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Abstract: Data locality is a critical issue in order to achieve performance on today’s high-end
parallel machines. As these machines are highly non-uniform, distributing computations across
their processing elements does not only require to minimize inter-process communication, but also
to favor local communication over distant communication. For that purpose, static and/or dynamic
(re)mapping tools have been devised, that allow one to map process graphs onto architecture graphs
describing the topology and architectural features of such machines. However, in practice, the real
problem to solve is to map a process graph onto possibly disconnected parts of a non-uniform
parallel machine, such as a set of nodes provided by some batch scheduler.

This paper presents a set of algorithms to perform this task in an efficient way. Efficiency is
achieved thanks to a multilevel description of target architectures. All the presented algorithms
have been implemented in the SCOTCH static mapping software. Experiments evidence the quality
of the produced mappings.
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Placement de processus sur des architectures complexes et
des partitions d’icelles

Résumé : La localité des données est une question critique afin d’obtenir des performances
sur les machines massivement paralleles actuelles. Comme ces machines sont hautement non-
uniformes, distribuer efficacement les calculs sur leurs éléments de traitement ne nécessite pas
seulement de minimiser la communication inter-processus, mais aussi de favoriser la communi-
cation locale par rapport a la communication distante. Dans ce but, des outils de (re)placement
statique et/ou dynamique ont été congus, qui permettent de placer des graphes de processus
sur des graphes d’architecture représentant la topologie et les caractéristiques architecturales de
ces machines. Cependant, en pratique, le vrai probléeme a résoudre est de placer un graphe de
processus sur des parties potentiellement déconnectées d’une machine parallele non uniforme,
telles que des ensembles de noeuds attribués par un ordonnanceur batch.

Cet article présente un ensemble d’algorithmes effectuant cette tache d’une fagon efficace.
L’efficacité est obtenue grace a une description multi-niveaux des architectures cibles. Tous les
algorithmes présentés ici ont été implémentés dans le logiciel de placement statique SCOTCH.
Des expérimentations illustrent la qualité des placements produits.

Mots-clés : Partitionnement de graphe, placement statique, placement de processus.
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1 Introduction

Data locality is a critical issue in order to fully exploit petascale and exascale parallel archi-
tectures. Such architectures are highly non-uniform: transferring data to a processing element
located on the same chip is orders of magnitude less expensive than sending data to a processing
element located in a remote cabinet. Consequently, data allocation must be performed in a way
that does not minimize inter-process communication uniformly across all processing elements,
but favors local communication over distant communication, even at the price of an increase in
overall communication volume.

In many application domains, such as scientific computing, data allocation can be performed
using graph partitioning [2, 8]. Data are modeled as the vertices Vg of a graph Gg(Vs, Es),
often called process graph, the edges Eg of which represent computational dependencies. Graph
vertices are partitioned into as many parts as the prescribed number of processing elements,
possibly with respect to their respective compute power, while reducing the number of edges
connecting vertices that belong to different parts. Graph mapping is a generalization of the
graph partitioning problem, in which the vertices of the process graph are placed on the vertices
Vr of a target graph Gp(Vr, Er). In this case, the metric to be minimized is not the number of
cut edges, but a cost function that may take into account the dilation of the edges, that is, the
length of the path, in the target graph, that connects two mapped vertices that are neighbors in
the process graph.

The mapping problem received some attention during the 1970’s, with the advent of distributed-
memory multi-computers exhibiting highly non-uniform access costs. Then, interest for it faded
in the 1990’s, as computer architects succeeded in designing hardware mechanisms that allevi-
ated this non-uniform behavior. With the return into force of highly non-uniform architectures
designed for petascale and exascale computing, this problem is now considered again as a key
issue [11, 19].

Mapping and partitioning are NP-hard problems [6], except in very special cases [14]. The first
heuristics designed to address the partitioning and mapping problems were cubic or quadratic in
|Vs| + |Es| [2, 13]. Then, because of the increasing size of process graphs, new algorithms were
proposed, that were quasi-linear in |Vy| + |Eg| [5]. However, the complexity of these algorithms
also depends in |Vp|. While the run time complexity of these algorithms with respect to this
parameter is often low, e.g. in log(|Vr|) for a recursive mapping algorithm [4], they manage data
structures that are quadratic in |Vr|. This was also the case for SCOTCH, the graph mapping
software that we have been developing for more than two decades.

This report presents algorithmic improvements that dramatically reduce the complexity of
the data structures designed to represent target architectures in SCoTCH. They allow it to
address machine sizes of petascale and exascale classes. They extend important features, such
as the ability to map onto irregular and/or disconnected parts of these architectures, which is
necessary to manage sets of nodes returned by batch schedulers.

This report is organized as follows. In Section 2, we perform a quick state of the art of the
mapping problem, focus on the mapping methods used in SCOTCH, and highlight their current
drawbacks. In Section 3, we present the core of our contribution: the multilevel description of
generic target architectures, and the way they are implemented. Then, in Section 4, we evidence
the benefits of these new data structures on illustrative examples. Then comes the conclusion.

2 State of the art

It is not the purpose of this section to perform an extensive survey of the mapping problem,
which already exists in the literature [3, 16]. Rather, we will present a brief overview of map-
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4 Frangois PELLEGRINI, Cédric LACHAT

ping methods based on a recursive and/or hierarchical framework, as they possess the strongest
connections with our own work.

Faced with the challenge of computing a k-way partition or mapping, many authors followed
the “divide and conquer” approach, through recursive bipartitioning [1, 4, 7, 18]. Indeed, doing
so simplifies heuristics and associated data structures, because in the bipartitioning case vertex
moves across parts do not require to decide to which other parts to move them, and degenerate
into straightforward vertex swaps.

In the mapping case, this amounts to a scheme in which a target architecture, such as a
hypercube [4], is partitioned into two pieces, after which the graph to map is subsequently split
into two parts, which are assigned to the two architecture pieces. This procedure is recursively
applied until architecture parts are restricted to a single processing element. In order to improve
locality, at each step, the graph bipartitioning algorithm does not try to reduce the cut between
the two parts, but to minimize a cost function that accounts for the dilation of the edges that are
mapped onto other parts. In the case of a hypercube, the dilation is computed as the Hamming
distance between the two considered sub-hypercubes, that is, a shortest-path distance [4, 7].

Overall, the aim of these recursive algorithms is to optimize a cost function that is the sum
of the weighted dilation of all edges:

folrsripsr) = Y ws(es) lpsr(es)|
es€E(S)

where wg(eg) is the weight of some edge eg of S, 75,1 : Vo — Vr is the application that maps
vertices of S onto vertices of T, and psr : Es — {Er}* associates a path in T, of length
|ps,r(es)|, to any edge eg of S.

The strong positive correlation between values of this function and effective execution times
has been experimentally verified on many generations of distributed-memory computer sys-
tems [7, 9, 10].

Our first work on the subject consisted in generalizing the aforementioned work of Ercal et
al. [4] by abstracting the notions of “target architecture”, to extend it to arbitrary topologies),
of “part of a target architecture” obtained by recursive bipartitioning, and of “distance” between
any two such parts. This led to the definition of the Dual Recursive Bipartitioning algorithm,
which we are going to describe below.

2.1 The Dual Recursive Bipartitioning algorithm

The mapping algorithm that we originally designed for SCOTCH is called Dual Recursive Bipar-
titioning (DRB) [15].

2.1.1 Principle of DRB

The purpose of the DRB algorithm is to map neighbor vertices of the source graph as closely
as possible to each other in the target architecture. However, it does not compute routings,
that is, the paths in the target graph that correspond to every source edge. We consider that
modeling the behavior of the communication system of every possible target architecture was
a task way too difficult, all the more that the relevant information may not be made available
by the vendor or may change without notice due to vendor software releases. Moreover, for
time-shared and/or batch-scheduled systems, the behavior of the communication subsystem may
evolve dynamically, according to resource requirements of concurrent jobs. Consequently, we
decided to leave the effective handling of communication to the communication subsystem of
the target machine. Nevertheless, we assume that the operator of the system is able to model
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the features and average performance of the interconnection network on the form of a weighted
graph, that can be used by application software users willing to run their software on the system.

The DRB algorithm is similar in nature to that of [4]. It is based on a divide & conquer
approach, and proceeds by recursive allocation of subsets of processes to subsets of processors,
till the processor subsets are restricted to one element or the process subsets are empty. At each
step, it bipartitions a subset of processors, also called a domain, into two disjoint subdomains, and
calls a graph bipartitioning algorithm to assign the vertices of its associated process subgraph onto
the two subdomains with respect to our cost function, as sketched below. When the domain is a
single-vertex domain, called terminal domain, recursion stops and the processes of the associated
process subgraph are mapped onto this target vertex.

Algorithm 1 The Dual Recursive Bipartitioning algorithm.
mapping (P, D)
Process_graph P;
Target_domain D;
{
Process_graph PO, P1;
Target_domain DO, Di1;

if (IP| == 0) /* If no processes assigned to this domain. */
return; /* Nothing to do. Processors will be idle. */
if (ID| == 1) { /* If one processor in D */
result (P, D); /* P is mapped onto it. */
return;
}
(DO, D1) = domain_bipartition (D);
(PO, P1) = graph_bipartition (P, w(DO), w(D1)); /* Weighted bipartition. */
mapping (DO, PO); /* Perform recursion. */
mapping (D1, P1);

In subsequent versions of SCOTCH, the set of available mapping algorithms has been extended.
In particular, a multilevel framework has been implemented, as initially proposed by [1], to
improve speed and mapping quality. However, even in this framework, the initial k-way mappings
of the coarsest graph is still computed using the DRB algorithm.

2.1.2 Abstractions of target architectures

The DRB algorithm relies on the ability to define five main objects:

e a domain structure, which represents some part of the target architecture, onto which some
part of a process graph (that is, a subgraph) is to be mapped;

e a domain bipartitioning function, which, given a domain, bipartitions it into two disjoint
subdomains separated by a small cut, and consequently high communication locality within
each of the subdomains. Subdomains do not need to be of the same size;

e a domain distance function, which gives, in the target architecture, a measure of the dis-
tance between two disjoint domains. Since domains may not be convex nor connected, this
distance may be estimated. However, it must respect certain homogeneity properties, such
as giving more accurate results as domain sizes decrease. This domain distance function is
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6 Frangois PELLEGRINI, Cédric LACHAT

used to evaluate the communication cost function to minimize, by allowing graph biparti-
tioning algorithms to estimate the dilation of the edges linking graph vertices which belong
to different domains;

e a weighted graph structure, which represents a part of the process graph to be mapped;

e a weighted graph bipartitioning function which, given the respective weights of two subdo-
mains, and a process (sub)graph, bipartitions the latter into two disjoint process sets, the
relative weights of which match those of the two subdomains.

All these routines are seen as black boxes by the mapping program, which can thus accept
any kind of target architecture and process bipartitioning function.

As a matter of fact, according to the topology of the target architecture, the results of the
domain handling routines can be algorithmically computed at run-time for regular architectures,
or be extracted from pre-computed tables in the case of irregular architectures (see Section 2.3).

2.2 Execution scheme

The DRB algorithmic framework is greedy by nature, since the mapping of a process onto a
subdomain is never reconsidered. The double recursive call performed at each step induces a
recursion scheme in the shape of a binary tree, each non-leaf node of which corresponds to a
bipartitioning job, that is, the bipartitioning of both a target architecture subdomain and its
associated process subgraph.

In the case of a depth-first sequencing, as written in the above sketch, bipartitioning jobs
called in the left branches have no information on the distance to vertices to be processed by
the right branches. On the contrary, sequencing the jobs according to a by-level (breadth-first)
travel of the tree allows that, at any level, any bipartitioning job may have information on the
subdomains to which all the processes have been allocated during the previous level. In the latter
case, when deciding in which subdomain to put a given process, a bipartitioning job can account
for the communication costs induced by the neighbor processes, whether they are handled by the
job itself or not, since it can estimate the dilation of the corresponding edges. This results in an
interesting feed-back effect: once an edge has been caught in a cut between two subdomains, the
distance between its end vertices will be accounted for in the communication cost function to
be minimized, and subsequent bipartitioning jobs will thus be more likely to keep these vertices
close to each other, as illustrated in Figure 1. The partial cost function to be optimized during
each bipartitioning job is:

felrsripsr) = Y ws({o, o) Ipsr({v,v'})]
v e V(S
{v,v'} € E(9)

which accounts for the dilation of edges internal to subgraph S’ of S as well as for the one of
edges which belong to the cocycle of S’ (that is, edges that have exactly one of their ends in S”).

An additional advantage of using breadth-first traversal is that subdomains that are assigned
to end vertices maintain equivalent sizes during all the recursive bipartitioning process. This
respects the distance homogeneity requirement and gives the algorithm more coherence [17].

To allow for some flexibility in sequencing the bipartitioning jobs, all pending jobs are stored
into a queue. The execution of a bipartitioning job results in the creation of at most two new
jobs, which are en-queued in turn. The next job to be processed is selected according to a user-
configurable policy. For instance, depth-first traversal can be implemented by always selecting
the job with the highest level, and breadth-first traversal by always selecting the queue head. The
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Process Mapping onto Complex Architectures... 7

default method implemented in SCOTCH consists in selecting the job associated with the biggest
subgraph. The rationale for this breadth-first-like method is to provide more accurate partial
mapping information to neighboring jobs, because larger jobs are likely to possess more cocycle
edges, that is, edges that connect them to the rest of the process graph. Its behavior differs
from regular breadth-first sequencing in the case of weighted graphs, where some subgraphs of
the same level may contain much less vertices (yet heavier ones) than others. Considering graph
size is a shortcut that avoids computing the exact number of cocycle edges for each subgraph
(or, better, the sum of their weights, that would have a higher impact on the cost function),
assuming a homogeneous degree distribution.

e
D D
a. Initial position. b. After one vertex is moved.

Figure 1: Edges accounted for in the partial communication cost function when bipartitioning
the subgraph associated with domain D between the two subdomains Dy and D1 of D. Dotted
edges are of dilation zero, their two ends being mapped onto the same subdomain. Thin edges
are cocycle edges.

2.3 Shortcomings of current DRB implementation

Before the works we present here, the implementation of the DRB algorithm in ScoTcH had
two shortcomings: one regarding decomposition-defined architectures, and the other regarding
algorithmically-defined architectures. Both are presented below.

2.3.1 Decomposition-defined architectures

Decomposition-defined architectures are the most generic way to represent (non-regular) target
architectures is SCOTCH. In order to use this architecture, the user just has to provide a weighted
graph, the vertex weights of which represent processing power, and edge weights of which repre-
sent link latency/cost (that is, the bigger an edge weight is, the more expensive it is for data to
traverse it).

This graph is processed in two consecutive phases. In the first phase, a recursive bipartitioning
process is applied to the graph, until all parts are of size 1. During each bipartitioning step, a
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8 Frangois PELLEGRINI, Cédric LACHAT

post-processing method is called, so that the sizes of the two parts are as even as possible. The
purpose of this stage is to avoid empty parts, that would prevent the obtainment of a complete
bipartitioning tree. This tree defines all the domains that will be handled by the DRB mapping
process. They are labeled in the following way: the domain representing the whole graph is
labeled as domain 1; then, the two parts of some domain ¢ are labeled with labels 2i and 23 + 1.
For instance, Figure 2.a represents the labeled tree obtained when recursively bipartitioning the
8-vertex De Bruijn graph UB(2,3). Note that the recursive bipartitioning tree of a target graph
can be reconstructed easily from the terminal domain labels associated with each of its vertices.

In the second phase, an inter-domain distance matrix is computed, in a bottom-up way.
Firstly, the distance between any pair of vertices is computed by means of successive breadth-
first search algorithms (we do not use Dijkstra’s algorithm for that purpose, see rationale in
Section 3.1), and stored in the distance matrix. Then, traversing the target graph bipartitioning
tree in a bottom-up way, the distance between any two non-terminal subdomains is computed
by averaging the distance between all pairs of their son subdomains (hence, at most four values
are merged at each step).

The resulting target architecture data structure provides all the architecture abstractions
listed in Section 2.1.2: a domain representation and labeling, a domain bipartitioning function
(which returns the two sons 2¢ and 2i+ 1 of some non-terminal domain 7), and a domain distance
function.

All these elements are stored in the SCOTCH intermediary file format for decomposition-
defined target architectures, called “deco 0”. The contents of this file for the De Bruijn graph
of Figure 2.a are shown in Figure 2.b. It is an architecture with 8 vertices (that is, terminal
domains), and 15 domains. The first block of lines records on each line the vertex index, vertex
weight and terminal domain label of every target graph vertex. The second block is the lower part
of the (symmetric) distance matrix between all graph vertices. The averaged part of the matrix
for non-terminal domains is not stored, as it would quadruple matrix data, but is recomputed
after loading.

1 deco 0 1
8 15 21
/\ 0115 212
1114 1112
3 2 2113 32112
/\ /\ 3111 222111
4112 3231221
7 6 4 5 5109
7110
1514 1213 911 8 10
a. Recursive coarsening tree of UB(2, 3). b. Derived “deco 07 file.

Figure 2: Target decomposition file for UB(2,3). Terminal domain numbers associated with
every target vertex define a unique recursive bipartitioning of the target graph.

Inria



Process Mapping onto Complex Architectures... 9

Due to the pre-computation and exhaustiveness of the distance matrix, the compute time
and storage of which are in O(|Vr|?), distance values between any two subdomains of the bipar-
titioning tree can be provided in O(1) during the mapping process.

Decomposition-defined target architectures can be restricted to a subset of the graph vertices,
by providing a vertex list that contains the indices of the graph vertices that are available as
mapping targets. It differs from providing a graph restricted to the said vertices, because in
the latter case disconnected components would be considered at infinite (unknown) distance
from each other, since there would exist no path between them. When a vertex list is provided,
the bipartitioning tree is computed such that its nodes only bear the weights of vertices that
are possible mapping targets, while distance matrix values are unchanged between the selected
vertices, because paths between them are still the same in the graph.

The vertex list feature has several uses. Firstly, it allows one to describe an architecture
made of routers and processing elements, and to restrict mappings to processing elements only.
Secondly, it allows a program to compute data distributions that take into account the location
of the nodes that have been assigned to it by a batch scheduler. Yet, in such cases, network
contention induced by parallel programs that may run on other, separating parts of the machine
is not taken into account by default. To account for it, the weights of the links of the target graph
have to be tuned according to measured contention. However, such finely tuned data distributions
have to be recomputed when interweaved, perturbating jobs change of communication behavior
and/or terminate. Such dynamic aspects are out of the scope of this report. We leave to the
user to take them into account in the target graph description if they want to.

While the decomposition-defined architecture data structure is very flexible, it is not scalable,
since its storage is quadratic in the number of vertices, due to the explicit distance matrix. Hence,
it cannot be used to represent parallel machines of sizes bigger than a few thousands of processing
elements, while high-end machines comprise more than several hundred thousands of them.

2.3.2 Algorithmically-defined architectures

Algorithmically-defined architectures are another possibility to represent target architectures in
ScoTCH. In this case, the code pieces that define the architecture and subdomain data structures,
and the routines that perform subdomain bipartitioning and compute inter-domain distance, are
included in SCOTCH at compile time. Such architectures comprise hypercubes, d-dimensional
grids and tori, hierarchical architectures (called “tree-leaf”, because the processing elements are
the leaves of a tree structure whose non-leaf nodes are assumed to be routers), etc.

For instance, hypercube architectures are extremely easy to represent. A hypercube of di-
mension d is described by this very dimension value. A subdomain of a hypercube of dimension d
is a sub-hypercube of dimension d’, with d > d’ > 0. It is described by two values: the dimension
of the subdomain, and the Hamming coding of the bits that have already been set to label the
subdomain. This representation provides a natural way to bipartition a domain. For instance,
the domain that represents the whole of a hypercube of dimension d is (d,——). The two sons
of domain (d, ——) are (d — 1,0,) and (d — 1,1;), the two sons of the latter are (d — 2,10,) and
(d —2,11;), and so on. When the first number is equal to zero, the subdomain is restricted to
a single vertex, the label of which is the d-bit, second number. The distance between any two
domains is the Hamming distance between the fixed bits in the two domain labels, plus half of
the number of unknown bits (to average the unknown Hamming distance).

Grid-like architectures comprise multidimensional meshes and tori. The only difference be-
tween these two architectures concerns inter-domain distance computation. Grid-like architec-
tures of dimension d are defined by a vector of size d holding the number of processing elements
in each dimension. A domain is defined by its inclusive minimum and maximum coordinates in
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10 Frangois PELLEGRINI, Cédric LACHAT

the d-dimensional grid. A domain is bipartitioned by cutting it along its largest dimension. The
distance between two domains is the Manhattan distance between the centers of the domains. In
the case of tori, this distance is usually shorter than in the case of grids, because of the existence
of wrap-around edges in every dimension.

One can note that, from a software design point of view, the decomposition-defined archi-
tecture handling module is an instance of algorithmically-defined architecture. The architecture
data structure contains the subdomain weight vector and inter-subdomain distance matrix de-
scribed in Section 2.3.1, and the domain bipartitioning and domain distance computation routines
extract relevant information from these data structures.

Unlike decomposition-defined architectures, algorithmically-defined architectures can be scal-
able if their implementation is adequate. However, before the works presented in this paper, they
had a main drawback: it was not possible to provide a vertex list to map onto a (possibly dis-
connected) part of an architecture of this kind.

This rendered the use of algorithmically-defined architectures less interesting for applications
running on shared-use, large-scale systems. Indeed, while a subset of a d-dimensional grid may be
a d-dimensional grid itself, if partitions are properly organized by the system operator and/or the
batch scheduler, a subset of a d-dimensional torus can never be a d-dimensional torus, because of
the absence of wrap-around edges. Moreover, most batch schedulers provide irregularly-shaped,
and even disconnected, sets of nodes.

3 Multilevel target architectures

As seen above, target architectures in SCOTCH had two drawbacks, which prevented their
use on high-end supercomputers: decomposition-defined architectures were not scalable, while
algorithmically-defined architectures did not allow one to map onto an irregular subset of such
an architecture. The aim of this work is to solve these two issues concurrently.

3.1 Rationale for a solution

In the case of decomposition-defined architectures, inter-domain distance computation is the crit-
ical issue. Computing exact distances between vertices of a million-vertex graph without storing
a distance matrix would require running Dijkstra’s algorithm each time such a distance is needed.
The issue is also to compute distances between subdomains that are not restricted to single ver-
tices, but derive from some recursive bipartitioning of the initial target graph. Consequently, a
hierarchical, tree-like representation is still mandatory.

Top-down decomposition such as recursive bipartitioning is a way to manage target architec-
tures hierarchically. However, distance computation is not performed using a top-down approach.
As seen in Section 2.3.1, in the current implementation of the decomposition-defined architec-
ture, once the recursive decomposition has been performed completely, the distance matrix is
computed in a bottom-up way.

Instead of computing the bipartitioning tree first, and then traversing the tree in a bottom-up
way, one can consider a more efficient, direct bottom-up approach. It consists in creating pairs of
vertices by mating neighboring vertices, and collapsing every vertex pair, until the entire graph
is reduced to a single, root vertex. This recursive coarsening approach is in fact the very one
followed by multilevel methods.

Inria



Process Mapping onto Complex Architectures... 11

3.2 Coarsening-based multilevel representation

In order to illustrate the construction of the bipartitioning hierarchy, let us consider the 4 x 2
bi-dimensional grid target architecture drawn as the top left graph in Figure 3. Out of the 8
vertices of this graph, 5 only are available as mapping destinations: those that are labeled with
a 1. Other vertices are labeled with a 0.

v
——
@Aamwg -

Figure 3: Locality-based clustering of a labeled 4 x 2 grid target architecture (upper left). A
matching of the graph is computed (bottom left), then the graph is coarsened (second upper
left), then a second matching is computed (second bottom left), and so on.

Using a heavy-edge matching algorithm on this graph yields the matching displayed at the
bottom left of Figure 3. Collapsing the mated edges yields in turn the second graph from the left
in the upper part of the figure. The labels of the collapsed vertices are computed by adding the
labels of the finer vertices. They represent the number of vertices available for mapping in the
produced clusters. The matching and coarsening process is repeated until the graph is reduced
to a single vertex.

The above recursive coarsening process can be described in the form of a tree, from which
nodes with zero weight are discarded. In most cases, the recursive coarsening tree is not equivalent
to a recursive bipartitioning tree, because when a vertex is coarsened to itself, it produces a node
that has only one son. In order to obtain a regular recursive bipartitioning tree, the recursive
coarsening tree must be compacted, as illustrated in Figure 4.

The resulting sequence of recursive bipartitionings is illustrated in Figure 5. One can see that,
because the coarsening process favors locality, and vertex 7 is isolated, the first bipartitioning
is highly imbalanced. This is consistent with the way to handle such partitions: a small set of
lightly connected processes has to be separated from the process graph, while the remaining,
tightly connected subgraph will be placed on a more tightly connected set of processors.

3.3 Application to algorithmically-defined architectures

The multilevel target architecture framework that we have presented above requires to com-
pute successive matchings of the architecture graph. While this is a natural operation for
decomposition-defined architectures, for which the graph is available by definition, algorithmically-
defined architectures are not based on a graph representation; the very purpose of these architec-
tures was indeed to avoid the cost of managing one. Also, using a standard, pseudo-random based
matching on these architecture would lead to irregularly-shaped domains, which could not be
represented by regular domain data structures. Consequently, the matching of algorithmically-
defined architectures has been implemented by means of architecture-specific, deterministic, rou-
tines.
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S e

a. Recursive coarsening tree obtained from b. Derived recursive bipartitioning tree.
Figure 3.

Figure 4: Compacting of a recursive coarsening tree (a) into a recursive bipartitioning tree (b),
by merging only sons to their fathers. Once the tree has been compacted, domain labels can be
associated with every node, in a top-down way.

D O B 80 50
L} @ [ & @ O OIS o)

Figure 5: Sequence of recursive bipartitions of the target architecture of Figure 3 that will be
performed during the DRB algorithm. Domains are labeled with their respective numbers, up
to their terminal domain numbers.

For instance, the hypercube architecture is easily coarsened by performing a projection, di-
mension after dimension: at stage i, all vertices the binary representation of which differ only by
their 41 bit are merged together.

The coarsening of grid-like architectures is performed dimension after dimension, on a round-
robin basis: all dimensions are coarsened one after the other. In the case when a dimension is
odd, the algorithm records the starting point of the previous matching in this dimension, so as
to alternate it every other time, in order to reduce imbalance in the coarsening tree, as depicted
in Figure 6.

Managing matchings by means of tailored routines allows one to optimize the construction of
the recursive coarsening tree. Indeed, there is no need to perform the coarsening of parts of the
target architecture that will not participate in determining the locality of target vertices that
will be mapping destinations. For instance, for grid-like architectures, the coarsening process
can be restricted to a bounding box, the extreme coordinates of which are computed from the
coordinates of all the vertices of the vertex list.

3.4 Application to decomposition-defined architectures

In the case of decomposition-defined architectures, matchings can be computed easily, because
the original target graph is provided by the user. All of the necessary algorithms already exist in
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a. Matching starting from the leftmost vertex b. Matching starting alternatively from the
only. leftmost and rightmost vertices.

Figure 6: Successive regular matchings along a grid dimension of odd sizes. Starting the matching
always from the same side yields unbalanced bipartitioning trees (a), while alternating the start
side reduces this phenomenon (b).

SCOTCH, as part of the multilevel framework for 2-way and k-way partitioning. The main issue
is that of distance computation. As said above, we cannot use a pre-computed distance matrix,
for scalability reasons. Similarly, we cannot use Dijkstra’s algorithm on the original target graph,
as it would be much too expensive. Moreover, the distance between non-terminal domains, that
is, sets of vertices, has also to be computed. This might require one to define and record some
“center vertex” for each of these sets in the original target graph. A trade-off must be found
between storage and computation.

Since distance has only to be approximate, a practical solution is to take advantage of the
family of coarser graphs that has been created in the recursive coarsening phase. The key idea
is to compute or approximate the distance by traversing the graph only with the proper level of
detail. We will illustrate this algorithm thanks to Figure 7.

Let us assume for instance that we want to compute the distance between two subdomains of
some sizes (see level Ly of Figure 7). A representation of this distance as a path only exists at the
level at which both domains are represented by a single vertex (that is, level L; of Figure 7). At
this level, the distance between the two domains can be estimated by computing the (weighted)
shortest path between these two vertices.

Yet, doing so would still raise a performance issue. In the case when the given domains are
very small, the selected graph will be of a low level, and can even be the original graph itself
when both domains are terminal domains. Thus, the distance computation algorithm would have
to be run on this very large graph.

The solution to this problem lies in the fact that our distance function does not have to yield
an exact value for long distances. The distance value has to be accurate when considering small
variations of the cost function between neighboring domains, that is, when computing gains for
vertices moving across neighboring domains, but can be approximated for source edges that are
stretched across remote domains, because we already know that the cost will be higher than that
of local distances.

Hence, we implemented the following approximate distance computation algorithm: once we
have computed the level of the initial distance computation (see level L; of Figure 7), we perform
a breadth-first search from one of the two vertices in this graph. If a path towards the other
vertex is not found in a given number of steps, we abort the breadth-first algorithm, climb up
one level, and start a new breadth-first algorithm between their father vertices, and so on, up to
the moment when we succeed in connecting them in this limited number of steps (see level Ly,
of Figure 7). The rationale for this algorithm is that there will always exist a level in which a
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Figure 7: Multilevel computation of the distance between two subdomains of a decomposition-
defined target architecture. Lg is the finest level, that of the original target graph. Two subdo-
mains are represented at this level. L; is the level at which one of the subdomains is represented
as a single vertex. L; is the level at which both subdomains are represented as vertices, that
is, when a single shortest path can be computed. L,, is the level at which both subdomains
are merged into a common ancestor vertex. L, is the final level, at which the whole graph is
restricted to a single vertex. Circle arcs represent breadth-first traversal levels when determining
the shortest path between the two vertices.

[ 3
L,

path will be found, because there always exists a common ancestor (see level L,, of Figure 7).
The higher we have to go, the more the distance is approximated, but this is consistent with the
fact that in this case the two vertices are far apart one from another.

In order for distances in the coarsened graph to represent a fair estimate of the distances in
the original graph, graph vertices and edges are weighted in a way to represent traversal cost.
Note that this distance weighting is completely independent from the weighting that is used
in the context of the recursive coarsening process to perform the so-called heavy-edge matching
mating selection algorithm [12]: vertex weights provided by the user are used in the heavy edge
matching process to represent processing power, but are not considered in subsequent distance
computations.

For distance computations, graphs are weighted in the following way. Vertex weights represent
the cost of traversal of the vertices. Hence, the weight of a coarse vertex is set as the weight of the
edge that connected the two merged fine vertices. Edge weights represent the cost of traversal of
the edges. Hence, the weight of a coarsened edge is the average of the weights of the edges that
are merged into it. The distance between two vertices is computed from the shortest weighted
path as the sum of the weights of the edges and vertices that have to be traversed, plus half
the weights of the end vertices. Vertices of the original, finest target graph have zero distance
weight, because they have no traversal cost, and edge weights are that provided by the user as
link traversal costs.

The coarser the graph, the less accurate the approximation of traversal costs becomes. Indeed,
considering the traversal cost of a coarse vertex to be the cost of the edge that connects the two
matched vertices, results in overestimating, on average, the distance between any two vertices.
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Consider for instance an unweighted 2D grid graph, coarsened along the horizontal dimension.
Every vertex of the coarsened graph has a traversal cost equal to 1, because it is the cost of
traversal of the collapsed horizontal edges. Horizontal paths are accurate, because the horizontal
distance between two coarse vertices located on the same row reflects the effective distance of
the corresponding fine vertices in the fine graph. On the opposite, the vertical distance between
two coarse vertices located on the same column is overestimated by a factor two, because each
traversed vertex adds the cost of traversal of a horizontal edge, that would not be traversed
on the fine graph. When the coarse grid is further coarsened along the other dimension, the
anisotropy of the distance function disappears, but the overestimation remains, save for diagonal
paths, for which the estimation is still accurate.

4 Experiments

We have run several sets of experiments, to show how the use of the new multilevel target
architecture model allows SCOTCH to overcome the drawbacks of its past implementations.

4.1 Experiments on algorithmically-defined architectures

In order to handle disconnected parts of an algorithmically-defined architecture, we have created
the sub meta-architecture. This target architecture allows one to provide a vertex list and a
target architecture, from which is created an architecture restricted to the vertices of the list.
The order in which the vertices are provided in the list determines the new labels of the kept
vertices. This is consistent with the use of a batch scheduler that will provide processing elements
in an order that will determine MPI process ranks.

For instance, Figure 8.a shows a 5-vertex sub-architecture of a 2 x 4 grid. The order in which
the 5 vertex indices are listed makes vertex 0 of the original architecture remain vertex 0 of the
restricted architecture, vertex 4 become vertex 1, and so on, as illustrated in the figure. By
running SCOTCH to map the bump graph of Figure 8.b onto this architecture, one obtains the
mapping shown in Figure 8.d, which has an edge cut of 561 and an edge dilation of 713. As
one can see, SCOTCH adapted the partitions so that parts 1 and 2 do not touch, as well as parts
2 and 4, to reduce the number of long-distance edges. When performing a regular mapping of
the bump graph into 5 parts, one obtains the more regular partition of Figure 8.c, which has an
edge cut of 504. Yet, using this partition as a mapping on the architecture of Figure 8.b yields a
dilation of 804. This example evidences the interest of mapping with respect to partitioning in
order to improve communication locality.

The new deco?2 architecture allows SCOTCH to handle generic graphs in the same way, albeit
with a much higher cost for computing distances between subdomains, due to the more complex
algorithm presented above.

5 Conclusion

In this paper, we have presented a multilevel framework to represent target architectures in
the context of process-processor placement. This representation allows the SCOTCH mapping
software to compute efficiently mappings of process graphs onto irregular and possibly discon-
nected partitions of very large parallel machines. This removes an important bottleneck of such
software, in order to address the process mapping needs of petascale and exascale applications.
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a. Description of a 5-vertex part of a 2 x 4 b. The bump graph.
grid, with vertices labeled in a different order
than the natural order.

c. Partitioning into 5 parts. d. Mapping onto the target architecture of

Figure 8.a.

Figure 8: Mapping of a graph onto a renumbered part of a 2D-grid of 2 x 4 vertices, compared
to plain partitioning.

Acknowledgments

This work is integrated and supported by the ELCI project, a French FSN (“Fonds pour la
Société Numérique”) project that associates academic and industrial partners to design and
provide software environment for very high performance computing.

References

1]

S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive spectral
bisection for partitioning unstructured problems. Concurrency: Practice and Ezxperience,
6(2):101-117, 1994.

S. H. Bokhari. On the mapping problem. IEEE Transactions on Computers, C-30(3):207—
214, 1981.

Aydin Bulug, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent
advances in graph partitioning. CoRR, abs/1311.3144, 2013.

F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation onto a hypercube by recursive
mincut bipartitioning. JPDC| 10:35-44, 1990.

C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network par-
titions. In Proc. 19th Design Autom. Conf., pages 175-181. IEEE, 1982.

M. R. Garey and D. S. Johnson. Computers and Intractablility: A Guide to the Theory of
NP-completeness. W. H. Freeman, San Francisco, 1979.

S. W. Hammond. Mapping unstructured grid computations to massively parallel computers.
PhD thesis, Rensselaer Polytechnic Institute, February 1992.

B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel computing. Parallel
Comput., 26(12):1519-1534, November 2000.

B. Hendrickson and R. Leland. An empirical study of static load balancing algorithms. In
Proceedings of SHPCC"94, Knozuville, pages 682-685. IEEE, May 1994.

Inria



Process Mapping onto Complex Architectures... 17

[10]

[11]

[12]

[18]

[19]

T. Hoefler and M. Snir. Generic topology mapping strategies for large-scale parallel archi-
tectures. In Proc. 2011 ACM International Conference on Supercomputing (ICS’11), pages
75-85. ACM, June 2011.

E. Jeannot, E. Meneses, G. Mercier, F. Tessier, and G. Zheng. Communication and topology-
aware load balancing in charm++ with treematch. In IEEE Cluster, page 8, Indianapolis,
IN, USA, September 2013.

G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregular graphs.
SIAM Review, 41(2):278-300, 1999.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitionning graphs.
BELL System Technical Journal, pages 291-307, February 1970.

V. M. Lo. Heuristic algorithms for task assignment in distributed systems. In Intl Conf. on
Dist. Computer Systems, pages 30-39. IEEE, 1984.

F. Pellegrini. Static mapping by dual recursive bipartitioning of process and architecture
graphs. In Proc. SHPCC’94, Knozville, pages 486-493. IEEE, May 1994.

F. Pellegrini. Static mapping of process graphs. In Graph Partitioning, chapter 5, pages
115-136. ISTE — Wiley, September 2011.

F. Pellegrini and J. Roman. Experimental Analysis of the Dual Recursive Bipartitioning
Algorithm for Static Mapping. Research Report 1138-96, LaBRI, Université Bordeaux I,
September 1996.

H. D. Simon. Partitioning of unstructured problems for parallel processing. Computing
Systems in Engineering, 2(2):135-148, 1991.

A. Zheng, A. Labrinidis, and P. K. Chrysanthis. Architecture-aware graph repartitioning
for data-intensive scientific computing. In Big Graphs, 2014.

RR n° 9135



V4

: in[arma!ics,mutheman’cs

RESEARCH CENTRE
BORDEAUX - SUD-OUEST

351, Cours de la Libération
Batiment A 29
33405 Talence Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399



