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Abstract

Slow-fast affine control systems with one fast angle are considered. An
approximation based on standard averaging of the extremal is defined.
When the drift of the original system is small enough, this approximation
is metric, and minimum time trajectories of the original system converge
towards geodesics of a Finsler metric. The asymmetry of the metric ac-
counts for the presence of the drift on the slow part of the original dyna-
mics. The example of the J> effect in the two-body case in space mechanics
is examined. A critical ratio between the Js drift and the thrust level of
the engine is defined in terms of the averaged metric. The qualitative
behaviour of the minimum time for the real system is analyzed thanks to
this ratio.

Keywords. Slow-fast control systems, minimum time, averaging, Finsler
metric, J2 potential of two-body problem

MSC classification. 49K15, 70Q05

1 Averaging of slow-fast minimum time control
systems

We consider the following slow-fast control system on an n-dimensional manifold
M:

I=eFy(I,p.e)+e > wF(l,pe), [u=y/ud+ - +ul <1 (1)
i=1

<p=w(1)+€Go(I,4p,5)+<€ZuiGi(I,<p,5), w(I) > 0, (2)
i=1
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with I € M, ¢ € S', uw € R™, and fixed extremities Iy, Iy, and free phases ¢, @;.
All the data is periodic with respect to the single fast angle ¢, and w is assumed
to be positive on M. Extensions are possible to the case of several phases
but resonances have then to be taken into account. According to Pontrjagin
maximum principle, time minimizing curves are projections onto the base space
M x §! of integral curves (extremals) of the maximized Hamiltonian below:

H(I7<)07p17pcpa€) = p(pw(I) + €K(I,<p,p[,p¢,€),

Hi(I7903p17ptp75) = pIFi(IaCP,E) +pthi(I7<p7€)7 1= 07"'7m'

There are two types of extremals: abnormal ones that live on the level set
{H = 0}, and normal ones that evolve on nonzero levels of the Hamiltonian.
One defines the averaged Hamiltonian K as

K:=Hy+ Ky, Hy:= <PI,F0>7

o 1 27 m
KO(vaI) = ﬂ 0 ZHE(Iavalap(p:Oﬂ?:O)d(p
i=1
1 27 m
- = Fi(I, ¢ = 0))2dg.
o 0 ;1<p17 ( P, € )> ®

It is smooth on the open set Q := (X where
Y= {(I,pr,0) € T*M x S*| (Vi = 1,m) : {p, Fi(I,,e = 0)) = 0},

Yi=w(X) w:T*M x S' - T*M.

Indeed, the canonical projection w that forgets the fiber S! is a closed mapping
as the factor S! is compact, so ¥ is closed. On also defines the open submanifold
My :=1I(Q2) of M. We assume that M is connex.

Under the assumption

(A1) rank{d’ F;(I,p,e = 0)/0p?, i=1,...,m, j =0} =n, (I,p) e M x S,
one has

Proposition 1. The symmetric part Ko : (2 <)T*M — R of the tensor K is
positive definite and 1-homogenous. It so defines a symmetric Finsler co-norm.

Remark 1. Condition (A1) is related to the controllability of the original system
without drift (Fp). It actually amounts to checking the rank of the Lie algebra
generated by Fi,..., F,, avec and 0/0¢.

Let us recall that a Finsler norm is a function F': TM — R that is smooth
on TM\0 and such that

(i) F(z, \v) = AF(z,v), A > 0 (the norm is said to be symmetric or absolute
value if F(x,—v) = F(z,v)),
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(i) 0?F?(x,v)/0v? > 0.

The fact that the tensor in (ii) depends on v is the main difference with the
Riemannian setting. Let now x and y belong to M, and let d(x,y) be the
infimum of final times ¢y over all %' curves v connecting the two points with
speed bounded by one:

0) ==z, ~(ty) =v,
Fly(),3(#) <1, tel0tr].

Having so defined the metric d associated with F', one defines geodesics to be
constant speed curves whose short segments minimize length. Finsler co-norms
are defined in the same fashion on the cotangent bundle. Let F* : T*M — R
be smooth on T*M\0 and such that

(i) F*(z,Ap) = A\F™*(z,p), A > 0,
(ii) O*(F*)?(x,p)/op* > 0.

Then F'* is a Finsler co-norm, dual to a Finsler norm as both are related through
the Legendre transform. More precisely, set

F = .
(0):=  max P
The mapping F' defines a Finsler norm whose geodesics are integral curves of
the Hamiltonian F* restricted to the level set {F* = 1} (see, e.g., [12]). One
actually has F*(z,p) = F(x,v), v := £*(p), where £* : TX*M — (T*M)* ~ T, M
is the Legendre transform
1 (72 (F*)2
g;k P 5671)2(%17)(177’)
We now assume

(A2) Ko(I,Fy(I) <1, I€ M,

where F; is the inverse Legendre transform of Fy. Under this new assumption,
one has

Proposition 2. The tensor K = Hg + K is positive definite and defines an
asymmetric Finsler co-norm.

Remark 2. For small enough ¢ > 0, this condition is related to the local control-
lability of the original system, drift Fy included. It measures the ability of the
controlled vector fields Fi, ..., Fy,, and their brackets with /0y to compensate
for the drift. (See next section.)

The geodesics are the integral curves of the Hamiltonian K restricted to the
level set {K = 1},

dI 0K dpr 0K

dr  dp;’ dr oI’

1(0) = Lo, I(75) =1y, K(Io,p1(0)) =1,
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and 75 = d(Io,Iy) for minimizing ones. Up to a reparameterization of time
(ds = w(I)dr), the geodesics also are integral curves of

(L) = =P

restricted to the level {h = 0}. We study in the next section the convergence
properties of the origial system towards this metric when € — 0.

2 Approximation properties

On order to identify the slow and fast part on the extremal flow of the orig-
inal system, we use the following ansatz. For ¢ > 0, we normalize min. time
extremals according to K (1o, pr(0)) = 1. (Under the previous assumptions, K
indeed defines a Minkowski norm on the fiber 77 My.) Now, as

H = H(0) = po(0)w(lo) + €K (1o, (0), p1(0),px(0),€) = O(e)

since p,(0) = 0, and since p(0) € S* and p;(0) are bounded. So, outside
resonance (w is assumed to be positive on M),

Dy = —s'Kw(g/g = O(e).

This ensures the possibility of division par €, that is the existence of a smooth
function h such that p, = —eh. This is crucial since

. oK

pr = —ppw'(I) + e =2 (1,0, p1, Pp, €)
this allows to identify p; as a slow variable (p; = O(g)). More precisely, the
following holds.

Lemma 1. For small enough ¢ > 0, the fixed point equation

K(I,@,pl,—sh,f‘:) —k

h= w(I)

has a unique solution h = h(I,,pr, k,€) smoothly depending on (I,p,pr,k,€).

This symplectic reduction eliminates p, and one can rewrite the extremal flow
in the standard form to perform averaging:

. 0H oh
f=e2 2
apgo opr
¢ =w()+ O(e).

M _

= —5@ o O(e),

Changing time ¢ to s = €,

dI  oh
@ = E(I’S/E—F @(0)7p17k(€)75)7
dpr _ _oh

Ia5/5+90(0)ap17k(6)76)’ SE[Oan]v

ds _E(
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with
k(e) := K(Ip, (0),pr(0),p, = 0,6) = H/e = 0.

Using averaging, we are led to approximate the curves of the original system
with the integral curves of the previously defined h,

i 1 27
h(vaI) = % 0 h(I,QD,p],k:].,éf:O)dQD,
w(I)

At this stage, it is not clear whether the choice k = 1 is justified or not, and
whether we must restrict to {h = 0} or not.
In time s = ep, we define the shooting function

S(sf,p1y) := (s, Lo, pry) — Iy, h(lo, 1, ))
associated with the two-point boundary value problem (denoting z = (I, pr))

EE) =T ), selt s,

100) = To, I(sy) = Iy, B(I(0),ps(0) = 0.

For € > 0, and for any fixed ¢g € S, we use the same normalization of p;(0) by

h = 0 and also define the shooting function

Sc(sp,p1,) := (I(sy, Io, pry,€) — I, h(1o, pr,)) (3)

associated with the two-point boundary value problem

dl  oh
ar _ oh ; k=1
ds ap[( ,S/E"'QOO“DI? 78)7
d oh
%:—E(I,S/E‘i‘@Ovplak:lvg)v 86[0,8f]~

The approximation result below is key for the rest of the study.

Proposition 3. Let Iy and Iy in My, and let (55,p;,) be a regular zero of S.
For any € > 0, and whatever o € S*, there exists a zero (sf(),pr,(€)) of Se
such that

sy(e) =55, p1,(e) =Dy, quand e — 0.

The proof of this proposition relies on the following fixed point result applied
to the family of shooting functions for € > 0.

Lemma 2. Let f : R™ — R"™ be a continuously differentiable mapping having
a reqular zero at x = 0, and let f. : R® — R", € > 0, be continuous mappings
converging uniformly towards f on a neighbourhood of the origin when ¢ — 0.
Then, there exist €9 > 0 together with a mapping = : [0,e9] — R™ that is
continuous at € = 0 such that z(0) =0 and

fe(a(e)) =0, € (0]
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Figure 1: Typical swallowtail singularities of the value function € — ts(¢) ob-
tained when following the characteristics with a continuation on . Numerical
simulation from [10].

Remark 3. One cannot expect €' regularity for the value function & — t¢(e).
Indeed, if ones obtains the value function using a continuation on € and com-
puting min. time extremals, the continuation allows to follow the characteristics
and to cross the singularities of the associated Hamilton-Jacobi-Bellman equa-
tion. Due to the existence of local minima (because of the free initial and final
phases), swallowtail singularities are encountered, typically [10]. These singu-
larities accumulate as € — 0. (See Figure [1])

Lemma 3 (Verification lemma). Let ¢ > 0, and let po € S*. To any zero of S.
correspond a extremal (I, ¢, pr,pe) of H and a final time ty such that

I1(0) = Iy, I(ty) =1Ir, pe(0)=0(e), pylty)=0(e).

In order to state our main convergence result, we make the following strong

assumptions on the metric defined by K.
(A3) The metric is geodesically convex on Mj.

(A4) Whatever Iy and Iy in My, Iy ¢ Cut(lp), there exist ¢g > 0, a compact
neighbourhood K (1o, I5) of the minimizing geodesic, and 1 > 0 such that,
for any € € (0,e0], any admissible trajectory (whose final time is ¢5) not
contained in K (I, Iy) it holds that

ety = d(IO,If) +n.
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A partial result in the direction of (A3) is proved in [6] for the Finsler met-
ric associated with the two-body potential (geodesic convexity of the so-called
meridian half-planes in the of 2D case; compare with [5]). A quantitative study
of the original dynamical system is required for the estimation in (A4). In the
two-body case, one has to analyze the effect of the singularities of the dynam-
ics at n = 0 (parabolic resonance) and at n = oo (pure collision) (n being the
mean motion). The issue of loss of regularity due to 7-singularities must also
be addressed [4]. Note that, in the statement of (A4), we use the fact that
provided the final point does not belong to the cut locus of the initial one, a
unique (forward) geodesic of the Finsler metric connects them.

Proposition 4. Let Iy and Iy belong to My, Iy ¢ Cut(ly). Then, for small
enough € > 0, existence holds for the original minimum time control problem

@-@-
Theorem 1. Let Iy and Iy belong to My, Iy ¢ Cut(ly). Let (I, ¢, P1c, Py, )e

be a family of minimizing extremals, and let (t¢(€))e be the associated family of
minimum times. Then, denoting z. := (I.,pr.), one has

|ze = Z|e = O(e) + O(k(e) — 1), ety(e) = d(lo, Iy), &—0,

where Z is the Hamiltonian lift of the minimizing geodesic connecting Iy to Iy.

3 Application to space mechanics

We consider the the two-body potential case,

ij = 7#% + % 3 ‘U| < Tmax'

Thanks to the super-integrability of the —1/|¢| potential, the minimum time
control system is slow-fast with only angle (the longitude of the evolving body)
if ones restricts to the case of transfers between elliptic orbits (u is the gravita-
tional constant). In the non-coplanar situation, we have to analyze a dimension
five symmetric Finsler metric. In order to account for the Earth non-oblateness,
we add to the dynamics a small drift Fj on the slow variables. In the standard
equinoctial orbit elements, I = (a,e,w,,4), the J term of order 1/|q|* of the
Earth potential derives from the additional potential (r. being the equatorial
radius)

Ry

Jor2 (1—¢2)™%2 11

4
As a result, the system now has to small parameters (depending on the initial
condition). One is due to the J; effect, the other to the control:

3:]27"3
€g = €1 =
2a "’

a(% Tmax .
uM

Here, ag is the intial semi-major axis, Tyax the maximum level of thrust, and
M the spacecraft mass. We make a reduction to a single small parameter as
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follows: Defining ¢ :=eg + &1 and X := g¢/(eg + £1), one has

~.
|

EOFO(Ia (p) + &1 Z uze(Ia @)7
i=1

£ (AFO(LS@) +(1-A) i UiE‘(L@)) :

There are two regimes depending on whether the J, effect is small against the
control (g9 « €1 and A — 0) or not (g9 » €1 and A — 1). The critical ratio on
A can be explicitly computed in metric terms.

Proposition 5. In the average system of the two-body potential including the
Ja effect, K = AHo+ (1 — N Kg is a metric tensor if and only if A < A.(I) with

1
1+ KoL, Fa(D)

Ac(1)

The relevance of this critical ratio for the qualitative analysis of the original
system is illustrated by the numerical simulations displayed in Figures [2| to
[[l For a given initial condition I, on the slow variables, we let the drift F
alone act: We integrate the flow of Fy during a short positive duration 74, then
compute the trajectory of the averaged system to go from this point I(74) back
to to Iy. For A < A.(Iy), the tensor K is a metric one, and this trajectory is
a geodesic. As 74 tends to zero, the time 7, to come back from I(74) tends to
zero when A < A.(Ip). For A = A (Ip), finitess of this time indicates that global
properties of the system still allows to control it although the metric character
of the approximation does not hold anymore. (See Figure ) The behaviour
of 7y measures the loss in performance as A approaches the critical ratio. This
critical value depends on the initial condition and gives an asymptotic estimate
of whether the thrust dominates the Js effect or not. Beyond the critical value,
the system is still controllable, but there is a drastic change in performance.
As the original system is approximated by the average one, this behaviour is
very precisely reproduced on the value function of the original system for small
enough e. (See Figures[3|to[6])
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Figure 4: Value function A — 74(\), 7¢ — 0 (original system, ¢ = le — 4).
On this example, a = 30 Mm, e = 0.5, w = Q = 0, i = 51 degrees (strong
inclination), and A, ~ 0.4239. The behaviour of the value function for the
original system matches very precisely the behaviour of the averaged one.
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Figure 5: Value function A — 7¢(\), 7¢ — 0 (original system, ¢ = le — 3).
On this example, a = 11.675 Mm, e = 0.75, w = Q = 0, i = 7 degrees (weak
inclination), and A, ~ 0.2287. The behaviour of the value function for the
original system matches very precisely the behaviour of the averaged one. (See
also Figure |§| for a even lower value of ¢.)
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Figure 6: Value function A — 77(\), 7¢ — 0 (original system, ¢ = le — 3).
On this example, a = 11.675 Mm, e¢ = 0.75, w = Q = 0, i = 7 degrees (weak
inclination), and A, ~ 0.2287. The behaviour of the value function for the
original system matches very precisely the behaviour of the averaged one.
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