Numerical approach for stochastic differential equations of fragmentation; application to avalanches

Abstract : This paper builds and develops an unifying method for the construction of a continuous time fragmentation-branching processes on the space of all fragmentation sizes, induced either by continuous fragmentation kernels or by discontinuous ones. This construction leads to a stochastic model for the fragmentation phase of an avalanche. We introduce also an approximation scheme for the process which solves the corresponding stochastic differential equations of fragmentation. A new achievement of the paper is to compute the distributions of the branching processes approximating the forthcoming branching-fragmentation process. This numerical approach of the associated branching-fragmentation process, is, to our knowledge, one of the first in this direction. We present also numerical results that confirm the validity of the fractal property which was emphasized by our model for an avalanche.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01667319
Contributeur : Madalina Deaconu <>
Soumis le : mardi 19 décembre 2017 - 11:45:55
Dernière modification le : vendredi 28 septembre 2018 - 01:15:56

Fichier

Version-HAL-Beznea-Deaconu-Lup...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01667319, version 1

Citation

Lucian Beznea, Madalina Deaconu, Oana Lupascu. Numerical approach for stochastic differential equations of fragmentation; application to avalanches. 2017. 〈hal-01667319〉

Partager

Métriques

Consultations de la notice

518

Téléchargements de fichiers

55