J. S. Albus, A theory of cerebellar function, Math Biosci, vol.10, pp.25-61, 1971.

D. E. Angelaki, H. Kitazawa, S. Nagao, N. Vibert, G. Assie et al., Effects of reversible pharmacological shutdown of cerebellar flocculus on the memory of longterm horizontal vestibulo-ocular reflex adaptation in monkeys, Central vestibular networks in the guinea-pig: functional characterization in the isolated whole brain in vitro, vol.92, pp.405-426, 1997.

A. L. Babalian and P. P. Vidal, Floccular modulation of vestibuloocular pathways and cerebellum-related plasticity: an in vitro whole brain study, J Neurophysiol, vol.84, pp.2514-2528, 2000.

M. W. Bagnall, R. J. Stevens, and S. Du-lac, Transgenic mouse lines subdivide medial vestibular nucleus neurons into discrete, neurochemically distinct populations, J Neurosci, vol.27, 2007.

R. Baker, C. Evinger, and R. A. Mccrea, Some thoughts about the three neurons in the vestibular ocular reflex, Ann N Y Acad Sci, vol.374, pp.171-188, 1981.

M. Beraneck, E. Idoux, J. L. Mckee, M. Aleisa, K. E. Cullen et al., Long-term plasticity of ipsilesional medial vestibular nucleus neurons after unilateral labyrinthectomy, Reconsidering the role of neuronal intrinsic properties and neuromodulation in vestibular homeostasis. Front Neurol 3:25. CrossRef Medline Beraneck M, vol.100, pp.19-26, 1981.

S. Biesdorf, D. Malinvaud, I. Reichenberger, S. Pfanzelt, H. Straka et al., Differential inhibitory control of semicircular canal nerve afferentevoked inputs in second-order vestibular neurons by glycinergic and GABAergic circuits, Synaptic mechanisms of sensorimotor learning in the cerebellum, vol.99, pp.609-615, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00306030

C. Clopath, A. Badura, C. I. De-zeeuw, and N. Brunel, A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice, CrossRef Medline Curthoys IS, vol.34, pp.27-30, 2000.

D. Zeeuw, C. Raymond, J. L. Sejnowski, T. J. Lisberger, and S. G. , Prolonged vestibular stimulation induces homeostatic plasticity of the vestibulo-ocular reflex in larval Xenopus laevis, Ten Brinke MM (2015) Motor learning and the cerebellum, vol.7, pp.409-441, 1995.

M. B. Dutia, A. R. Johnston, and D. S. Mcqueen, Post-natal development of tonic activity and membrane excitability in mouse medial vestibular nucleus neurones, Acta Otolaryngol Suppl, vol.88, pp.101-104, 1992.

D. Eugène, E. Idoux, M. Beraneck, L. E. Moore, P. Vidal et al., Oculomotor plasticity during vestibular compensation does not depend on cerebellar LTD, Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices, vol.210, pp.527-553, 2001.

C. Hansel, D. J. Linden, D. Angelo, and E. , CrossRef Medline Him A, Dutia MB (2001) Intrinsic excitability changes in vestibular nucleus neurons after unilateral deafferentation, Nat Neurosci, vol.4, pp.58-66, 2001.

E. Idoux, Vestibular plasticity, The rat nervous system, 4th Edition (Paxinos G, ed), pp.837-842, 2015.

C. D. Ito-m-;-crossref-medline-kassardjian, Y. F. Tan, J. Y. Chung, R. Heskin, M. J. Peterson et al., Neuronal classification and marker gene identification via single-cell expression profiling of brainstem vestibular neurons subserving cerebellar learning, Cerebellar control of the vestibulo-ocular reflex-around the flocculus hypothesis, vol.5, pp.7819-7831, 1979.

S. Lisberger, S. G. Lisberger, F. A. Miles, L. Optican, S. G. Lisberger et al., Optokinetic response in monkey: underlying mechanisms and their sensitivity to long-term adaptive changes in vestibuloocular reflex, The neural basis for learning of simple motor skills, vol.242, pp.869-890, 1981.

A. E. Luebke and D. A. Robinson, Gain changes of the cat's vestibuloocular reflex after flocculus deactivation, Exp Brain Res, vol.98, pp.379-390, 1994.

D. Malinvaud, I. Vassias, I. Reichenberger, C. Rössert, and H. Straka, Functional organization of vestibular commissural connections in frog, J Neurosci, vol.30, pp.3310-3325, 2010.

N. Marr-d-;-medline-masuda, S. Amari, H. Matsuno, M. Kudoh, A. Watakabe et al., Distribution and structure of synapses on medial vestibular nuclear neurons targeted by cerebellar flocculus Purkinje cells and vestibular nerve in mice: light and electron microscopy studies, CrossRef Medline Medina JF, vol.202, pp.616-622, 1969.

M. Jones, G. Guitton, D. Berthoz, and A. , Changing patterns of eye-head coordination during 6 h of optically reversed vision, Exp Brain Res, vol.69, pp.531-544, 1988.

J. R. Menzies, J. Porrill, M. Dutia, and P. Dean, Synaptic plasticity in medial vestibular nucleus neurons: comparison with computational requirements of VOR adaptation, Annu Rev Neurosci, vol.5, pp.273-299, 2010.

D. E. Mitchell, D. Santina, C. C. Cullen, K. Nagao, S. Honda et al., Posttraining cerebellar cortical activity plays an important role for consolidation of memory of cerebellum-dependent motor learning, Long-term potentiation of synaptic response and intrinsic excitability in neurons of the rat medial vestibular nuclei, vol.7, pp.1-14, 1994.

J. Porrill, P. Dean, S. Grassi, C. Dieni, A. Frondaroli et al., Developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei: role of group I metabotropic glutamate receptors, CrossRef Medline Puyal J, vol.3, pp.427-443, 2003.

J. L. Raymond, S. Lisberger, A. Rinaldi, C. Defterali, A. Mialot et al., The repetition timing of high frequency afferent stimulation drives the bidirectional plasticity at central synapses in the rat medial vestibular nuclei, Behavioral analysis of signals that guide learned changes in the amplitude and dynamics of the vestibulo-ocular reflex, vol.16, pp.10635-10644, 1991.

F. Shutoh, M. Ohki, H. Kitazawa, S. Itohara, and S. Nagao, Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation, Neuroscience, vol.139, pp.767-777, 2006.

J. Stahl, H. Straka, F. M. Lambert, S. Pfanzelt, M. Beraneck et al., Membrane and firing properties of glutamatergic and GABAergic neurons in the rat medial vestibular nucleus, Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei, vol.44, pp.56-66, 2000.