Constrained L2-approximation by polynomials on subsets of the circle

Abstract : We study best approximation to a given function, in the least square sense on a subset of the unit circle, by polynomials of given degree which are pointwise bounded on the complementary subset. We show that the solution to this problem, as the degree goes large, converges to the solution of a bounded extremal problem for analytic functions which is instrumental in system identification. We provide a numerical example on real data from a hyperfrequency filter.
Type de document :
Chapitre d'ouvrage
Mashreghi, Javad; Manolaki, Myrto; Gauthier, Paul M. New Trends in Approximation Theory. In Memory of André Boivin, 81, Springer, pp.1-14, 2017, Fields Institute Communications, 978-1-4939-7543-3
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01671183
Contributeur : Juliette Leblond <>
Soumis le : dimanche 29 octobre 2017 - 13:29:02
Dernière modification le : jeudi 11 janvier 2018 - 17:02:51

Identifiants

  • HAL Id : hal-01671183, version 2
  • ARXIV : 1710.10808

Collections

Citation

Laurent Baratchart, Juliette Leblond, Fabien Seyfert. Constrained L2-approximation by polynomials on subsets of the circle. Mashreghi, Javad; Manolaki, Myrto; Gauthier, Paul M. New Trends in Approximation Theory. In Memory of André Boivin, 81, Springer, pp.1-14, 2017, Fields Institute Communications, 978-1-4939-7543-3. 〈hal-01671183v2〉

Partager

Métriques

Consultations de la notice

345

Téléchargements de fichiers

65