J. E. Beasley, OR-Library: Distributing Test Problems by Electronic Mail, Journal of the Operational Research Society, vol.41, issue.11, pp.1069-1072, 1990.
DOI : 10.1057/jors.1990.166

W. Ben-ameur and J. Neto, Acceleration of cutting-plane and column generation algorithms: Applications to network design, Networks, vol.3, issue.5, pp.3-17, 2007.
DOI : 10.1002/9781118627372

J. F. Benders, Partitioning procedures for solving mixed-variables programming problems, Numerische Mathematik, vol.38, issue.1, pp.238-252, 1962.
DOI : 10.1007/BF01386316

B. Cherkassky and A. Goldberg, On implementing push-relabel method for the maximum flow problem, Proceedings of IPCO IV, pp.157-171, 1995.

M. Chimani, C. Gutwenger, M. Jünger, G. Klau, K. Klein et al., The open graph drawing framework (OGDF) Handbook of Graph Drawing and Visualization, pp.543-569, 2011.

E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, vol.4, issue.1, pp.269-271, 1959.
DOI : 10.1007/BF01386390

M. Fischetti, I. Ljubi´cljubi´c, and M. Sinnl, Redesigning Benders Decomposition for Large-Scale Facility Location, Management Science, vol.63, issue.7, 2016.
DOI : 10.1287/mnsc.2016.2461

R. W. Floyd, Algorithm 97: Shortest path, Communications of the ACM, vol.5, issue.6, pp.345-345, 1962.
DOI : 10.1145/367766.368168

L. Gouveia, A comparison of directed formulations for the capacitated minimal spanning tree problem, Telecommunication Systems, vol.8, issue.1, pp.51-76, 1993.
DOI : 10.1007/BF02136155

S. L. Hakimi, Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems, Operations Research, vol.13, issue.3, pp.462-475, 1965.
DOI : 10.1287/opre.13.3.462

Y. Jiang, Z. Zhuang, A. J. Sinusas, and X. Papademetris, Vascular tree reconstruction by minimizing a physiological functional cost, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Workshops, pp.178-185, 2010.
DOI : 10.1109/CVPRW.2010.5543593

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3132942/pdf

Y. Jiang, Z. W. Zhuang, A. J. Sinusas, L. H. Staib, and X. Papademetris, Vessel Connectivity Using Murray???s Hypothesis, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.528-536, 2011.
DOI : 10.1016/S0305-0548(00)00083-6

E. Lalla-ruiz, S. Schwarze, and S. Voß, A Matheuristic Approach for the p-Cable Trench Problem, Learning and Intelligent Optimization: 10th International Conference, pp.247-252, 2016.
DOI : 10.1111/itor.12312

L. A. Lorena and E. L. Senne, A column generation approach to capacitated p-median problems, Computers & Operations Research, vol.31, issue.6, pp.863-876, 2004.
DOI : 10.1016/S0305-0548(03)00039-X

URL : http://www.lac.inpe.br/~lorena/senne/col-gen-CPMP-final.pdf

V. Marianov, G. Gutiérrez-jarpa, C. Obreque, and O. Cornejo, Lagrangean relaxation heuristics for the p-cable-trench problem, Computers & Operations Research, vol.39, issue.3, pp.620-628, 2012.
DOI : 10.1016/j.cor.2011.05.015

V. Marianov, G. Gutiérrez-jarpa, and C. Obreque, p-cable trench problem with covering, XXII EURO Working Group on Locational Analysis Meeting, pp.75-76, 2015.

E. Minieka, -Center Problem, SIAM Review, vol.12, issue.1, pp.138-139, 1970.
DOI : 10.1137/1012016

S. Schwarze, The multi-commodity cable trench problem, ECIS 2015 Completed Research Papers, 2015.

F. J. Vasko, R. S. Barbieri, B. Q. Rieksts, K. L. Reitmeyer, and K. L. Stott, The cable trench problem: combining the shortest path and minimum spanning tree problems, Computers & Operations Research, vol.29, issue.5, pp.441-458, 2002.
DOI : 10.1016/S0305-0548(00)00083-6

F. J. Vasko, E. Landquist, G. Kresge, A. Tal, Y. Jiang et al., A simple and efficient strategy for solving very large-scale generalized cable-trench problems, Networks, vol.2, issue.3, pp.199-208, 2016.
DOI : 10.1186/2040-2384-2-7