison of training time performances is fair since
all algorithms have been carefully implemented using the
same stack of Python libraries, and run on the same machine
(16 Xeon cores and 192Gb Ram).
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Table 2: MCC with increasing training set size, with one standard deviation over 12 random sampling of E
0

. The
last four columns refer to the methods we took from the literature. For the sake of readability, we multiplied all
MCC values by 100. The best number in each row is highlighted in bold brown and the second one in italic red.
If the di↵erence is statistically significant (p-value of a paired Student’s t-test less than 0.005), the best score is
underlined. The “time” rows contain the time taken to train on a 15% training set.

|E
0

|
|E| L. Prop. blc(tr, un) LogReg Unreg. LowRank 16 Triads RankNodes Bayesian

C
i
t
a
t
i
o
n
s

5% 24.54 ± 0.69 20 .21 ± 0.66 20.19 ± 0.71 15.86 ± 0.81 12.76 ± 0.65 11.04 ± 0.81 17.18 ± 1.11 15.28 ± 1.31
10% 31.20 ± 0.58 27 .54 ± 0.56 27.49 ± 0.62 25.36 ± 0.78 17.81 ± 0.76 16.99 ± 0.63 25.36 ± 0.85 24.74 ± 0.59
15% 35.66 ± 0.68 32 .87 ± 0.58 32.79 ± 0.60 31.39 ± 0.75 22.58 ± 0.53 21.55 ± 0.91 30.60 ± 0.87 31.71 ± 0.99
20% 38.67 ± 0.48 36 .94 ± 0.51 36.86 ± 0.48 35.47 ± 0.41 25.80 ± 0.94 24.27 ± 0.56 35.01 ± 0.83 36.13 ± 0.75
25% 41.05 ± 0.73 39.83 ± 0.58 39.76 ± 0.59 38.48 ± 0.55 29.67 ± 0.78 26.85 ± 0.87 38.06 ± 0.86 40 .34 ± 0.94
time 19.6 0.6 2.6 2835 3279 6.2 155 4813

W
i
k
i
p
e
d
i
a

5% 39.46 ± 0.79 38.03 ± 0.97 38 .50 ± 0.87 35.72 ± 0.70 24.58 ± 1.18 9.59 ± 1.10 33.60 ± 0.64 26.45 ± 0.57
10% 47 .17 ± 0.35 46.03 ± 0.49 47.22 ± 0.40 44.53 ± 0.48 31.72 ± 0.61 26.36 ± 0.83 43.21 ± 0.81 40.28 ± 0.69
15% 50 .49 ± 0.33 49.89 ± 0.40 50.87 ± 0.36 49.08 ± 0.33 35.77 ± 0.58 33.64 ± 0.83 48.50 ± 0.47 47.07 ± 0.38
20% 52 .74 ± 0.31 52.24 ± 0.49 53.13 ± 0.27 51.79 ± 0.35 37.90 ± 0.27 38.41 ± 0.53 51.49 ± 0.43 50.54 ± 0.39
25% 54 .00 ± 0.63 53.42 ± 0.59 54.26 ± 0.37 53.31 ± 0.37 40.16 ± 0.57 41.34 ± 1.07 53.30 ± 0.37 52.92 ± 0.48
time 41.9 1.6 6.0 10629 8523 14.8 249 12507

S
l
a
s
h
d
o
t

5% 40 .77 ± 0.20 36.13 ± 0.57 37.00 ± 0.29 33.49 ± 0.32 36.83 ± 0.47 27.10 ± 0.75 45.16 ± 0.59 29.25 ± 0.23
10% 46 .61 ± 0.29 41.89 ± 0.39 43.15 ± 0.21 40.92 ± 0.23 39.57 ± 0.27 40.38 ± 1.47 47.84 ± 0.50 38.25 ± 0.21
15% 49.62 ± 0.22 45.42 ± 0.36 46.42 ± 0.16 45.56 ± 0.19 41.21 ± 0.19 45.88 ± 1.01 48 .75 ± 0.71 43.47 ± 0.16
20% 51 .88 ± 0.24 47.78 ± 0.25 48.66 ± 0.10 48.10 ± 0.30 42.74 ± 0.44 48.79 ± 0.57 52.10 ± 0.33 46.89 ± 0.27
25% 53 .12 ± 0.20 49.39 ± 0.24 50.22 ± 0.12 50.11 ± 0.20 44.24 ± 0.44 50.62 ± 0.53 53.29 ± 0.22 49.42 ± 0.22
time 677 8.3 32.8 78537 69988 131 2441 68085

E
p
i
n
i
o
n

5% 54 .83 ± 0.16 46.94 ± 0.80 49.16 ± 0.32 42.79 ± 0.34 39.96 ± 0.60 42.94 ± 2.06 56.04 ± 0.76 37.99 ± 0.49
10% 58 .94 ± 0.27 54.03 ± 0.46 55.90 ± 0.13 53.43 ± 0.39 44.50 ± 0.52 50.29 ± 1.07 60.60 ± 0.32 49.90 ± 0.36
15% 61 .47 ± 0.21 57.63 ± 0.45 59.25 ± 0.17 58.80 ± 0.32 48.24 ± 0.58 54.64 ± 1.62 62.69 ± 0.21 56.94 ± 0.65
20% 63 .17 ± 0.13 60.15 ± 0.40 61.45 ± 0.17 61.86 ± 0.13 52.21 ± 0.37 57.27 ± 1.42 64.10 ± 0.12 61.18 ± 0.45
25% 64.05 ± 0.20 61.88 ± 0.38 62.89 ± 0.12 63.42 ± 0.14 54.68 ± 0.62 58.42 ± 1.59 65.40 ± 0.85 64 .59 ± 0.30
time 1329 10.1 54.0 143881 127654 209 3174 104305

W
i
k
.
E
d
i
t
s

5% 36.36 ± 0.53 30 .89 ± 0.28 30.81 ± 0.20 21.69 ± 0.25 23.15 ± 0.26 3.04 ± 0.46 26.63 ± 0.44 26.68 ± 0.34
10% 38.58 ± 0.74 35.68 ± 0.22 35 .93 ± 0.16 29.75 ± 0.21 27.07 ± 0.44 12.34 ± 0.79 33.85 ± 0.33 35.00 ± 0.34
15% 39 .08 ± 0.55 37.77 ± 0.22 38.27 ± 0.19 33.61 ± 0.11 30.05 ± 0.29 17.95 ± 0.92 36.88 ± 0.32 40.00 ± 0.26
20% 39.04 ± 0.69 38.88 ± 0.36 39 .55 ± 0.11 35.04 ± 0.17 32.17 ± 0.31 21.44 ± 0.67 38.60 ± 0.31 43.32 ± 0.22
25% 38.90 ± 0.45 39.41 ± 0.16 40 .44 ± 0.14 36.18 ± 0.20 33.94 ± 0.74 23.41 ± 0.41 39.75 ± 0.32 45.76 ± 0.29
time 927 9.6 46.8 219109 129460 177 3890 92719

cantly (or even much) slower (running times can di↵er
by as much as three orders of magnitude). This is not
surprising, and is in line with previous experimental
findings (e.g., [26, 31]). Bayesian looks like an excep-
tion to this rule, but its running time is indeed in the
same ballpark as global methods.

2. L. Prop. always ranks first or at least second in
this comparison when MCC is considered. On top of it,
L. Prop. is fastest among the global methods (one or
even two orders of magnitude faster), thereby showing
the benefit of our approach to edge sign prediction.

3. The regularized solution computed by L. Prop. is
always better than the unregularized one computed by
Unreg. in terms of both MCC and running time.

4. As claimed in the introduction, our Bayes approxi-
mator blc(tr, un) closely mirrors in performance the
more involved LogReg model. In fact, supporting
our generative model of Section 3, the logistic regres-
sion weights for features 1 � btr(i) and 1 � cun(j) are
almost equal (see Table 2 in the supplementary ma-
terial), thereby suggesting that predictor (2), derived
from the theoretical results at the beginning of Sec-
tion 4, is also the best logistic model based on trollness
and untrustworthiness.

7 Conclusions and Ongoing Research
We have studied the edge sign prediction problem in
directed graphs in both batch and online learning set-

tings. In both cases, the underlying modeling assump-
tion hinges on the trollness and (un)trustworthiness
predictive features. We have introduced a simple gener-
ative model for the edge labels to craft this problem as
a node sign prediction problem to be e�ciently tackled
by standard Label Propagation algorithms. Further-
more, we have studied the problem in an (adversarial)
online setting providing upper and (almost matching)
lower bounds on the expected number of prediction
mistakes.
Finally, we validated our theoretical results by ex-
perimentally assessing our methods on five real-world
datasets in the small training set regime. Two inter-
esting conclusions from our experiments are: i. Our
generative model is robust, for it produces Bayes opti-
mal predictors which tend to be empirically best also
within the larger set of models that includes all logistic
regressors based on trollness and trustworthiness alone;
ii. our methods are in practice either strictly better
than their competitors in terms of prediction quality
or, when they are not, they are faster. We are currently
engaged in extending our approach so as to incorporate
further predictive features (e.g., side information, when
available).
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1 Proofs from Section 4

1.1 Proof of Theorem 1

The following ancillary results will be useful.

Lemma 1 (Hoe↵ding’s inequality for sampling without
replacement). Let X = {x

1

, . . . , xN } be a finite subset

of [0, 1] and let

µ =
1

N

N
X

i=1

xi .

If X
1

, . . . , Xn is a random sample drawn at random

from X without replacement, then, for every " > 0,

P
 

�

�

�

�

�

1

n

n
X

t=1

Xt � µ

�

�

�

�

�

� "

!

 2e�2n"2

.

Lemma 2. Let N
1

, . . . , Nn be subsets of a finite set E.

Let E
0

✓ E be sampled uniformly at random without
replacement from E, with |E

0

| = m. Then, for � 2
(0, 1), Q > 0, and ✓ � 2 ⇥ max

�

Q, 4 ln n
�

 

, we have

P
⇣

9i : |Ni| � ✓, |Ni \ E
0

| < Q
⌘

 �

provided |E| � m � 2|E|
✓ ⇥ max

�

Q, 4 ln n
�

 

.

Proof of Lemma 2. Set for brevity pi = |Ni|/|E|.
Then, due to the sampling without replacement, each
random variable |Ni \ E

0

| is the sum of m dependent
Bernoulli random variables Xi,1, . . . , Xi,m such that
P(Xi,t = 1) = pi, for t = 1, . . . , m. Let i be such that

|Ni| � ✓. Then the condition m � 2|E|Q
✓ implies

Q  m✓

2|E|  m pi

2
=

E
⇥

|Ni \ E
0

|
⇤

2
.

Since the variables Xi,j are negatively associated, we
may apply a (multiplicative) Cherno↵ bound [3, Sec-
tion 3.1]. This gives

P
�

|Ni \ E
0

| < Q
�

 e�
m pi

8  e�
m ✓
8|E|

so that P
�

9i : |Ni| � ✓, |Ni \ E
0

| < Q
�

 n e�
m ✓
8|E| ,

which is in turn upper bounded by � whenever m �
8|E|
✓ ln n

� .

Let now E✓ = {(i, j) 2 E : d
in

(j) � ✓, d
out

(i) � ✓} \
E

0

, where E
0

✓ E is the set of edges sampled by the
learning algorithm of Section 4.1. Then Theorem 1 in
the main paper is an immediate consequence of the
following lemma.

Lemma 3. Let G(Y ) = (V, E(Y )) be a directed graph

with labels on the edges generated according to the model

in Section 3. For all 0 < ↵, � < 1 and 0 < " < 1

16

, if the

learning algorithm of Section 4.1 is run with parameters

Q = 1

2"2

ln 4|V |
� and ↵, then with probability at least

1 � 11� the predictions by(i, j) satisfy by(i, j) = y⇤(i, j)
for all (i, j) 2 E✓ such that

�

�⌘(i, j) � 1

2

�

� > 8".

Proof of Lemma 3. We apply Lemma 2 with ✓ = 2Q
↵ �

2 ⇥ max
�

Q, 4 ln 2|V |+1

�

 

to the 2|V | + 1 subsets of E
consisting of EL and E

in

(i), E
out

(i), for i 2 V . We have
that, with probability at least 1 � �, at least Q edges of
EL are sampled, at least Q edges of E

in

(i) are sampled
for each i such that N

in

(i) � ✓, and at least Q edges of
E
out

(j) are sampled for each j such that N
out

(j) � ✓.
For all (i, j) 2 E✓ let

pj =
1

d
in

(j)

X

i2N
in

(j)

pi and qi =
1

d
out

(i)

X

j2N
out

(i)

qj

and set for brevity b�
in

(j) = 1 � cun(j) and b�
out

(i) =

1 � btr(i). We now prove that b�
in

(j) and b�
out

(i) are
concentrated around their expectations for all (i, j) 2
E✓. Consider b�

out

(i) (the same argument works for
b�
in

(j)). Let J
1

, . . . , JQ be the first Q draws in E
0

\
N

out

(i) and define

bµp(i) =
1

Q

Q
X

t=1

pi + qJt

2
.

Applying Lemma 1 to the set
n

pi+qj

2

: j 2 N
out

(i)
o

,

and using our choice of Q, we get that
�

�

bµp(i)�µp(i)
�

� 
" holds with probability at least 1 � �/(2|V |), where

µp(i) =
1

d
out

(i)

X

j2N
out

(i)

pi + qj

2
=

pi + qi

2
.
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Now consider the random variables Zt = I {yi,Jt = 1},
for t = 1, . . . , Q. Conditioned on J

1

, . . . , JQ, these are
independent Bernoulli random variables with E[Zt |
Jt] =

pi+qJt
2

. Hence, applying a standard Hoe↵ding
bound for independent variables and using our choice
of Q, we get that

�

�

�

�

�

1

Q

Q
X

t=1

Zt � bµp(i)

�

�

�

�

�

 "

with probability at least 1 � �/(2|V |) for every realiza-

tion of J
1

, . . . , JQ. Since b�
out

(i) = (Z
1

+ · · · + ZQ)/Q,

we get that
�

�

b�
out

(i) � µp(i)
�

�  2" with probabil-
ity at least 1 � 2�/(2|V |). Applying the same ar-

gument to b�
in

(j), and the union bound1 on the set
n

b�
in

(j), b�
out

(i) : (i, j) 2 E✓

o

, we get that

�

�

�

�

b�
out

(i) + b�
in

(j) � pi + qj

2
�

pj + qi

2

�

�

�

�

 4" (1)

simultaneously holds for all (i, j) 2 E✓ with probability
at least 1 � 4�. Now notice that pj is a sample mean
of Q i.i.d. [0, 1]-valued random variables drawn from

the prior marginal
R

1

0

µ
�

·, q
�

dq with expectation µp.
Similarly, qi is a sample mean of Q i.i.d. [0, 1]-valued
random variables independently drawn from the prior
marginal

R

1

0

µ
�

p, ·
�

dp with expectation µq. By applying
Hoe↵ding bound for independent variables, together
with the union bound to the set of pairs of random
variables whose sample means are pj and qi for each
(i, j) 2 E✓ (there are at most 2|V | of them) we obtain
that

�

�pj � µp

�

�  " and
�

�qi � µq

�

�  "

hold simultaneously for all (i, j) 2 E✓ with probability
at least 1 � 2�. Combining with (1) we obtain that

�

�

�

�

b�
out

(i) + b�
in

(j) � pi + qj

2
� µp + µq

2

�

�

�

�

 5" (2)

simultaneously holds for each (i, j) 2 E✓ with proba-
bility at least 1 � 6�. Next, let E0

L be the set of the
first Q edges drawn in EL \ E

0

. Then

E
⇥

b⌧
⇤

=
1

Q

X

(i,j)2E0
L

P
�

yi,j = 1
�

=
1

Q

X

(i,j)2E0
L

pi + qj

2
,

where the expectation is w.r.t. the independent draws of
the labels yi,j for (i, j) 2 E0

L. Hence, by applying again

1 The sample spaces for the ingoing and outgoing edges
of the vertices occurring as endpoints in E✓ overlap. Hence,
in order to prove a uniform concentration result, we need to
apply the union bound over the random variables defined
over these sample spaces, which motivates the presence of
the factor ln(2|V |) in the definition of Q.

Hoe↵ding bound (this time without the union bound)
to the Q = 1

2"2

ln 2

� independent Bernoulli random vari-
ables I {yi,j = 1}, (i, j) 2 E0

L, the event
�

�

b⌧ � E
⇥

b⌧
⇤

�

�  "
holds with probability at least 1 � �. Now, introduce
the function

F (p, q) = E
⇥

b⌧
⇤

=
1

Q

X

(i,j)2E0
L

pi + qj

2
.

For any realization q
0

of q, the function F
1

(p) =

F (p, q
0

) is a sample mean of Q = 1

2"2

ln 4|V |
� i.i.d. [0, 1]-

valued random variables {pi : (i, j) 2 E0
L} (recall that

if i 2 V is the origin of an edge (i, j) 2 E0
L, then it is

not the origin of any other edge (i, j0) 2 E0
L). Using

again the standard Hoe↵ding bound, we obtain that
�

�F (p, q) � Ep

⇥

F (p, q)
⇤

�

�  "

holds with probability at least 1�� for each q 2 [0, 1]|V |.
With a similar argument, we obtain that

�

�Ep

⇥

F (p, q)
⇤

� Ep,q

⇥

F (p, q)
⇤

�

�  "

also holds with probability at least 1 � �. Since

Ep,q

⇥

F (p, q)
⇤

=
µp + µq

2

we obtain that
�

�

�

b⌧ � µp + µq

2

�

�

�

 3" (3)

with probability at least 1�3�. Combining (2) with (3)
we obtain

�

�

�

�

b�
out

(i) + b�
in

(j) � b⌧ � p(i) + q(j)

2

�

�

�

�

 8"

simultaneously holds for each (i, j) 2 E✓ with proba-
bility at least 1 � 10�. Putting together concludes the
proof.

1.2 Derivation of the maximum likelihood

equations

Recall that the training set E
0

=
��

it, jt), yit,jt

�

: t = 1, . . . , m
 

is drawn uniformly at
random from E without replacement. We can write

P
⇣

E
0

�

�

�

{pi, qi}|V |
i=1

⌘

=
1

�|E|
m

�

m!

m
Y

k=1

✓

pik + qjk

2

◆I{yik,jk
=+1}

⇥
m
Y

k=1

✓

1 � pik + qjk

2

◆I{yik,jk
=�1}

=
1

�|E|
m

�

m!

|V |
Y

`=1

 

m
Y

k=1

✓

p` + qjk

2

◆I{ik=`, y`,jk
=+1}

⇥
m
Y

k=1

✓

1 � p` + qjk

2

◆I{ik=`, y`,jk
=�1} !
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so that log P
⇣

E
0

�

�

�

{pi, qi}|V |
i=1

⌘

is proportional to

|V |
X

`=1

m
X

k=1

I {ik = `, y`,jk = +1} log

✓

p` + qjk

2

◆

+

|V |
X

`=1

m
X

k=1

I {ik = `, y`,jk = +1} log

✓

1 � p` + qjk

2

◆

and

@ log P
⇣

E
0

�

�

�

{pi, qi}|V |
i=1

⌘

@p`
=

m
X

k=1

I {ik = `, y`,jk = +1}
p` + qjk

�
m
X

k=1

I {ik = `, y`,jk = �1}
2 � p` � qjk

.

By a similar argument,

P
⇣

E
0

�

�

�

{pi, qi}|V |
i=1

⌘

=
1

�|E|
m

�

m!

|V |
Y

`=1

 

m
Y

k=1

✓

pik + q`
2

◆I{jk=`, yik,`=+1}

⇥
m
Y

k=1

✓

1 � pik + q`
2

◆I{jk=`, yik,`=�1} !

so that

@ log P
⇣

E
0

�

�

�

{pi, qi}|V |
i=1

⌘

@q`
=

m
X

k=1

I {jk = `, yik,` = +1}
pik + q`

�
m
X

k=1

I {jk = `, yik,` = �1}
2 � pik � q`

.

We then derive the approximation presented in the
main paper. Namely, equating to zero the gradient of
the log likelihood w.r.t p` gives

m
X

k=1

I {ik = `, y`,jk = +1}
p` + qjk

� I {ik = `, y`,jk = �1}
2 � p` � qjk

= 0

We simply linearized the maximum likelihood equations

by disregarding the role of denominators. E.g., the first

displayed equation after (4) is obtained by setting (3)

to zero, cross multiplying terms of the resulting sum,

and pretending the denominators do not play any role

(this is where the approximation occurs).

m
X

k=1

I {ik = `, y`,jk = +1} (2 � p` � qjk )

=
m
X

k=1

I {ik = `, y`,jk = �1} (p` + qjk )

1.3 Label propagation on G00

Here we provide more details on the choice of weight for
the edges of G00, as well as an explanation on why we
temporarily use symmetrized variables lying in [�1, 1]
(which we will denote with primes, so that for instance
p0i = 2pi �1). Since only the ratio between the negative
and positive weights matters, we fix the negative weight
of the edges in E00 \ E0 to be �1 and we denote by ✏
the weight of edges in E0. With these notations, Label
Propagation on G00 seeks the harmonic minimizer of
the following expression

1

16

X

i,j2E

h

✏ (yi,j � p0i)
2

+ ✏
�

yi,j � q0j
�

2

+ (p0i + q0j)2
i

which can be successively rewritten as

1

16

X

i,j2E

h

✏ (yi,j + 1 � 2pi)
2 + ✏ (yi,j + 1 � 2qj)2

+ (2pi + 2qj � 2)2
i

=
1

8

X

i,j2E

"

2✏

✓

yi,j + 1

2
� pi

◆

2

+ 2✏

✓

yi,j + 1

2
� qj

◆

2

+ 8

✓

pi + qj � 1

2

◆

2

#

=
1

8

X

i,j2E

"

2✏

 

✓

yi,j + 1

2

◆

2

� pi(1 + yi,j) + p2i

!

+

2✏

 

✓

yi,j + 1

2

◆

2

� qj(1 + yi,j) + q2j

!

+

8

 

✓

pi + qj

2

◆

2

� pi + qj

2
+

1

4

!#

=
1

8

X

i,j2E

4

 

✏

✓

yi,j + 1

2

◆

2

� 2✏

✓

yi,j + 1

2

◆✓

pi + qj

2

◆

+ 2

✓

pi + qj

2

◆

2

!

+
X

i,j2E

h

�

2✏p2i � 4pi + 1
�

+
�

2✏q2j � 4qj + 1
�

i

By setting ✏ = 2, we can factor this expression into

X

i,j2E

✓

yi,j + 1

2
� pi + qj

2

◆

2

+
1

2

X

i,j2E

 

✓

pi � 1

2

◆

2

+

✓

qj � 1

2

◆

2

!

.

2 Proofs from Section 5

Proof of Theorem 2. Let each node i 2 V host two in-
stances of the randomized Weighted Majority (RWM)
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algorithm [4] with an online tuning of their learning
rate [2, 1]: one instance for predicting the sign of out-
going edges (i, j), and one instance for predicting the
sign of incoming edges (j, i). Both instances simply
compete against the two constant experts, predicting
always +1 or always �1. Denote by M(i, j) the indica-
tor function (zero-one loss) of a mistake on edge (i, j).
Then the expected number of mistakes of each RWM
instance satisfy [2, 1]:

X

j2N
out

(i)

E M(i, j) =  
out

(i, Y )+O
⇣

p

 
out

(i, Y ) + 1
⌘

and
X

i2N
in

(j)

E M(i, j) =  
in

(j, Y ) + O
⇣

p

 
in

(j, Y ) + 1
⌘

.

We then define two meta-experts: an ingoing expert,
which predicts yi,j using the prediction of the ingoing
RWM instance for node j, and the outgoing expert,
which predicts yi,j using the prediction of the outgoing
RWM instance for node i. The number of mistakes of
these two experts satisfy
X

i2V

X

j2N
out

(i)

E M(i, j)

=  
out

(Y ) + O
⇣

p

|V | 
out

(Y ) + |V |
⌘

X

j2V

X

i2N
in

(j)

E M(i, j)

=  
in

(Y ) + O
⇣

p

|V | 
in

(Y ) + |V |
⌘

,

where we used
P

j2V

p

 
in

(j, Y ) 
p

|V | 
in

(Y ), and
similarly for  

out

(Y ). Finally, let the overall prediction
of our algorithm be a RWM instance run on top of the
ingoing and the outgoing experts. Then the expected
number of mistakes of this predictor satisfies

X

(i,j)2E

E M(i, j) =  G(Y ) + O

 

p

|V | G(Y ) + |V |

+

r

⇣

 G(Y ) + |V | +
p

|V | G(Y )
⌘

!

=  G(Y ) + O
⇣

p

|V | G(Y ) + |V |
⌘

,

as claimed.

Proof sketch of Theorem 3. Let YK be the set of all
labelings Y such that the total number of negative
and positive edges are K and |E| � K, respectively
(without loss of generality we will focus on negative
edges). Consider the randomized strategy that draws
a labeling Y 2 {�1, +1}|E| uniformly at random from
YK . For each node i 2 V , we have  

in

(i, Y )  d�
in

(i),

which implies  
in

(Y )  K. A very similar argument
applies to the outgoing edges, leading to  

out

(Y ) 
K. The constraint  G(Y )  K is therefore always
satisfied.

The adversary will force on average 1/2 mistakes in
each one of the first K rounds of the online protocol
by repeating K times the following: (i) A label value
` 2 {�1, +1} is selected uniformly at random. (ii) An
edge (i, j) is sampled uniformly at random from the
set of all edges that were not previously revealed and
whose labels are equal to `.

The learner is required to predict yi,j and, in doing so,
1/2 mistakes will be clearly made on average because of
the randomized labeling procedure. Observe that this
holds even when A knows the value of K and  G(Y ).
Hence, we can conclude that the expected number of
mistakes that A can be forced to make is always at
least K/2, as claimed.

We now show that, as K
|E| ! 0, the lower bound gets

arbitrarily close to K for any G(Y ) and any constant
K. Let E be the following event: There is at least one
unrevealed negative label. The randomized iterative
strategy used to achieve this result is identical to the
one described above, except for the stopping criterion.
Instead of repeating step (i) and (ii) only for the first
K rounds, these steps are repeated until E is true. Let
mr,c be defined as follows: For c = 1 it is equal to the
expected number of mistakes forced in round r when
K = 1. For c > 1 it is equal to the di↵erence between
the expected number of mistakes forced in round r
when K = c and K = c � 1. One can see that mr,c is
null when r < c. When K = 1, the probability that
E is true in round r is clearly equal to 1

2

r�1

. Hence,
the expected number of mistakes made by A when
K = 1 in any round r is equal to 1

2

1

2

r�1

= 1

2

r . We can
therefore conclude that mr,1 = 1

2

r for all r.

A simple calculation shows that if r = c then mr,c = 1

2

r .
Furthermore, when r > 1 and c > 1, we have the
following recurrence:

mr,c =
mr�1,c + mr�1,c�1

2
.

In order to calculate mr,c for all r and c, we will rest
on the ancillary quantity sj(i), recursively defined as
specified next.

Given any integer variable i, we have s
0

(i) = 1 and,
for any positive integer j,

sj(i) =
i
X

k=1

sj�1

(k) .

It is not di�cult to verify that

mr,c =
sc�1

(r � c + 1)

2r
.
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Since sj(i) = hiij

j! , where hiij is the rising factorial

i(i + 1)(i + 2) . . . (i + j � 1), we have

mr,c =
hr � c + 1ic�1

(c � 1)!2r
.

When K
|E| ! 0, given any integer K 0 > 1, the di↵erence

between the expected number of mistakes forced when
K = K 0 and K = K 0 � 1 is equal to

1
X

r=K0

mr,K0 =
1

(K 0 � 1)!

1
X

r=K0

hr � K 0 + 1iK0�1

2r

=
1

(K 0 � 1)!2K0�1

1
X

r0
=1

hr0iK0�1

2r0 ,

where we set r0 = r � K 0 + 1. Setting i0 = i � 1 and
recalling that

hiij = j!

✓

i + j � 1

i � 1

◆

,

we have

1

j!

1
X

i=1

hiij

2i
=

1
X

i=1

�i+j�1

i�1

�

2i
=

1
X

i0
=0

�i0
+j
i0

�

2i0
+1

.

Now, using the identity
✓

i0 + j + 1

i0

◆

=

✓

i0 + j

i0

◆

+

✓

i0 + j

i0 � 1

◆

,

we can easily prove by induction on j that

1
X

i0
=0

�i0
+j
i0

�

2i0
+1

= 2j .

Hence, we have

1
X

r=K0

mr,K0 = 1.

Moreover, as shown earlier, mr,1 = 1

2

r for all r. Hence
we can conclude that when K

|E| ! 0

EMA(Y ) �
1
X

r=1

1

2r
+

K
X

K0
=2

1
X

r=K0

mr,K0 = K

for any edge-labeled graph G(Y ) and any constant K,
as claimed.

3 Further Experimental Results

This section contains more evidence related to the ex-
periments in Section 6 of the main paper. In particular,

Table 1: Normalized logistic regression coe�cients av-
eraged over 12 runs (with one standard deviation)

|E
0

|
|E| w0

2 ⌧ 0

Citations

5% 0.965 ± 0.04 0.662 ± 0.03
10% 0.983 ± 0.03 0.705 ± 0.02
15% 1.001 ± 0.03 0.729 ± 0.03
20% 1.013 ± 0.02 0.747 ± 0.02
25% 1.011 ± 0.02 0.746 ± 0.01

Wikipedia

5% 0.920 ± 0.02 0.691 ± 0.02
10% 0.940 ± 0.01 0.730 ± 0.01
15% 0.947 ± 0.01 0.741 ± 0.01
20% 0.963 ± 0.01 0.760 ± 0.01
25% 0.962 ± 0.02 0.764 ± 0.01

Slashdot

5% 1.024 ± 0.02 0.693 ± 0.01
10% 1.017 ± 0.01 0.705 ± 0.01
15% 1.007 ± 0.01 0.707 ± 0.01
20% 1.002 ± 0.00 0.710 ± 0.00
25% 0.995 ± 0.01 0.712 ± 0.00

Epinion

5% 1.099 ± 0.02 0.791 ± 0.02
10% 1.059 ± 0.01 0.782 ± 0.01
15% 1.037 ± 0.01 0.774 ± 0.01
20% 1.018 ± 0.01 0.765 ± 0.01
25% 1.010 ± 0.01 0.763 ± 0.01

Wik. Edits

5% 1.047 ± 0.02 0.853 ± 0.01
10% 1.038 ± 0.01 0.872 ± 0.01
15% 1.025 ± 0.01 0.876 ± 0.01
20% 1.012 ± 0.01 0.874 ± 0.01
25% 1.007 ± 0.01 0.874 ± 0.01

we experimentally demonstrate the alignment between
blc(tr, un) and LogReg.

After training on the two features 1� btr(i) and 1�cun(j),
LogReg has learned three weights w

0

, w
1

and w
2

,
which allow to predict yi,j according to

sgn

⇣

�

w
1

(1 � btr(i)
�

+ w
2

�

1 � cun(j)
�

+ w
0

⌘

.

This can be rewritten as

sgn

⇣

�

1 � btr(i)
�

+ w0
2

�

1 � cun(j)
�

� 1

2

� ⌧ 0
⌘

,

with w0
2

= w
2

w
1

and ⌧ 0 = �
⇣

1

2

+ w
0

w
1

⌘

.

As shown in Table 1, and in accordance with the predic-
tor built out of Equation (2) from the main paper, w0

2

is almost 1 on all datasets, while ⌧ 0 tends to be always
close the fraction of positive edges in the dataset.
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