C. Noga-alon, M. Avin, G. Koucký, Z. Kozma, M. R. Lotker et al., Many Random Walks Are Faster Than One, Combinatorics, Probability and Computing, vol.47, issue.04, pp.481-502, 2011.
DOI : 10.1017/S0963548398003538

N. Alon and J. Spencer, The Probabilistic Method, 2000.

A. Z. Broder, A. R. Karlin, P. Raghavan, and E. Upfal, Connectivity, SIAM Journal on Computing, vol.23, issue.2, pp.324-334, 1994.
DOI : 10.1137/S0097539790190144

C. Cooper, A. M. Frieze, and T. Radzik, Multiple Random Walks and Interacting Particle Systems, Proc. 36th Intl. Colloquium on Automata, Languages and Programming (ICALP'09), pp.399-410, 2009.
DOI : 10.1017/S0963548300000390

C. Cooper, D. Ilcinkas, R. Klasing, and A. Kosowski, Derandomizing random walks in undirected graphs using locally fair exploration strategies, Distributed Computing, pp.91-99, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00638229

A. Czumaj and C. Sohler, Testing Expansion in Bounded-Degree Graphs, Combinatorics, Probability and Computing, vol.89, issue.5-6, pp.693-709, 2010.
DOI : 10.1007/s00453-001-0078-7

K. Efremenko and O. Reingold, How Well Do Random Walks Parallelize?, 13th International Workshop on on Randomization and Computation (RANDOM'09), pp.476-489, 2009.
DOI : 10.1007/978-3-642-03685-9_36

URL : http://www.cs.tau.ac.il/%7Eklim/papers/RW09.pdf

R. Elsässer and T. Sauerwald, Tight bounds for the cover time of multiple random walks, Theoretical Computer Science, vol.412, issue.24, pp.2623-2641, 2011.
DOI : 10.1016/j.tcs.2010.08.010

A. Israeli and M. Jalfon, Token management schemes and random walks yield selfstabilizing mutual exclusion, Proceedings of the 9th Annual ACM Symposium on Principles of Distributed Computing (PODC'90), pp.119-131, 1990.
DOI : 10.1145/93385.93409

A. Kmet and M. Petkov?ek, Gambler's Ruin Problem in Several Dimensions, Advances in Applied Mathematics, vol.28, issue.2, pp.107-118, 2002.
DOI : 10.1006/aama.2001.0769

A. Kosowski, Time and Space-Efficient Algorithms for Mobile Agents in an Anonymous Network. Research habilitation, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00867765

F. Gregory, V. Lawler, and . Limic, Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics, 2010.

P. Lezaud, Chernoff-type bound for finite Markov chains, The Annals of Applied Probability, vol.8, issue.3, pp.849-867, 1989.
DOI : 10.1214/aoap/1028903453

URL : https://hal.archives-ouvertes.fr/hal-00940907

L. Lovász, Random walks on graphs: A survey, Combinatorics, Paul Erd?s is Eighty, vol.2, pp.1-46, 1993.

G. B. Mertzios, S. E. Nikoletseas, C. Raptopoulos, and P. G. Spirakis, Determining majority in networks with local interactions and very small local memory, Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP'14), pp.871-882, 2014.

A. Das-sarma, G. Anisur-rahaman-molla, and . Pandurangan, Fast Distributed Computation in Dynamic Networks via Random Walks, Proceedings of the 26th International Symposium on Distributed Computing (DISC'12), pp.136-150, 2012.
DOI : 10.1007/978-3-642-33651-5_10

A. Das-sarma, D. Nanongkai, G. Pandurangan, and P. Tetali, Distributed Random Walks, Journal of the ACM, vol.60, issue.1, 2013.
DOI : 10.1145/2432622.2432624

T. Sauerwald, Expansion and the cover time of parallel random walks, Proceeding of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing, PODC '10, pp.315-324, 2010.
DOI : 10.1145/1835698.1835776

D. Zuckerman, A Technique for Lower Bounding the Cover Time, SIAM Journal on Discrete Mathematics, vol.5, issue.1, pp.81-87, 1992.
DOI : 10.1137/0405007