B. Anderson and J. Moore, Detectability and Stabilizability of Time-Varying Discrete-Time Linear Systems, SIAM Journal on Control and Optimization, vol.19, issue.1, pp.20-32, 1981.
DOI : 10.1137/0319002

J. S. Baras and A. Bensoussan, On observer problems for systems governed by partial differential equations, 1987.
DOI : 10.21236/ADA187430

J. S. Baras, A. Bensoussan, and M. R. James, Dynamic Observers as Asymptotic Limits of Recursive Filters: Special Cases, SIAM Journal on Applied Mathematics, vol.48, issue.5, pp.1147-1158, 1988.
DOI : 10.1137/0148068

J. S. Baras and A. Kurzhanski, Nonlinear Filtering: The Set-Membership (Bounding) and the H Techniques, 1995.

R. E. Bellman, Dynamic Programming, 1957.

A. Bensoussan, Filtrage optimal des systèmes linéaires. Dunod, 1971.

A. Bensoussan, Stochastic control of partially observable systems, 1992.
DOI : 10.1017/CBO9780511526503

A. Bensoussan, G. Da-prato, M. C. Delfour, and S. K. Mitter, Representation and control of infinite-dimensional systems, II. Systems & Control: Foundations & Applications, 1993.

J. Blum, F. Dimet, and I. M. Navon, Data assimilation for geophysical fluids. Computational Methods for the Atmosphere and the Oceans, pp.385-441, 2009.
DOI : 10.1016/s1570-8659(08)00209-3

URL : https://hal.archives-ouvertes.fr/inria-00391892

O. Bokanowski, J. Garcke, M. Griebel, and I. Klompmaker, An Adaptive Sparse Grid Semi-Lagrangian Scheme for First Order Hamilton-Jacobi Bellman Equations, Journal of Scientific Computing, vol.24, issue.7, pp.575-605, 2013.
DOI : 10.1137/S1064827501396798

URL : https://hal.archives-ouvertes.fr/hal-00741178

L. Cesari, Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. II. Existence theorems for weak solutions, Transactions of the American Mathematical Society, vol.124, issue.3, pp.413-430, 1966.
DOI : 10.1090/S0002-9947-1966-0203543-3

D. Chapelle, M. Fragu, V. Mallet, and P. Moireau, Fundamental principles of data assimilation underlying the Verdandi library: applications to biophysical model personalization within euHeart, Medical & Biological Engineering & Computing, vol.4, issue.7, pp.511221-1233, 2012.
DOI : 10.1016/j.jmbbm.2011.03.018

URL : https://hal.archives-ouvertes.fr/hal-00760887

D. Chapelle, A. Gariah, P. Moireau, and J. Sainte-marie, A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems ??? Analysis, assessments and applications to parameter estimation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.47, issue.6, 2013.
DOI : 10.1002/fld.867

URL : https://hal.archives-ouvertes.fr/hal-00834397

G. Chavent, Nonlinear Least Squares for Inverse Problems, 2010.
DOI : 10.1007/978-90-481-2785-6

Z. Chen, Bayesian filtering: From Kalman filters to particle filters, and beyond, Statistics, vol.182, issue.1, pp.1-69, 2003.

N. C??ndeac??ndea, A. Imperiale, and P. Moireau, Data assimilation of time under-sampled measurements using observers, the wave-like equation example, ESAIM Control Optim. Calc. Var, vol.21, issue.3, pp.635-669, 2015.

H. Cox, On the estimation of state variables and parameters for noisy dynamic systems, IEEE Transactions on Automatic Control, vol.9, issue.1, 1964.
DOI : 10.1109/TAC.1964.1105635

A. L. Dontchev, Discrete approximations in optimal control In Nonsmooth analysis and geometric methods in deterministic optimal control, pp.59-80, 1996.

H. W. Fleming and R. W. , Deterministic and Stochastic Optimal Control, 1975.
DOI : 10.1007/978-1-4612-6380-7

W. H. Fleming, Deterministic nonlinear filtering, Ann. Scuola Norm. Sup. Pisa Cl. Sci, vol.25, issue.43-4, pp.435-454, 1997.

W. H. Fleming and W. M. Mceneaney, A Max-Plus-Based Algorithm for a Hamilton--Jacobi--Bellman Equation of Nonlinear Filtering, SIAM Journal on Control and Optimization, vol.38, issue.3, pp.683-710, 2000.
DOI : 10.1137/S0363012998332433

O. Hijab, Asymptotic nonlinear filtering and large deviations Advances in Filtering and Optimal Stochastic Control, pp.170-176, 1982.
DOI : 10.1007/bfb0004536

M. R. James and J. S. Baras, Nonlinear filtering and large deviations, 26th IEEE Conference on Decision and Control, pp.391-412, 1988.
DOI : 10.1109/CDC.1987.272708

URL : http://www.hynet.umd.edu/%7Ebaras////publications/papers/1987/1987_James_Nonlinear_Filtering.pdf

S. J. Julier and J. K. Uhlmann, New extension of the Kalman filter to nonlinear systems, Signal Processing, Sensor Fusion, and Target Recognition VI, pp.182-193, 1997.
DOI : 10.1117/12.280797

R. E. Kalman, Contributions to the theory of optimal control, Bol. Soc. Mat. Mexicana, vol.5, issue.2, pp.102-119, 1960.

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, vol.82, issue.1, pp.35-45, 1960.
DOI : 10.1115/1.3662552

R. E. Kalman, Mathematical Description of Linear Dynamical Systems, Journal of the Society for Industrial and Applied Mathematics Series A Control, vol.1, issue.2, pp.152-192, 1963.
DOI : 10.1137/0301010

R. E. Kalman and R. Bucy, New Results in Linear Filtering and Prediction Theory, Journal of Basic Engineering, vol.83, issue.1, pp.95-108, 1961.
DOI : 10.1115/1.3658902

URL : http://www.eecs.tufts.edu/~khan/Courses/Spring2012/EE194/Lecs/KalmanBucy1961.pdf

A. J. Krener, A Lyapunov Theory of Nonlinear Observers, Stochastic analysis, control, optimization and applications, pp.409-420, 1998.
DOI : 10.1007/978-1-4612-1784-8_24

A. J. Krener, The Convergence of the Minimum Energy Estimator, New trends in nonlinear dynamics and control, and their applications, pp.187-208, 2003.
DOI : 10.1007/978-3-540-45056-6_12

A. J. Krener and A. Duarte, A hybrid computational approach to nonlinear estimation, Proceedings of 35th IEEE Conference on Decision and Control, pp.1815-1819, 1996.
DOI : 10.1109/CDC.1996.572831

K. Kunisch, S. Volkwein, and L. Xie, HJB-POD-Based Feedback Design for the Optimal Control of Evolution Problems, SIAM Journal on Applied Dynamical Systems, vol.3, issue.4, pp.701-722, 2004.
DOI : 10.1137/030600485

H. J. Kushner, Dynamical equations for optimal nonlinear filtering, Journal of Differential Equations, vol.3, issue.2, pp.179-190, 1967.
DOI : 10.1016/0022-0396(67)90023-X

URL : https://doi.org/10.1016/0022-0396(67)90023-x

F. Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, vol.109, issue.2, pp.97-110, 2010.
DOI : 10.1007/978-3-642-65024-6

P. Moireau and D. Chapelle, Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems, ESAIM: Control, Optimisation and Calculus of Variations, vol.14, issue.2, pp.380-405, 2011.
DOI : 10.1002/stc.186

URL : https://hal.archives-ouvertes.fr/inria-00550104

R. E. Mortensen, Maximum-likelihood recursive nonlinear filtering, Journal of Optimization Theory and Applications, vol.2, issue.6, pp.386-394, 1968.
DOI : 10.1007/BF00925744

I. M. Navon, Data Assimilation for Numerical Weather Prediction: A Review, Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, 2009.
DOI : 10.1007/978-3-540-71056-1_2

Y. Peng, X. Xiang, and Y. Jiang, Nonlinear dynamic systems and optimal control problems on time scales, ESAIM: Control, Optimisation and Calculus of Variations, vol.49, issue.3, pp.654-681, 2010.
DOI : 10.1016/j.mcm.2008.12.008

URL : http://www.esaim-cocv.org/articles/cocv/pdf/2011/03/cocv0978.pdf

D. T. Pham, J. Verron, and M. C. Roubaud, A singular evolutive extended Kalman filter for data assimilation in oceanography, Journal of Marine systems, vol.16, pp.3-4323, 1998.

D. Simon, Optimal State Estimation: Kalman, H ? , and Nonlinear Approaches, 2006.
DOI : 10.1002/0470045345

M. Vidyasagar, Nonlinear Systems Analysis, 1993.