Unsupervised extremely randomized trees

Kevin Dalleau 1 Miguel Couceiro 1 Malika Smaïl-Tabbone 1
1 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : In this paper we present a method to compute dissimilarities on unlabeled data, based on extremely randomized trees. This method, Unsupervised Extremely Randomized Trees, is used jointly with a novel randomized labeling scheme we describe here, and that we call AddCl3. Unlike existing methods such as AddCl1 and AddCl2, no synthetic instances are generated, thus avoiding an increase in the size of the dataset. The empirical study of this method shows that Unsupervised Extremely Randomized Trees with AddCl3 provides competitive results regarding the quality of resulting clusterings, while clearly outperforming previous similar methods in terms of running time.
Type de document :
Communication dans un congrès
PAKDD 2018 - The 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining, May 2018, Melbourne, Australia
Liste complète des métadonnées

https://hal.inria.fr/hal-01667317
Contributeur : Kevin Dalleau <>
Soumis le : mardi 16 octobre 2018 - 17:47:35
Dernière modification le : lundi 17 décembre 2018 - 11:33:26

Fichier

unsupervised-extremely-randomi...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01667317, version 2

Citation

Kevin Dalleau, Miguel Couceiro, Malika Smaïl-Tabbone. Unsupervised extremely randomized trees. PAKDD 2018 - The 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining, May 2018, Melbourne, Australia. 〈hal-01667317v2〉

Partager

Métriques

Consultations de la notice

50

Téléchargements de fichiers

57