A. G. Castriotta, Sentinel data access report 2016

E. Lambert, Hadoop platform for georeferenced mobiles and gridded data, 2017.

F. Dolphin and C. , FP7 DOLPHIN Project Maritime Knowledge Discovery and Anomaly Detection Workshop, pp.24-27, 2016.

N. Longépé, Polluter identification with spaceborne radar imagery, AIS and forward drift modeling, Marine Pollution Bulletin, vol.101, issue.2, pp.826-833, 2015.
DOI : 10.1016/j.marpolbul.2015.08.006

C. Ray, Methodology for Real-Time Detection of AIS Falsification, Maritime Knowledge Discovery and Anomaly Detection Workshop, pp.74-77, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01421910

G. Pallotta, Vessel Pattern Knowledge Discovery from AIS Data: A Framework for Anomaly Detection and Route Prediction, Entropy, vol.1, issue.6, pp.2218-2245, 2013.
DOI : 10.1080/00401706.1965.10490300

URL : http://www.mdpi.com/1099-4300/15/6/2218/pdf

W. Hu, A system for learning statistical motion patterns, IEEE PAMI, vol.28, issue.9, pp.1450-1464, 2006.

Y. Le-cun, Deep learning, Nature, vol.9, issue.7553, pp.436-444, 2015.
DOI : 10.1007/s10994-013-5335-x

X. Jiang, Trajectorynet: An embedded gps trajectory representation for point-based classification using recurrent neural networks, 2017.

R. Pelich, Performance evaluation of Sentinel-1 data in SAR ship detection, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015.
DOI : 10.1109/IGARSS.2015.7326217

F. Mazzarella, Sar ship detection and selfreporting data fusion based on traffic knowledge, IEEE GRSL, vol.12, issue.8, pp.1685-1689, 2015.
DOI : 10.1109/lgrs.2015.2419371

URL : http://doi.org/10.1109/lgrs.2015.2419371

E. Maritime and S. Agency, Clean sea net service

F. Cappello, Grid'5000: a large scale and highly reconfigurable grid experimental testbed, The 6th IEEE/ACM International Workshop on Grid Computing, 2005., pp.481-494, 2006.
DOI : 10.1109/GRID.2005.1542730

URL : https://hal.archives-ouvertes.fr/hal-00684943