N
N

N

HAL

open science

Thermal aware scheduling on distributed computing
water heaters

Issam Rais, Eddy Caron, Laurent Lefevre

» To cite this version:

Issam Rais, Eddy Caron, Laurent Lefevre. Thermal aware scheduling on distributed computing water
heaters. CCNC 2018 - IEEE Consumer Communications & Networking Conference, Jan 2018, Las

Vegas, United States. pp.1-4, 10.1109/CCNC.2018.8319253 . hal-01671728

HAL Id: hal-01671728
https://inria.hal.science/hal-01671728
Submitted on 22 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/hal-01671728
https://hal.archives-ouvertes.fr

Thermal aware scheduling on distributed computing
water heaters

Issam Rais, Eddy Caron and Laurent Lefevre

Inria - LIP Laboratory, ENS, University of Lyon, France
{Issam.Rais, Eddy.Caron, Laurent.Lefevre} @inria.fr

Abstract—Combining computation and water warming is an
efficient alternative for recycling dissipated energy. Based on a set
of Computing Water Heaters, used as a distributed super com-
puter, we introduce a computing water heater scheduling system
that has been validated by simulation on extreme workloads.
These simulations lead us to reach an approximate CPU usage
of about 60% while minimizing the thermal resistance usage to
10% (only when necessary) on a complex steady state.

I. INTRODUCTION

Energy consumption is a real limiting factor for large scale
data centers and supercomputers [3]. For the cooling of such
systems, generated heat must be processed through air, water
or free cooling facilities. At the same time, there exists a real
need for hot water which represents a huge part of consumed
energy by households. The idea here is to combine the need
of water warming and the need to compute. The proposed ar-
chitecture explores potential energy reduction by supporting a
set of distributed computing water heaters (CWH), recovering
dissipated energy from computation directly into hot water for
household usage.

We collaborate with a CWH industrial provider (the deFab
company) who needed a scheduling framework.! Computing
needed by a customer has to be efficiently delivered and
scheduled by the “deFab Platform” to one of the machine
composing the distributed set of computing water heaters.

The main contributions of this paper consists in:

1) choosing a coherent scheduling architecture compatible
with a set of distributed computing entities and with the
needs of the multiple users of the system;

2) proposing adapted multi level scheduling policies and
heuristics while properly fulfilling constraints imposed
by a set of computing water heaters;

3) studying crippling and steady state cases that could
happened in such infrastructures through simulation.

II. COMPUTING WATER HEATERS (CWH)

A Computing Water Heater (CWH) differs in many ways
from a Traditional Water Heater (TWH) (Figure 1).

Bk Output Bnk cu] Quewt

Water) Water;
Input Input
Cold Cold

TWH CWH

Fig. 1: from TWH to CWH

A. Architecture

A TWH is an entity composed of a tank of water built
together with a thermal resistance and respecting standards
for inputting and outputting water. The first valve represents
the arrival of water. Once a water pipe is connected, cold water
can be inputted. The second one is for the output pipe. Once
the water has been heated, through the usage of the thermal
resistance, hot water can be outputted for common usage.

As shown in Figure 1, a CWH differs from a TWH in an
architecture level. In fact, a CWH is built with a Computing
Unit (noted C.U. on Figure 1) which warms the water. This
CU is connected to the Internet to receive computational tasks.

B. Water life cycle

Globally, a TWH has only one goal: heat water to reach
a target temperature set at a factory level. When hot water
is requested and delivered, cold water is inputed, making the
temperature of water in the tank drop and at the same time,
leaving the tank at the same volume of water. This newly
inputted cold water will be heated by the thermal resistance
and outputted when someone will ask for hot water.

A CWH has approximately the same water life cycle as

a TWH. It differs in the way of heating water. Instead of
using only the thermal resistance, a CWH could use dissipated
energy from the CU. This entity is composed of servers
connected like a cluster, supervised by a machine delivering
work. The CWH usage is specific:

o Availability of a CWH is based on the temperature of
water in the tank. So the availability of a CWH is true
if and only if temperature of water is below the target
temperature.

I'This work is supported by the ELCI FSN project (“Fonds pour la Société
Numérique”) project that associates academic and industrial partners to design
and provide software environment for very high performance computing. We
thank B. Laplane from the deFab company for his technical support.



o When a CWH reaches its target temperature, it stops com-
puting, making the components of the CU unavailable to
computation.

e Such a CWH is available again if and only if a water
usage is witnessed and that the temperature of water
decreases.

Several crippling cases can be encountered :

 Starvation : This case occurs when there is not enough
work to reach the target temperature of every CWH by
using only the CU

o Saturation : When a CWH reaches its target temperature,
it stops requesting work. If no water usage is made, the
temperature will remain the same, placing the CWH in a
saturation state

III. A SCHEDULING ARCHITECTURE FOR CWH
A. Scheduling architecture description

A multiple hierarchical scheduling is proposed. Every
scheduling point only knows the level underneath. The
pull/push approach and the multiple hierarchical scheduling
has been designed to lighten the decision making process of
every decision making point in the architecture.

A customer based system implies an online scheduling. We
consider here that all the incoming applications will be based
on embarrassingly data parallelism with no constraints nor
communications between tasks.

A scheduler manages a fixed number of machines. The
scheduler asks work through a pull action. It is the one
that delivers the work to the CUs. So a scheduler only
communicates with the metaScheduler and the CUs under its
management. The metaScheduler is the entity that answers
the pull and stores work delivered by the customer. Due to
the distributed aspect of the set of machines, the life cycle of
these tasks has to be described.

B. The computing life cycle

deFab Platform

metasScheduler }

@ Send?
o0

Computing Computing
Water Heater Water Heater
Scheduler 1 Scheduler 2

@ Push @ Push
work work
— — —_

Snad

Computing Water Heater 1 Computing Water Heater 2

©

Pull asking for
M FLOP

Fig. 2: The deFab hierarchical architecture

From the “deFab Platform” to CUs on CWH, Figure 2
presents the proposed architecture applied to the deFab in-
frastructure.

A user sends a request with all his needed computation.
This computation is known and supported by the deFab
infrastructure. The “deFab platform” determines the needed
information for the metaScheduler concerning this application.

A Computing Water Heater Scheduler (CWHS) is the one
to start communication. In function of temperature of water in
the tank and in function of the computation power owned by
the CWH, a “Pull” request will be delivered. This pull contains
a number of FLOP for each core in the CWH. The number
of FLOP asked represents the needed work to reach the target
temperature of the CWH.

When the CWHS receives a task (arrow 2), and if there is
some unused CU under its command, it sends it to the free
unused CU as shown on the arrow 3. If there is no free CU,
the received task is put on a queue (position of the arriving
task in the queue depends on the chosen policy). Thus, the
CWHS is also the one to deliver work to the CUs existing on
the CWH.

The metaScheduler receives work from customers. Users
upload needed files for their computation and applications
are already deployed on every machine. It also is the one
answering the pull requested by one of the CWHS from the
deFab infrastructure. When the metaScheduler receives a pull,
it tries to answer it as soon as possible. If there is enough
work to answer to this request, metaScheduler starts to send
chosen tasks.

The application model is based on the Expected Time To
Compute Model [1]. We consider that the FLOP estimation is
perfect (because the deFab infrastructure allows only known
application to run, so we consider that the applications are
very well known).

The supported scheduling is non preemptive and a task
cannot leave the concerned CWH until it has finished its
execution. Solutions like migrating extra tasks could be ap-
plied, while implying other problematics like good prediction
of water usage.

IV. METASCHEDULER POLICIES

Two heuristics were developed for the metaScheduler :

1) First Requested First Served policy (FRFS): The goal of
this heuristic is to maximize correspondence between the pull
and the answer to this pull. Thus, maximizing the usage of CU
on the CWH to reach the target temperature. This heuristic is
also aiming for a maximization of priority so financial gain.
When a pull is received, an immediate response is made,
considering only available work. This heuristic is not fair when
there is starvation. In fact, if there is enough work only for
one CWH, all work will be delivered to the first puller while
other won’t receive any work.

2) Resource and Load Aware Policy (RLA): This heuristic
allows the metaScheduler to be fair between all CWH. It
also maximizes the usage rate of every core between every
CWH. At the same time, it permits minimizing the inactivity
of a CWH compared to another one. It relies the hypothetical
temperature(the temperature that will reach the water in the
tank if all the received task are executed if no water usage



is seen) of every CWH to fairly give work to the remaining
CWH.

V. RESULTS AND VALIDATION

We study several cases that could append during a life cycle
of a set of CWH (steady state, saturation and starvation).
The SimGrid framework [2] was chosen as the base for the
simulator.

The green curves of all the following graphs represent the
accumulated power used by all components present on the
CWH (CPUS and the thermal resistance). The black curves
represents the progression of the temperature of the water in
the CWH.

In the figures, the red part represents the usage, in percent-
age, of the CPUs during the simulation for a specific CWH.
While the blue part represents time, in percentage, when the
resistance is on. Finally, the green part represents the part of
the time when the CPUs are waiting for work.

A. Starvation and saturation: complex scenarios

The following section presents how the implemented heuris-
tics behave concerning complex scenarios (Section II).

1) First Requested First Served (FRFS) policy under star-
vation: The results shown in this section are made with a set
of 10 CWH. Each one has 10 CPUs. The distributed platform
has to perform a set of computing works.

Two metrics (power and temperature) from selected CWH
are exposed. CWH 0 (Figure 3) is not getting any work
from the metaScheduler and uses the thermal resistance to
warm water, while CWH 2 (Figure 3) is getting work from
metaScheduler and warms water through the CPU usage.

Power (W)

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Fig. 3: Warming water of CWH 0 (through thermal resistance)
and CWH 2 (through CPU usage)

FRFS properly pulls from CWH 1 and 2. Considering that
these CWH are asking for enough FLOP, the metaScheduler
is delivering all the pending work. All other CWH will be in
a starvation state, and must heat their water using the thermal
resistance, like CWH 0 (Figure 3). Figure 4 shows that only
2 out of 10 CWH received work.

2) Resource and Load Aware Policy (RLA) under starva-
tion: This validation considers the same distributed infras-
tructure of CWH (10 CWH with 10 CPUs).

Figure 5 represents the CWH 2 behavior with RLA policiy,
which benefits from CPU usage to warm water. But after
second 6000, the thermal resistance is activated due to the
lack of work left on the metaScheduler.

Power (W)

re (°C)

Power (W)

0 1000 2000 3000 4000

Time(sec)

5000 6000 7000

Fig. 5: CWH 2: warming water mostly through CPU usage

Usage mmmmm
idle ==
Resistance mmm—

% % T M Y % Y %, %

Lo Re ©

Fig. 6: CWH behavior during starvation (RLA Policy)

Figure 6 shows a balanced and fair distribution of work
between Computing Water Heaters. Actually, the usage of the
CPU is around 75% for every CWH.

It should be noted that under the same work demand and
with the same set of CWH, FRFS finishes the simulation at
t = 45000 while Resource and Load Aware Policy finishes
the simulation at ¢ = 7000. In other words, a reduction of
about 85% of the completion time is observed with RLA under
starvation.

3) Saturation: This section presents a simulation of 3
CWH, with a work demand superior to what it is needed
to reach the target temperature of every CWH. Resource and
Load Aware Policy is the chosen heuristic.

Figure 7 shows the evolution of temperature and power used
during the simulation of CWH 0. A peak on the temperature
curve shows a water usage on the CWH. The saturation state
is reached around ¢ 70000. Some water usages occur



Temperature ——
Power

Power (W)

Temperature (°C)

T T \‘ ‘\ T L
35 V

0 20000 40000 60000 80000 100000 120000
Time(sec)

Fig. 7: CWH 0: with water usage

Percentage

%, % %

Lo (& (&

Fig. 8: CWH behavior during saturation (RLA policy)

during saturation, allowing extra work to be executed and thus,
reaching again the target temperature.

This behavior can be observed on Figure 7, by analyzing the
oscillations of power when the target temperature is reached.
When all CUs received work, power used is then around
1000W (all CUs at work). A peak is then observed. It is
the thermal resistance that is triggered to reach the target
temperature.

Even with a CWH receiving enough work to reach the target
temperature only with CPU usage, we can observe unequal
CPU usage (Figure 8). It shows that the results concerning
the usage of CPUs depends not only on the type of workLoad
or the chosen heuristic, but also on the water usage.

B. Steady state: experimental validation scenario

The studied steady state presents a work demand represent-
ing an online work arrival for a set of CWH over 2 weeks.

Every CWH follows a realistic set of water usage which
represents an usual water usage of a French household over a
period of two weeks.

Figure 9 represents the evolution of temperature and power
consumed by the representative CWH 9.

This figure shows that the heating of the set of CWH
is achieved by thermal dissipation from CPUs. Besides the
first two reach of the target temperature, the instantaneous
consumption is around 1000W (10 x 100W, 100W is the
consumption of a CPU at full power). When the CWH almost
reaches target temperature, peaks are observed. It corresponds
to a water usage not important enough to deploy a task on a
CPU without exceeding the target temperature.

65 2500
Temperature’ —— Power ——

20 o
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 < 0 100000 200000 300000 400000 500000 600000 700000 800000 90000C
Time(sec) Time(sec)

Fig. 9: Life cycle of a CWH :
consumption

temperature and energy

Fig. 10: CWH usage: steady state

Figure 10 shows a fair distribution of work. One can also
note that a high rate of idle exists. It can be explained by the
fact that a CWH doesn’t ask work when its target temperature
is reached. The part of resistance usage can be interpreted
by the fact that the heuristics implemented on the CWHS
chooses not to deliver a task when the execution of this task
will make the water reach a temperature higher than the target
temperature.

VI. CONCLUSION AND PERSPECTIVES

In this work, we established an efficient and adapted
scheduling system for a distributed infrastructure of computing
water heaters. We implemented the scheduling architecture and
relevant heuristics on a SimGrid based simulator.

The results obtained with various extreme and steady work-
loads, show that the chosen architecture and heuristic are
compatible and efficient with the requirements of a set of
computing water heaters. Thus, on a steady state, we reached
an approximate CPU usage of about 60% and minimized the
thermal resistance usage (10%, only when no computation is
available on metaScheduler).

REFERENCES

[1] S. Ali, H. J. Siegel, M. Maheswaran, and D. Hensgen. Task execution
time modeling for heterogeneous computing systems. In Heterogeneous
Computing Workshop, 2000.(HCW 2000) Proceedings. 9th, pages 185—
199. IEEE, 2000.

[2] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter. Simgrid:
a sustained effort for the versatile simulation of large scale distributed
systems. CoRR, abs/1309.1630, 2013.

[3] J. G. Koomey, S. Berard, M. Sanchez, and H. Wong. Implications of
historical trends in the electrical efficiency of computing. IEEE Annals
of the History of Computing, 33(3):46-54, 2011.



