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Abstract—Some design methodologies for Parallel Kinematic optimization as it is capable of dealing with manufacturing
Machines (PKM) have been proposed but with limitations re- tolerances and other deviations from the nominal design pa-
garding two main problems: how to improve multiple properties o meter values. It can also deal with a large number of different

of different nature such as accuracy, force or singularity poses, - . S . .
and how to check these properties for all poses inside the PKM properties or design parameters which is something that opti-

Workspace. To address these pr0b|ems’ this work proposes to mization methOdS usua"y Struggle W|th Opt|m|zat|0n methOdS
formulate the design problem as a feasibility problem and use may also converge to a single solution, which might or might
a data representation which takes into account the uncertainty not be global optimal, and depends on the weights given to

or variation of the involved parameters. This method, based on 6 performance criteria considered or the compromises made
interval analysis, allows to evaluate several performance indexes L L
between con icting criteria.

of a PKM design. For validation purposes, this methodology ’ . . )
is applied to a PKM, obtaining a continuous set of possible  The proposed design methodology in this work will focus on
kinematic parameters values for its architecture which is capable the second approach. The goal is to design a PKM which ful-

of fullling several performance requirements over a desired ||s certain desired performance thresholds over its workspace.

workspace. In other words, one want to obtain the set of kinematic
Index Terms—Parallel Manipulator: Interval Analysis; Design parameters for a PKM with a desired workspace, characterized

Methodology; Workspace Determination; by its joint range limits, absence of singularities, with a desired
motion accuracy and force properties. Other parameters such

I INTRODUCTION as the occurrence of link and platform collisions or PKM

stiffness can be easily added to the model but are not subject

One setback of parallel machines is the fact that, forta study in the present work. The workspace is the common
xed mechanical architecture, their properties or performane@riable and serves to unify the properties and certify the set
metrics are dependent on the dimensional geometry as wellbfkinematic parameters.
their pose. This means that generally, these machines do nditerval analysis [11]-[13] is used to evaluate the con-
have constant behavior (in terms of accuracy, stiffness, aglaints and Branch-and-Prune to characterize the constraint
other properties) in their overall workspace. Another particulaforkspace. Interval arithmetic, proposed by Moore [14], has
aspect of parallel machines is the existence of singular pose#en used for PKM property analysis, such as accuracy
inside their workspace, resulting in loss or gain of degre¢s5], [16], sensitivity [17], force workspace [18], existence
of freedom (DOF) and consequently loss of control of thef singularities [19], among others. It deals with continuous
machine. This effect can be mitigated within the PKM desigintervals instead of discrete points, thus allowing a continuous
process. Through this process of property evaluation asdaluation of the entire workspace of the PKM as well as the
workspace characterization, one determines the values of #igire range of its design parameters. The proposed design
PKM kinematic parameters which will improve or certify themethod is based on an algorithm which uses some well
properties of the parallel machine. known interval analysis techniques. Some strategies employed

The rst approach consists of an optimization of a weightetd improve the ef ciency of the algorithm are also presented
criteria depending on the robot parameters, as it choosesl discussed. Some works have been made on parallel
the solution which offers the best compromise in terms ebbot property analysis using constraints, Branch-and-Prune
performance. Examples of this approach include Atlas apnd interval analysis. In [20], a certied enclosure of the
proach [1], [2], the cost function approach [3], [4], duabeneralized aspects is computed. It is used to obtain connected
expansion [5], compromise programming methodology [6%ets of non-singular con gurations for path planning of planar
physical programming methodology [7] among others [8], [9tobots with 2 and 3 DOF, but in theory can be added additional

The second approach, on the other hand, de nes the perfoonstraints for any parallel robot case. In that work, arm
mance parameters in terms of constraints and not as subjectd obstacle collision as well as joint limits constraints were
of optimization. It addresses the design problem in terms démonstrated. However, few works have been made addressing
feasibility, by determining a set of solutions for the kinematithe design of a PKM with certi ed performance. In [21] a
parameters which ensure all performance requirements are nogit with certi ed dynamic performance over a workspace
[10]. This approach has several advantages relative to desigrdesigned. As an example, a range of design parameters



is determined, which ensure that a 2DOF robot with préeing able to evaluate the workspace continually (and not in
selected actuators can perform a designated task, consistin@attiscrete way) is important since singularities or particular
following trajectory with a speci ¢ velocity and accelerationposes of the robot where its performance in terms of accuracy
In [22], a method is proposed for synthesizing the largeahd forces is not satisfactory may occur between two certi ed
tolerances in the model parameters of a PKM while keepingprkspace points. One can re ne the evaluation by adding
the pose error below a given limit. A similar work is done irmore points at the expense of computation velocity and
[16]. Most works on PKM design either focus on less thaef ciency. For this reason, most robust approach of Interval
3-DOF PKM's or on a single property. Analysis (IA) is used for design certi cation, since it deals

In this article, there is a rst description of the proposedvith a continuous set of points instead of some particular dis-
methodology for performance analysis and design of PKM'srete points. In this sense, IA can certify an entire workspace,
Then, a case study of a spatial PKM design is introduced. Thiace it provides simple tools to evaluate the lower and upper
PKM used as a case study is a derivation of the well knowounds for a function with interval unknowns. It can perform
Triglide spatial manipulator, proposed by Budde [23], and isore evaluations on critical areas of the workspace close to
shown in Figure 1. This architecture is chosen as it is a paihgular or boundary regions, while performing much less
of a larger system for factory automation over a large scalgslculations on large non-critical areas, thus largely improving
being developed in the Institute of Systems and Robots of tbemputation velocity and ef ciency.
University of Coimbra. However, the methodology presented An application is when some parameters are not known
here can be applied to any other parallel architecture. exactly but are bounded, such as the physical realization of
the mechanical components of a robot with its manufacturing
tolerances [24]. It can also be used to take into account
computer round-off errors [16].

For this work the usual interval notation is used:

Interval real -[X]2 IR =[x;X]= fx2 Rjx X Xg;

Interval vector [v]2 R"=[v;;glfori= 150 4
[aza] : [aan]

Interval matrix -[M]2 R™ "= : DK
[ama] = [amn]

Inmum - x=inf([x]), inffa2 Rj8x2 [X];a xg;
Supremum X = suf([x]) , supfb2 Rj8x2 [x];x bg;
Radius -rad([x]) = d, *5;

Width/Diameter -wid([x]) = 2d , X X
Midpoint/Center -mid([x]) = X, *3%;
Fig. 1. Arrangement of the 3 P"UR limbs. Interval approximation of the solution set -

o . . ) Inner box -
Contribution and focus of this work include an ef cient

design methodology which addresses the evaluation of sever s, for example, in the real m_ter\_/zﬁl 3 5.] the in mum 1s
PKM properties of different nature, including singular poses,: thg supremum 1s 5, the radius is 4, diameter is 8 and the
joint limits, accuracy and force, for an entire workspace, Wh"@ldpomt Is 1.

also taking into account possible variations or uncertainties of . . )

the geometrical parameters. Same methodology also enablet) 'Nterval arithmetic and  extensions: Interval
design of a PKM with multiple DOF, taking into accoungVithmetic  allows ~to  implement  basic  operators

different performance requirements. It is also the rstpartof & © + =i ;expsincosetc:::), such that [14]:

work on the design and realization of a real PKM with certi ed ; 2 Iy 2 1
performance, so it is a self-contained thorough method which D b1 Xy [y 2 el @

:f\ \é?ggfgefzwnh the physical realization of the PKM, shown Then, it is possible to provide an interval extension or

inclusion, noted f] to real functionf as:
Il. DESIGN METHODOLOGY
In this section, the interval analysis tool is introduced, with 8pJ 2 IR; [fI(X) f £(x);8x2 [x]g @)
a detailed discussion on how it is used to evaluate e
performance parameter. Then, the outline of the propo
design algorithm is presented.

Z‘EEere exist several types of interval extension, sucNasiral
Inclusion where every classical operator is replaced by its
interval counterpart, ofaylor Extension

The main problem with interval analysis is the overesti-
The discrete approach to the study of a manipulatorsation of the resulting interval extension bounds, which may
workspace has been widely used for its simplicity. Howevdead to pessimist evaluations of interval arithmetic. Indeed,

A. Interval analysis



in interval arithmetic, the several occurrences of variables are2) Design: In Design one nds all possible values of the
treated as independent and are not correlated: n kinematic parameteng vectors for a family of PKM whose
. . performance is certi ed and complies with &ldesired per-

X D="fx yix2[y2ylg f x xx2[Xg () formance parameters, characterizedipequality constraints

This, in most cases, leads to loss of properties and to overegffpadCi in a given interval workspace box notéd):

mation, where the upper (or lower) bound[Bf is not exactly

max (or min) f(x) for x 2 [x] [14]. D([xa]) = fpi8i =[1::::ni: 8x 2 [xa]: G(x:p)g ()
B. Interval extensions of robot properties For the design problem, if a box (ex[p]) is internal, a

The proposed design methodology can be divided into t#@ndition8p 2 [pi]; [xa]  Wai(p) or [xa] ~ Wai([pt]) must be
steps:Veri cation and Design met.

In the design methodology, there are boxes for both the

1) Veri cation: The workspac&V of the robot is the com- Séarch space (geometrical parameters of the PKM) and the
mon denominator in this study. One will analyze the robot¥ariation domain of the parameters (workspace). Bisecting on
static con gurations and determine the workspace for each ¢ variation domain of the parameters and evaluating smaller
the performance thresholds. The worksps¢efor the i per- domains reduce.s the pessimism and can improve the results of
formance property, characterized byinequality constraints the box eva'luatlon, thus constituting an improvement on the
noted G, formulated as conjunctions and/or disjunctions dhethod efciency and ensuring the convergence of the algo-
inequalities, for a real or interval set okinematic parameters, "ithm. Being k] the search space ang] fthe variation domain,

p or [p] respectively,can be de ned as: for a given quanti ed constraing8x 2 [x]; 8y 2 [y]; f(x;y)
0) one can compute the1 foIIowinZg interval e\2/aluatic{m]s::1
— fyi Ci(x: F(IX; D), [t := F(IX1:[v]) and[2)°:= f([x]; [y]°), where[y]
Wilpd = xj8p 2 [pd: G (X P)g “) and [y]® are obtained by bisecting the variation doméih

The exact description of the workspace is dif cult to obtaitnd knowing that the interval hull ([Z]'[ [2%) [2]. Then,
formally. In fact, one is interested in the inner approximatiof either [z]* or [Z]* lies outside the solution set, one can
of these sets described by interval boxes. Continuous intervaliscard the entire parameter $ett To know when to perform
depending on their dimensions, can be graphically represengeflisection on parameter domains, in a similar fashion to the
by boxes (lines for 1D, rectangles for 2D, parallelepipeds fifork of Goldsztejn [25], one de nes a threshold on the ratio:
3D, and hypercubes for superior dimensions) with their sides ) 1 )
parallel to the reference axis of the chosen parameters. These wid( ([Z°[ [2])) ®)
boxes are tested and labeled as internal or external according wid([2])
to whether or not they are part OT the solution set, de ned gojow which the parameter domains are bisected. This
by |ts__constra|nts. A box_(ex xi]) IS mterna_l oW, if the solution relies on three interval evaluations of the functfon
condition8x 2 [x; Gi(x;p) is met. This set of inner boxes are, hich s the previous author states, is cheap with respect to
Qenoted \M([pt]), and SQCh_ as Wi([pt)) Wi This allows to the use of interval contractors. In this work, a threshold of 0.80
insure that one is fully |nS|d§ the Workspace. External box s used and shown to lead to good performances in average.
are boxes where the constraint evaluation deems results w er methods exist in literature [26], [27] and although not

lie completely (_)ut5|de th_e solution s_et. , discussed here may be tested in the future to compare with
An undetermined box is characterized by having parts whi¢his method.

overestimation might be pessimist, so the box is bisected iy ithm. TheClassical Methodfor the subdivision process
two and the resulting boxes are re-evaluated. _is the bisection of the bofx] perpendicular to a direction
Then an inner approximation of the nal workspace ig¢ maximum width. For an interval® = [achy, bisection
obtained: occurs at its middle point in order to create two new intervals
Ik = [ag (a+ b)=2] and 15 = [(ac+ b)=2; by].
Qi = [ . N However, the evaluation functio might not variate as
Wai ([P = 481 =123l 8p 2 [pd: Gilxip)g - (9) much for that direction of bisection as for others, resulting in
by intersecting all performance workspaces such that: the creation of an unnecessary large number of boxes. For this
reason, one should look for ef cient methods for the selection
\m of the direction of bisection to reduce the number of sub-boxes
Wai([pd) = W (6)  generated, thus reducing the required computation space and
=1 time. Ratz has studied four different rules for the selection of
For Wy, the condition for an interior box i8x 2 [x]; 8i 2  subdivision directions [28]. Each of the rules selects a direction
[1;::]; Gi(X; p).- k by using a merit function:



that the intersection of the solution setwith each orthant
s o . is, in fact, a convex polyhedron, Oettli [31] proposed, using a
k= minf jjj 2 f1;::;ngandR (1) = maxL,R(D)g - (9) linear programming procedure in each orthant to determine
where R (i) is determined by the given rule. They havéhe inmum and supremum for the solution set. Though
empirically proved, using a wide spectrum of unconstraindllis method effectively obtains larger solution boxes than
test problems, that the correct choice of bisection rules c@tier methods, it is extremely computation intensive, since
effectively reduce calculation time and function evaluatiorisrequires an evaluation of the linear system for each orthant.
by around 20% and the space complexity by around 15%,For this reason, the proposed algorithm is based on a
when compared with theClassical Method which selects theorem proposed by Beaumont [32], which is an evolution
the direction of maximum widthR (i) = wid(x;)). The most of the Oettli-Prager theorem:
effective bisection rules where Rule B (Hansen and Walster),

de ned by: daD b+ dab
- | Sso(ALB)  x Cp G x o Br O
R ()= wid(5 f,([x])) wid([x]) (10) ADa 2O
And Rule C (Ratz), de ned by: WhereD, is a diagonal matrix whose elements areand
o ) b is a vector whose elements are given are ltheBoth this
R (D)= wid(5 fi(DA)([x] - mid([xi]))) (1) scalar matrix and vector depend on an initial approximation
The relative ef ciency of each bisection method depend¥ the solution sek and are given by:
on each problem and for one speci c case, one method might XX X X Xi X
present serious advantages or disadvantages over all others. aj = ,7);' and b; = % (15)

For the proposed algorithm in this work, three different bisec- 1A 3
tion methods were tested in order to nd the most ef cient

one. o . . .
; . . - o . While it does not require an evaluation for each orthant, it
Bisection can occur until a minimum box size is achieved.,

. e : iS an iterative method, which might turn out to be computation
In this case, if still no conclusion can be drawn about the . . S
o . Intensive. However, tests have shown that, with a good initial
nature of the box, it is characterized as a boundary box. This L . .
.approximation to the solution set, one obtains sharper results

minimum box size is called study minimum resolution. This '}han Oettli and Prager, for only one or two iterations. To reduce

the pnnqple of_the Br.anch anq Prune algorithm and consututﬁ]se effect of the overestimation and contract the bounds of the
the basis of this design algorithm.

; . . . . solution sets, Itering methods are employed:
Property evaluations require solving by intervals linear

equality or inequality constraints. For the equality constraint

problem, one can apply the method proposed in [29]. However[x,e,] = Filtering([Xoq]; C([X])) sO that[Xnew] [Xoia] (16)
since they can also be interpreted as inequalities with no
prejudice to the result or method, and in an effort to maintain
coherence throughout the whole text, the authors opted to

inequality constrains, which will be discussed in detail in th )
next section, but can be roughly represented by the followiff§j Outside boxes.
linear interval system:

Filtering can be made using 2B, 3B, Gauss Elimination,
lor, Hansen-Blink, Newton, among other methods [13]. If
the ltering leads to an empty box, this box is sent to the list

C. Robots properties characterization

b Ax DbiA2[A] (12) 1) Joint Range: To obtain the manipulator's workspace
or Ax = b;A 2 [A];b 2 [b: B] limited by the reachable extent of its drives and joints, called
reachable workspace, one has to rst develop the kinematics
Where[A] is composed by invertible matrices. The probleraf the robot.
consists in nding out the subsat in the form of an interval  The interval extension of the inverse kinematics problem
vector: (IK) to a box[x] (8p 2 [pt]) allows to overestimate all possible
variations of the joint coordinates for akl 2 [x]. Generally
there exist several solutions to the IK problem, although in
this work, an unique solution of interest or a way to select
In this case, and in a similar way to the evaluation of intervil is assumed, as described in section Ill.B Kinematics. In
polynomial equations, a simple adaptation of scalar algorithrfect, adding more constraints to the problem, such as leg
is not feasible. The main source of dif culties connected witkollisions, would eventually lead to the unique solution of
computing the solution satis its complicated structure, whichinterest considered. The constraint for joint range property
is generally nonconvex. checks if the joint coordinates obtained are inside the de ned
Oettli and Prager rst proposed a technique to deal witjpint ranges, notefgq] =[dq;dq], for the property workspace
this problem, in 1964 [30]. Taking advantage from the fad: o

So;9 ([A];[b]) := fx 2 R" 9A 2 [A]; 9b 2 [b]; Ax = bg (13)



Which relates the positioning erro®y] of the end-effector
Ci([x;[pD) , Qa (IKIx;eD))  Qa (17) with the actuated joints accuracgd], through the inverse
) _ o o ) jacobian matrixJinv, which is pose dependent but also depends

In this case, ifIK([x];[p]) [qd]. it is an internal box. on the geometrical parameteyy fhat de ne the geometry of
Otherwise, ifIK([x];[p])\ [qa] = O, it is an external box.  ne robot (considered as intervals to account for the bounded

manufacturing errors).

2) Singularities: Singular con gurations are particular \while this is actually a rst order approximation of the pose
poses of a parallel manipulator, in which the mechanism losggor, near singularities the whole process may turn out to be
its rigidity and degrees of freedom or becomes uncontrollabigsn, reliable. An approximation to the distance to singularities
Hence, singularities should be avoided at all costs for mqsi;, pe found in [48], where the authors avoid singularities
applications. As in the work by Gosselin [33], the analysis qfy restraining the workspace to a set of static poses where
the manipulator's two Jacobian matrices, parallel and serial,tffe joint forces do not exceed a certain threshold. A similar
proposed, to establish three types of singularities: solution is employed for the force workspace determination

First kind: they occur when the determinant of the s€eonstraintC,) in this work, and can be used for the same
rial Jacobian matrix is null. This is the case when thpurpose, to improve on the reliability of this method.
directions of one or more of the legs are perpendicular A PKM moves within a given workspad#' that is de ned

to their corresponding actuator directions leading to thes intervals for X] parameters. The desired vector of maximal
loss of one or more DOF. positioning errorsPxy], is de ned as a set of allowed ranges
Second kind: they occur when the determinant of thfer the errors onX]. The goal is to nd robot geometries for
parallel Jacobian matrix is null. This condition impliesvhich one can ensure that whatever is the pose of the robot
that the links are aligned with the moving platformwithin the workspace, the positioning error will be included
with the extensions of lines AiBi passing through thén [Dxq].

center point P of the end-effector. The robot gains one orSolving by interval the problem for a given accurddy],
more degrees of freedom. These are the most dangertusinternal boXx] (8p 2 [p:]) test condition consists on check-
types of singularities and are associated with the loss iafy if the obtained accuradPxes], which is an overestimation
stiffness of the manipulator. of the real accuracy, is inside a desired accuracy int¢brq]|
Third kind: also called combined singularity, they occuis done by:

when both serial and parallel Jacobian matrices are not

full rank. In this situation, the robot gains two more DOF

and becomes uncontrollable. Cs([x];[P]) . Dxd So.9(J([x];[p));[da])) Dxa  (20)
The singularity constraint to a bdx] (8p 2 [p]) is de ned If J(x];[pD[dg] [Dxq] then it is an internal box.
as: Otherwise, ifJ([X];[pD[dq]\ [Dxq] = 0 it is an external box.

) ) ] 4) Joint Forces: Static analysis reveals one very interesting

Co(xI;[P)], det(Jin([x];[p])) < 0_0< det(Jinv([X]![p])iS phenomenon in the vicinity of singularities, characterized by

If th t 00 =[0:01 2 det( ) . (th ) the existence of a load such that the internal forces in the
. € setrty [ ’.] et{Jnv([x:]: [p]), one is sure there joints of the structure tend to in nity [48]. Large payloads
's no singular pose |n'the workspace of the rqbot. also require bigger actuation forces. Such large forces can lock

Anothe_r approach s to check the regularity of a m‘?‘m e entire mechanism and, in the worst scenario, lead to its
(8x 2 [x:]j8p 2 [pit]; Jinv(X;p) are regular) as an alternative reakdown.
tq the evaluation qf the chobian determinant [34], [35]. To avoid this, the designer can de ne a thresholgax
different approach IS u;ed n [36], w_here the authors comp%er the maximum internal forces in the joints. The areas of
the determinant of the jacobian for single poses correspondsp'% manipulator workspace in which the internal forces in

_to the_ upper and !ower bound of an_lnterval, an_d ty to n he joints do not exceed this threshold constitute the force
inversions of the signal of the determinant, meaning that th

is a singularity inside the pose interval, as the determinant o
Jnvis a real valued continuous and differentiable function.

rkspace.
At static equilibrium, the fundamental relation between the
joint forces interval vectort[], the external wrench exerted on

3) Motion A E vsis | tial stud the environmentf] and the transpose of the inverse kinematic
) Motion Accuracy: Error analysis is an essential stu Yacobian matrixJT, is given by:

for any PKM design exercise, as it is shown by the numerous

works on this subject [24], [37]-[47]. It consists on nding the T . _

positioning errors of a given robot at some speci ¢ location Jinv([XL; [PDIt ] = [F] (21)
within the workspace, by solving the following interval linearrhe wrenchF] contains all forces applied by the geometrical

system of equations: center of the end-effector, i.e. in the origin of its reference
frame, to the environment. When, for instance, the manipulator
Jinv([X]; [PD[Dx] = [ dq] (19) carries an[m] payload, whereg[m] is the interval mass of



the payload, the end-effector must counterbalance the weigfgorithm 2 Design Routine
[F]=[m]:g, whereg is the gravity acceleration vector. Solving 1: procedure DESIGN CERTIFICATION

by interval the linear problem for a given wrengH, the force
constraint for a boXx] (8p 2 [pt]), consists on checking if the
obtained joint forcegt ] are inferior to the maximum joint

forcest max, and can be de ned as:

2:  inputs:[Qg];[DXql; [t 1; [W1;
[Do] = finitial [p]g;
for i=1,...,mdo

while n>0 do

Ca([xI:[pD) .8 F2[F]it

With [t] = [ tmaxtmax-
If IT([x]; [PDIF]

Se0(T(IXL[PDF) T (22)

D. Algorithm Outline

3
4
5: L =[Dj 1]; n= sizdL );
6
7
8

[t] then it is an internal box. Otherwise, 10:
if IT([X];[PDIF]\ [t]1= 0, it is an external box. 11
12:

13:
Here, an outline of the algorithm developed for the studya.

and design of the parallel manipulator, using interval analysigs:
is presented. 16:

In the veri cation routine Algorithm 1, the user obtains the;7.
workspace for the robot characterized by the unique set ¢f.
manipulator geometrical parametgrssuch as the length of 1g.
the limbsl; or the width of the end-effectow. 20:

. take 1st box ofL
. erase 1st box of

[b]= L (1);
L@=[];n=n 1
[brew] = Contractb];
if Contract failsthen

goto 6;
end if
if 8x2 [\N];8g2 [brew]; Gi(x;p) metthen

[Di] =[Di]  [Dnewl;
else if8x 2 [W];8p 2 [brew]; Ci(X;p) not metthen

goto 6;
else

if [brew] > MinDim then

if eq(8) > 0:8 then
L bisect[bnew]; N=n+2;

In the design routine Algorithm 2, the result is a sBj [ 21 else
of kinematic parameterp[] which form a family of certied 2. bisect[W]; goto 13;
PKM's. Then, even if the physical realization of the robobs. end if
differs from the theoretical model while staying within theys. else
given manufacturing errors bounds, one can certify the robet. Bi [brewl; . list of boundary boxes
design for the required performance parameters. 26: end if

: — : 27 end if

Algorithm 1 Veri cation Routine o8 end while

1. procedure WORKSPACEDETERMINATION

3
4
5
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

inputs: [Qq]; [DX4l; [t 1;p;
for i=1,...,mdo

L = finitial[X]g; n= sizdL );

while n>0 do

[b]=L (1);
L@®=[;n=n 1,
[brew] = Contractb];
if Contract failsthen
goto 5;
end if
if 8x2 [bnew]'S i(X;p) metthen
W] =[W]  [bnewl;
else if 8x 2 [bpew]; Gi(X;p) not metthen
goto 5;
else
if [bnew] > MinDim then
L bisect[bnew]; N=N+2;
else
Bi [Brewl;
end if
end if
end while

. take 1st box ofL
. erase 1st box of

end for
return [W];

26: end procedure

. list of boundary boxes

29:  end for
30: return [D];
31: end procedure

If p'j'” is used as nominal value of a given geometrical
parametepj, for the manufacturing process one may assume
that the real value gb; will lie in the range[p|" ej; p["+ gj].

This implies that if a solution intervalp;] = [a;b] for the
parametemp; is found, whose width is larger or equal te;2
then one is able to guarantee that the real robot will satisfy
property (7), by choosing as theoretical manufacturing value
a number in the rangfa ej;b+ ], as this guarantee that
the real value will be ir[p;].

Notice that even though the inclusion tests show as
performed in serial, they can also be performed in parallel
fashion for both routines. Both strategies have their advantages
and disadvantages, demonstrating higher speeds and ef ciency
depending on the calculation conditions, as will be discussed
in the results section. Notice also that in the Algorithm 2,
line 22, bisection occurs on the variation domain of the
parameters, in this case, the workspt@. While not shown
in the pseudo-code, this is followed by new evaluations
of the constraint for a smaller part of the workspace, in
order to reduce the overestimation effect. If a single of
these evaluations results in an outside box, then the entire
parameter sdinen] can be discarded.



(I1=12=13=1). Links 11 andl, are anchored at the extremities
Il CASE STUDY - 3 P"UR SPATIAL PARALLEL of the gnd—effector. Links is anchored at the a point situated
at a distanced from the center poinP of the end-effector,
MANIPULATOR . . . oo .
. . _ measured in the y axis. In this case study, this distance is equal
In this section, the architecture of the PKM used as 8 zero, meaning all three anchor points to the end-effector
case study is presented. The kinematics are developed @pél co-linear. This patent-pending con guration facilitates the
a singularity study on its workspace is performed. Thefgcon guration of the manipulator, even though this is a
by using the veri cation routine of the algorithm for givenfeature which will not explore in this paper. However, for
discrete values of the kinematic parameters, a deeper studys@Rerality sake, the robot's kinematics were still developed
its performance is made. The goal is to get the reader to fulpjth the possibility of not having all three points co-linear.
understand the characteristics of this SpeCi ¢ PKM architecture Let bi be the position vector of the attachment point of limb
before performing the PKM design. i to end-effector relative to the moving Cartesian end-effector
A. Architecture reference frame P. Thdy coordinates are given by:

The architecture of the case study PKM relies on 3 limbs W
with a P"UR joint pair (Figure 1). Its arrangement, with two by =[ =
parallel and one perpendicular limb, and coupling ensures 2 ) )
that the extra rotation degree of freedom from each limb The transformation from the moving platform to the xed
is suppressed, resulting in a spatial manipulator with onfj2S€ can be described by a position vector OF and
translational movements. The difference to the similar Triglidg 33 rotation matrixRe. Since the manipulator displays
manipulator lies in the orientation of its actuators. In this casgP@tial movements with only translations and no rotations,
two prismatic actuators, andap, are co-linear and the third Py calibration, the 23 rotation matrixRe is equal to the
one, as is perpendicular, being all three co-planar,as depictédentity matrix. The position vectds; with respect to the xed
in Figure 1. The following system geometrical parameters shsfordinate system is obtained by the following transformation:
be considered: .

Wo - xed Cartesian reference framéVbxy;2); Bi=P+Reb =123 (24)
We - moving Cartesian end-effector reference frame prismatic actuators; and a, work on the x axis. The
(Wb %p,¥p,2p); actuatoraz works on the y axis. Actuator position coordinates,

X(x,y,z)- coordinates of the end-effector relativeMé; relative to the xed reference frame, are given by:
gi - set of actuator i position coordinates relativeWip;

A - attach. point of limb i to actuator i relative ¥p; - T T

B; - attach. point of limb i to end-effector relative Y, A1=[01;0;0]" ; A2 =[02;0;0]" ; A3=[0;03;0] (25)

b - attach. point of limb i to end-effector relative Yp;
And the design parameters:

;O;O]T;bz=[v—2v;0;0]T;b3=[0;d;0]T (23)

B. Kinematics
1) Inverse Kinematics Problenithe inverse kinematic im-

li - limb i length; plicit model is obtained by using the three closure equations,
w - end-effector width; constraints of the kinematic chains, which link the Cartesian
~ d - distance ofb; to end-effector center; space variables to the joint space variables. The three F
With i =1,2,3. constraints equations for the robot are given by:
Figure 2 illustrates the simpli ed manipulator geometry. 2 12 ]
R(X;a) = kP(X)+ I:bi - A(Qk® 19=0  i=1;23 (26)
@ 4 4 7 For this specic problem there are®Z2different sets of
: X solutions to the inverse kinematics problem, i.e., for a given

location of the end-effector, several sets of actuator positions
are possible. From these, a single solution of interest is
selected, using dened model constraints. All possible
solutions are presented, by considering both positive and
negative () roots, but in brackets it is shows which one
should be chosen to obtain the unique desired set of solutions.

With equations (23), (25) and (26), the IK implicit model
equations (27) are obtained:
Fig. 2. Referential and coordinates for the PKM. p
<= X 2 y2 2 w=2 ()

The xed Cartesian reference frame's origin is in the K, go=x 2y Z2+w=2 (+) 27)
point O. The tree limbs are assumed to be equal in length =y 12 X Z2+d *+)



TABLE |
CASE STUDY GEOMETRICAL PARAMETERS

2) Forward Kinematics ProblemThe forward kinematics Parameter Value (mm)
problem (FK) can be obtained by solving the three F constrain [ T (link Tength) 400
equations (26) in order to the end-effector coordinates: qla, 924 (al and a2 ranges) -500 to +500

034 (a3 range) 0 to +500
x= Htd w (end-effector width) 142
= 7( 2+ 2 24 02 d (distance ofjs to the center of end-effector 0
= (i W=2){dp W=2)+( 3 Dq (actuator accuracy) 0.1
FK 2 y q A% d)+w (28) T max (actuator max force in Newton) 15
T 7= |2 (%)2 y2 (+)
In the z coordinate expression one opted to ysistead jK= g g2+ wz (34)

of its corr.espond|ng.expre33|on for S|mpI|ca_t|_on PUTPOSES. 1ho determinant of thely serial Jacobian matrix (31) is
Once again, for a given set of actuator positions there are. . o ) o

o . . _lrivial to calculate since it is a diagonal matrix:
two possibilities for the position of the end-effector, which

correspond to the intersection points of three spherical P
surfaces. By considering that the coordinate is always I =( 12 ¢ A0y 2 (35)
positive, one nds the unique desired solution. Which in turn is equivalent to:
3) Jacobians: D_ifferentiating_the _closure eq_uations (26) Jg =(x V%’ ql)(x+V§V Ry o3) (36)
leads to the velocity model, written in the matrix form as:
As mentioned earlier, singularities occur when the
JeX+Jq:q=0 (29) determinants of the jacobians are null. By equaling equations

T (33) and (35) to zero, one obtains the expressions for the

Where X = vy Wy is the vector of the end-effectorsingular loci surfaces, shown in Figure 3. In this particular
velocities andg= g1 g2 g3 is the vector of actuated case, all singularities happen at the vicinity or at the boundary
joint rate. Thely is the 3 3 parallel Jacobian matrix (reducedof the robot's workspace, which in turn guarantees that no
since the end-effector does not have angular velocitiesPgndinternal singularities exist. In fact, when met, this set of 3

is the 3 3 serial Jacobian matrix, given by: constrain conditions ensures that one never reach a singular
2P 5—— 3 ose:
2 2 2 y 7 P ] )
K=4 "12 @2 2 y 2 (30) ax Yowsx+ Vo> 37
) Pt — ol 5> G 5 B> (37)
And:
2p —_— 3 Singularity loci
|2 y2 72 p 0 0 [—J1stkind
Jq -4 0 m 0 0 5 L I 2 kind
0 0 12 x2 2

(31)
WhenJg is not singular, i.e., delf)é 0, one can obtain the
Inverse Jacobian matrixipv=J, *:):

Z [mm]

2 3
n_Y p_Z - L
1 T2 P2y 2 —
_ p_Y n_Z
Jinv—g 1 T2y 2 T2y 2 (32) - "
X p_Z -
12 x2 2 1 12 x2 2

Fig. 3. Singularities loci according to type.

C. Singularity Loci D. Performance Analysis

The determinant of théy reduced parallel Jacobian matrix In this section the proposed algorithm IS used to _evaluate
the performance of the case study manipulator given the

(30) is given by: . .
b 0 geometrical parameters present in Table I.
. The algorithm was developed in the Matlab R2015a environ-
= 2 2 2 2 2 2
g =22y+ 15 o A0 15y Z) (33) ment, with the INTLAB V7.1 package, developed by Siegfried
Which in turn is equivalent to: M. Rump, head of the Institute for Scienti c Computing at the




Hamburg University of Technology, Germany, Copyright (clepresented by the purple square.

1998 — 2013, under academic licenses. The algorithm ran on

a computer with a AMD A6-7400K Radeon R5 6 Compute 2) Accuracy Workspace: The manipulator accuracy

Cores (2C+4G) at 3.50 GHz and 8Gb of RAM. workspace is shown in Figure 6. The useful work area
(shown in bright green) reduces comparatively to the whole
workspace area (delimited by the red boundary boxes) as
one demands more accuracy from the manipulator. For an
accuracy of 2mm, 1mm, 0.5mm and 0.15mm, one gets and
certied work area of 0.183m?, 0.174 n?, 0.156 n? and
0.074n?, respectively.

Fig. 4. 3D Reachable Manipulator Workspace. Calculation time: 3375s, N.
of Intervals: 100000, Min. Resolution: &7,

1) Reachable Workspac&he Figure 4 shows the reachable
workspace of the manipulator, in 3D space. This is useful to
give an idea of the overall shape and size of the workspace,
but due to the high number of boxes (100000), it consumes
a lot of time and processing power. It also becomes more
dif cult to analyze interior parts of the workspace volume. In
fact, most of the time, one is only interested in the behavior
and properties of the robot on a speci ¢ horizontal plane. For
this reason, from this point forward, the analysis will focus OFig. 6. Accuracy Workspace on plane z=310. Accuracy of 2mm, 1mm, 0.5mm
a horizontal plane situated 310mm above the rails (z=310)ad 0-15mm workspaces.

3) Force WorkspaceFforce workspace was obtained as a
function of the manipulator's payload, and is shown in Figure
7. This gure shows the 2D workspaces for a payload of 0.5kg,
2kg, 3.5kg and 5kg, corresponding to certi ed work areas of
0.173 %, 0.140 m?, 0.109 n? and 0.019n?, respectively.
Average computation time was 92 seconds while the average
number of intervals was 1136 (excluding reachable workspace
boundary intervals shown as red boxes).

As the manipulator load is increased, the internal forces
on the joints also increase to the point where, for some
manipulator poses, they overcome the maximum achievable
force to the actuated joints, thus reducing the useful area of
work (shown in bright green).

Fig. 5. Reachable Manipulator Workspace on plane z=310. Calculation time: IV. CASE STUDY - PKM DESIGN
22.1s, N. of Intervals: 1010, Interior areal@1n?. . )
For the PKM design case study, the de ned goal is to nd

Figure 5 shows the 2D reachable work area for thike sets of link length and platform width dimensions, which
horizontal plane. The interior area is equal to 0.194. guarantee a workspace box of 200 by 200 by 40 millimeters,
The minimum resolution considered wasn2®. Notice the centered on the point (0,0,300), as shown in Figure 8, using
red boundary boxes separating the interior boxes from ttlee design routine of the algorithm. Inside such workspace, an
exterior space. Where there is no such boundary is in faatcuracy of 1mm and a payload of 1kg, for all poses, must be
the place where boundary singularities occur. Their loci ensured.



Fig. 7. Force Workspace on plane z=310. Payload of 0.5kg, 2kg, 3.5kg dfid. 9. Design Algorithm running in serial. Inside boxes shown in green;
5kg workspaces. outside boxes shown in red and purple; boundary boxes shown in white, cyan
and yellow. Last image shows the nal result. Calculation times (from top left
to bottom right): Joint Range and Singularity Constrains- 25.52s; Accuracy
Constrains- 18.27s; Force Constraints- 6.50s; Total calculation time- 50.29s

4

Accuracy: Imm

Payload: 1kg

Fig. 8. PKM design case study parameters. Desired workspace is represented
by the yellow box. Kinematic parameters to be determined are shown in blue.

The design algorithm ran in two fashions: the rst one
performing the constraint tests in serial (starting from joint
limits constraints, then accuracy constraints and then force

constraints) and the other one in parallel. When performian _ _ o _ _
0. 10. Design Algorithm running in parallel. Inside boxes shown in green;

ser!al calculation, the rst property constraint is applied to th@utside boxes shown in red, purple and dark blue; boundary boxes shown in
entire search space. However, for the subsequent evaluatiomge, cyan and yellow. Last image shows the nal result after intersection.
only the inside boxes of the previous evaluation are useep/culation times (from top left to bottom right): Joint Range and Singularity
Th b fb luated is th h inferi Constrains- 25.52s; Accuracy Constrains- 3.00s; Force Constraints- 1.63s;
e number of boxes evaluated is then much inferior &y caiculation time- 25.525
parallel calculation, where all search space is used for each
property constraint. The nal result is the intersection of each
property evaluation. Results for serial and parallel calculations the results). For this reason, the number of boxes is much
are shown in Figure 9 and Figure 10, respectively. lower as well as the calculation times. In some calculations,
One can see that the accuracy and force workspace calctitee boundary areas do not seem to converge to zero. In fact, by
tion times are much lower than joint range workspace. In facgducing the size of the minimum box evaluated, both in the
the bisection for the former only occurs for one of the desiggearch space and variation domain of the parameters, one can
parameters (this particular robot's Jacobian matrices can tnake the boundary area converge to zero. Serial calculation
expressed only in terms df and X coordinates of the end- is the most ef cient when only one computer is available
effector with the end-effector widtlv bearing no in uence to run the algorithm. However, one can see that the nal
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calculation time for the parallel calculation is inferior to thevorkspace since it might have great implications on the task
serial calculation. This is because a distributed approachitiss supposed to perform. Imagine the case of a 3D printer or
employed, i.e. using a set of computers: a master progr&D laser scanning application, where one must know which
will manage the list. and send boxes to process to a freeegions of the workspace guarantee better accuracy, in order
slave computelS. This slave computer is responsible for do correctly position the model, according to its features.
single property constrain and evaluates its own boxed.list The method presented in this work proved to be a useful
until eitherL s is exhausted or that the number of boxes iand ef cient tool for the analysis and design study of the

L s has reached a given threshold. Then the slave compuyparallel manipulator, and can be used not only for this PKM
will return to the master program the lists (possible empty) but also for any other parallel architecture. With the results
that has to be processed together with the remaining sets (albtained, one can design any PKM machine being sure that
possibly empty) of synthesis solutions. The result is that tlitls kinematic parameters ensure the required performance over
calculation time is equal to the longer property evaluation timis workspace. The advantage of having sets of values for
in this case, the accuracy constraints. these parameters is that one can choose the nominal values

However, a new serial run of the algorithm was performefhr the PKM kinematic parameters to be in the middle of
but this time the constraint evaluations were done in order tfese sets (as for instance in the middle of the green triangles
time ef ciency, i.e., Force Constraints (1.63s), then Accuracghown in gures 9 and 10) thus having some margin of error
Constraints (0.69s) and nally Joint Range (10.71s), obtaining consider the manufacturing tolerances. These geometric
a nal calculation time of 12,71s. errors, uncertainties and parasitic errors on non wanted DOF

The efciency of the bisection method adopted was als@rientation) as a function of the mechanical defaults, are
tested. Figure 11 shows the results for bisection Rule Uhavoidable during the manufacturing process, and may not
(Hansen and Walster) ar@assical MethodOne can see that be compensated by calibration and may severely affect the
Rule B generates less boundary and outside boxes, mearougrall behavior of the manipulator. This solution set also
its more ef cient as a bisection method. The average gain grants more liberty and exibility to the design engineer to
space complexity is 58% relative to tdassical MethodThis choose from a range of components and actuators for the robot.
is also shown by the average 63% reduction on the calculatidrany dimension or parameter needs to be changed, it is not
times, relative to th€lassical MethodRule C (Ratz) was also necessary to do again the design from the beginning, as one
tested, and although it was not as ef cient as Rule B, still atan be sure that, as long as it is still inside the solution set,
average improvement of 57% in calculation time and 56%e design of the PKM is robust. If the obtained solution set
in space complexity could be obtained, when comparing i®large or is very small, the designer can add new constraints,
the Classical MethodThe reason why th€lassical Bisection or relax the existing ones. A cost constraint function can also
Methoddeems such bad results is thanks to not being ablede easily added to the algorithm.
detect the independency of the parametein the accuracy  Failure of the algorithm may occur if the terms of the
and force constraints evaluation. Thus it creates many manelusion function have a very complex form. Indeed inter-
boxes by bisecting on two design variables. For this reasaml analysis will usually overestimate the ranges for these
and in problems of this nature, a good selection of the bisectioamponents and the size of this overestimation increase with
method is crucial to obtain a fast and ef cient algorithm.  the complexity of the analytical form of the terms. A conse-

guence of this overestimation is that the procedure may fail
to determine if all solutions of the linear systems are included
in the set of solutions, even if the size of the ranges for the
geometry and workspace parameters is small. Another possible
cause of failure is not taking into account the dependency of
the components in the inclusion function. While in this work,
some strategies employed to improve the ef ciency of the this
algorithm are presented and discussed, the authors recon it still
can be largely improved by using different Itering methods
or different solvers, such as RSolver [49], [50], IBEX [51],
Fig. 11. Design Algorithm results for bisection Rule B (Hansen and Walste_[rzz] and Al|a_s [53], although this is not explor(_ed here_ as it
and classical method. Inside boxes shown in green; outside and bound&nyot the main focus of this work. It should be interesting to
boxes shown in white. Calculation times: Rule B- 50.29s; Classical Methogompare this algorithm to other solvers in future publications
184.39s of different nature, as well as try to improve the algorithm
performance using other Itering methods or monotonicity
V. DISCUSSION tests.

Parallel machine's performance is strongly dependent onA full scale prototype of the parallel mechanism, shown in
their pose, so properties such as accuracy, rigidity and stiffnésgure 12, is also being developed for testing and validation
vary inside their workspace. It is then extremely importartf the design and performance evaluation methods proposed
to know exactly how a PKM behaves on each region of itsere. This is the subject of the future second part of this work.
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12. PKM prototype developed at ISR-UC, using the design method

proposed in this work.
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