P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen, Assessing the accuracy of prediction algorithms for classification: an overview, Bioinformatics, vol.16, issue.5, pp.412-424, 2000.
DOI : 10.1093/bioinformatics/16.5.412

Y. Bengio, O. Delalleau, and N. L. Roux, Label propagation and quadratic criterion, Semi- Supervised Learning, pp.193-216, 2006.

A. Blum and S. Chawla, Learning from labeled and unlabeled data using graph mincuts, 18th ICML, pp.19-26, 2001.

D. Cartwright and F. Harary, Structural balance: a generalization of Heider's theory., Psychological Review, vol.63, issue.5, p.277, 1956.
DOI : 10.1037/h0046049

N. Cesa-bianchi, C. Gentile, F. Vitale, and G. Zappella, A correlation clustering approach to link classification in signed networks, 25th COLT, 2012.

N. Cesa-bianchi, C. Gentile, F. Vitale, and G. Zappella, A linear time active learning algorithm for link classification, NIPS 25, 2012.

N. Cesa-bianchi, C. Gentile, F. Vitale, and G. Zappella, Random spanning trees and the prediction of weighted graphs, JMLR, vol.14, pp.1251-1284

J. Cheng, C. Danescu-niculescu-mizil, and J. Leskovec, Antisocial behavior in online discussion communities, Intl AAAI Conf. on Web and Social Media, 2015.

K. Chiang, C. Hsieh, N. Natarajan, I. Dhillon, and A. Tewari, Prediction and Clustering in Signed Networks: A Local to Global Perspective, JMLR, vol.15, pp.1177-1213, 2014.

J. A. Davis, Clustering and structural balance in graphs, Human relations, 1967.

R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, Propagation of trust and distrust, Proceedings of the 13th conference on World Wide Web , WWW '04, pp.403-412, 2004.
DOI : 10.1145/988672.988727

F. Heider, The psychology of interpersonal relations, 1958.
DOI : 10.1037/10628-000

M. Herbster and M. Pontil, Prediction on a graph with the Perceptron, NIPS 21, pp.577-584, 2007.

M. Herbster, G. Lever, and M. Pontil, Online prediction on large diameter graphs, NIPS 22, pp.649-656, 2009.

P. W. Holland and S. Leinhardt, An Exponential Family of Probability Distributions for Directed Graphs, pp.33-65, 1981.

C. De-kerchove and P. Van-dooren, The PageTrust algorithm: How to rank web pages when negative links are allowed?, SIAM, pp.346-352, 2008.
DOI : 10.1137/1.9781611972788.31

S. Kumar, Structure and Dynamics of Signed Citation Networks, Proceedings of the 25th International Conference Companion on World Wide Web, WWW '16 Companion, 2016.
DOI : 10.3115/1220575.1220619

J. Kunegis, A. Lommatzsch, and C. Bauckhage, The slashdot zoo, Proceedings of the 18th international conference on World wide web, WWW '09, p.741, 2009.
DOI : 10.1145/1526709.1526809

J. Leskovec, D. Huttenlocher, and J. Kleinberg, Predicting positive and negative links in online social networks, Proceedings of the 19th international conference on World wide web, WWW '10, pp.641-650, 2010.
DOI : 10.1145/1772690.1772756

N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm, Machine Learning, pp.285-318, 1988.
DOI : 10.1109/sfcs.1987.37

URL : http://www.cs.utsa.edu/~bylander/cs6243/littlestone1988.pdf

S. Maniu, T. Abdessalem, B. , and C. , Casting a web of trust over Wikipedia, Proceedings of the 20th international conference companion on World wide web, WWW '11, pp.87-88, 2011.
DOI : 10.1145/1963192.1963237

A. Mishra and A. Bhattacharya, Finding the bias and prestige of nodes in networks based on trust scores, Proceedings of the 20th international conference on World wide web, WWW '11, pp.567-576, 2011.
DOI : 10.1145/1963405.1963485

A. Papaoikonomou, M. Kardara, K. Tserpes, and T. A. Varvarigou, Predicting Edge Signs in Social Networks Using Frequent Subgraph Discovery, IEEE Internet Computing, vol.18, issue.5, pp.36-43, 2014.
DOI : 10.1109/MIC.2014.82

Y. Qian and S. Adali, Foundations of Trust and Distrust in Networks, ACM Transactions on the Web, vol.8, issue.3, pp.1-1333, 2014.
DOI : 10.1109/TKDE.2007.190745

M. Shahriari and M. Jalili, Ranking nodes in signed social networks. Social Network Analysis and Mining, pp.1-12, 2014.
DOI : 10.1007/s13278-014-0172-x

D. Song and D. A. Meyer, Link sign prediction and ranking in signed directed social networks. Social Network Analysis and Mining, pp.1-14, 2015.
DOI : 10.1007/s13278-015-0288-7

J. Tang, H. Gao, X. Hu, and H. Liu, Exploiting homophily e?ect for trust prediction, pp.53-62, 2013.
DOI : 10.1145/2433396.2433405

URL : http://www.public.asu.edu/~xiahu/papers/wsdm13Tang.pdf

J. Tang, Y. Chang, C. Aggarwal, and H. Liu, A Survey of Signed Network Mining in Social Media, ACM Computing Surveys, vol.49, issue.3, p.2015
DOI : 10.1109/ICCP.2010.5606460

V. A. Traag, Y. E. Nesterov, and P. Van-dooren, Exponential Ranking: Taking into Account Negative Links, 2010.
DOI : 10.1145/1772690.1772756

Z. Wu, C. Aggarwal, and J. Sun, The Troll-Trust Model for Ranking in Signed Networks, Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, WSDM '16, pp.447-456, 2016.
DOI : 10.1109/ICCP.2010.5606460

J. Ye, H. Cheng, Z. Zhu, and M. Chen, Predicting positive and negative links in signed social networks by transfer learning, Proceedings of the 22nd international conference on World Wide Web, WWW '13, pp.1477-1488, 2013.
DOI : 10.1002/sam.10099

URL : http://home.ie.cuhk.edu.hk/~mhchen/papers/social.prediction.WWW.2013.pdf

Q. Zheng and D. B. Skillicorn, Spectral Embedding of Signed Networks, pp.55-63
DOI : 10.1137/1.9781611974010.7

X. Zhu, Z. Ghahramani, and J. La?erty, Semisupervised learning using Gaussian fields and harmonic functions, ICML Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining, 2003.

K. Zolfaghar, A. Aghaie, P. Auer, N. Cesa-bianchi, and C. Gentile, Mining trust and distrust relationships in social web applications Adaptive and self-confident on-line learning algorithms, IEEE ICCP, pp.73-8048, 2002.

N. Cesa-bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire et al., How to use expert advice, Journal of the ACM, vol.44, issue.3, pp.427-485, 1997.
DOI : 10.1145/258128.258179

D. P. Dubhashi and A. Panconesi, Concentration of Measure for the Analysis of Randomized Algorithms, 2009.
DOI : 10.1017/CBO9780511581274

N. Littlestone and M. K. Warmuth, The Weighted Majority Algorithm, Information and Computation, vol.108, issue.2, pp.212-261, 1994.
DOI : 10.1006/inco.1994.1009