Y. Amit, M. Fink, N. Srebro, and S. Ullman, Uncovering shared structures in multiclass classification, Proceedings of the 24th international conference on Machine learning, ICML '07, 2007.
DOI : 10.1145/1273496.1273499

URL : http://imls.engr.oregonstate.edu/www/htdocs/proceedings/icml2007/papers/229.pdf

A. Argyriou, T. Evgeniou, and M. Pontil, Convex multi-task feature learning, Machine Learning, vol.8, issue.7, pp.243-272, 2008.
DOI : 10.1137/0905052

URL : http://www.cs.ucl.ac.uk/staff/m.pontil/reading/mtl_feat.pdf

F. Bach, Consistency of trace norm minimization, Journal of Machine Learning Research, vol.9, pp.1019-1048, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00179522

A. Bellet, Y. Liang, A. Garakani, M. Balcan, and F. Sha, A Distributed Frank-Wolfe Algorithm for Communication-Efficient Sparse Learning, 2015.
DOI : 10.1137/1.9781611974010.54

URL : https://hal.archives-ouvertes.fr/hal-01430851

S. Bhojanapalli, B. Neyshabur, and N. Srebro, Global Optimality of Local Search for Low Rank Matrix Recovery, 2016.

R. Bro, E. Acar, and T. Kolda, Resolving the sign ambiguity in the singular value decomposition, Journal of Chemometrics, vol.163, issue.2, pp.135-140, 2008.
DOI : 10.1007/978-3-642-72201-1_25

R. Cabral, D. L. Torre, F. Costeira, J. Bernardino, and A. , Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition, 2013 IEEE International Conference on Computer Vision, 2013.
DOI : 10.1109/ICCV.2013.309

URL : http://humansensing.cs.cmu.edu/projects/nuclear/nuclear.pdf

R. Cabral, F. De-la-torre, J. Costeira, and A. Bernardino, Matrix Completion for Multi-label Image Classification, 2011.
DOI : 10.1109/tpami.2014.2343234

URL : http://humansensing.cs.cmu.edu/papers/complete_14.pdf

J. Cai, E. Candès, and Z. Shen, A Singular Value Thresholding Algorithm for Matrix Completion, SIAM Journal on Optimization, vol.20, issue.4, pp.1956-1982, 2010.
DOI : 10.1137/080738970

E. Candès and B. Recht, Exact Matrix Completion via Convex Optimization, Foundations of Computational Mathematics, vol.170, issue.1, pp.717-772, 2009.
DOI : 10.1017/CBO9780511814068

E. Candès and T. Tao, The Power of Convex Relaxation: Near-Optimal Matrix Completion, IEEE Transactions on Information Theory, vol.56, issue.5, pp.2053-2080, 2010.
DOI : 10.1109/TIT.2010.2044061

E. Candes, Y. Eldar, T. Strohmer, and V. Voroninski, Phase Retrieval via Matrix Completion, SIAM Review, vol.57, issue.2, pp.225-251, 2015.
DOI : 10.1137/151005099

R. Caruana, Multitask Learning, Machine Learning, vol.28, issue.1, pp.41-75, 1997.
DOI : 10.1007/978-1-4615-5529-2_5

K. Clarkson, Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm, ACM Transactions on Algorithms, vol.6, issue.4, p.63, 2010.
DOI : 10.1145/1824777.1824783

URL : http://www.almaden.ibm.com/cs/people/kclarkson/sga/p.pdf

J. Dean and S. Ghemawat, MapReduce, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.
DOI : 10.14293/S2199-1006.1.SOR-UNCAT.AUNHT8.v1.RBZFIB

J. Deng, W. Dong, R. Socher, L. Li, K. Li et al., ImageNet: A large-scale hierarchical image database, 2009.

M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Research Logistics Quarterly, vol.3, issue.1-2, pp.95-110, 1956.
DOI : 10.2140/pjm.1955.5.183

R. Freund and P. Grigas, New analysis and results for the Frank???Wolfe method, Mathematical Programming, vol.120, issue.1, pp.199-230, 2016.
DOI : 10.1007/s10107-007-0149-x

D. Garber and E. Hazan, Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets, 2015.

A. Goldberg, B. Recht, J. Xu, R. Nowak, and X. Zhu, Transduction with matrix completion: Three birds with one stone, 2010.

D. Gross, Recovering Low-Rank Matrices From Few Coefficients in Any Basis, IEEE Transactions on Information Theory, vol.57, issue.3, pp.1548-1566, 2011.
DOI : 10.1109/TIT.2011.2104999

URL : http://arxiv.org/pdf/0910.1879

D. Gross, Y. Liu, S. Flammia, S. Becker, and J. Eisert, Quantum State Tomography via Compressed Sensing, Physical Review Letters, vol.105, issue.15, p.150401, 2010.
DOI : 10.1063/1.2716992

Z. Harchaoui, M. Douze, M. Paulin, M. Dudik, and J. Malick, Large-scale image classification with trace-norm regularization, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6248078

URL : https://hal.archives-ouvertes.fr/hal-00728388

Z. Harchaoui, A. Juditsky, and A. Nemirovski, Conditional gradient algorithms for norm-regularized smooth convex optimization, Mathematical Programming, vol.82, issue.281, pp.75-112, 2015.
DOI : 10.1090/S0025-5718-2012-02598-1

URL : https://hal.archives-ouvertes.fr/hal-00978368

E. Hazan, Sparse Approximate Solutions to Semidefinite Programs, Latin American Symposium on Theoretical Informatics, 2008.
DOI : 10.1007/978-3-540-78773-0_27

URL : http://www.cs.princeton.edu/~ehazan/papers/SparseSDP.pdf

E. Hazan and S. Kale, Projection-free Online Learning, 2012.

E. Hazan and H. Luo, Variance-Reduced and Projection-Free Stochastic Optimization, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/CVPR.2016.90

URL : http://arxiv.org/pdf/1512.03385

M. Jaggi, Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization, 2013.

M. Jaggi and M. Sulovsk, A simple algorithm for nuclear norm regularized problems, 2010.

H. Ji, C. Liu, Z. Shen, and Y. Xu, Robust video denoising using low rank matrix completion, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5539849

URL : http://www.math.nus.edu.sg/~matzuows/vedio_denoising.pdf

V. Koltchinskii, K. Lounici, and A. Tsybakov, Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion, The Annals of Statistics, vol.39, issue.5, pp.2302-2329, 2011.
DOI : 10.1214/11-AOS894

URL : https://hal.archives-ouvertes.fr/hal-00676868

Y. Koren, R. Bell, and C. Volinsky, Matrix Factorization Techniques for Recommender Systems, Computer, vol.42, issue.8, pp.30-37, 2009.
DOI : 10.1109/MC.2009.263

URL : http://research.yahoo.com/files/ieeecomputer.pdf

J. Kuczy´nskikuczy´nski and H. Wo´zniakowskiwo´zniakowski, Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start, SIAM Journal on Matrix Analysis and Applications, vol.13, issue.4, pp.1094-1122, 1992.
DOI : 10.1137/0613066

S. Lacoste-julien and M. Jaggi, On the Global Linear Convergence of Frank-Wolfe Optimization Variants, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01248675

S. Lacoste-julien, M. Jaggi, M. Schmidt, and P. Pletscher, Block-Coordinate Frank-Wolfe Optimization for Structural SVMs, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00720158

G. Lan and Y. Zhou, Conditional Gradient Sliding for Convex Optimization, SIAM Journal on Optimization, vol.26, issue.2, pp.1379-1409, 2016.
DOI : 10.1137/140992382

Z. Liu and I. Tsang, Approximate Conditional Gradient Descent on Multi-Class Classification, 2017.

S. Ma, D. Goldfarb, and L. Chen, Fixed point and Bregman iterative methods for matrix rank minimization, Mathematical Programming, vol.1, issue.1, pp.321-353, 2011.
DOI : 10.1137/070703983

A. Moharrer and S. Ioannidis, Distributing Frank-Wolfe via Map-Reduce, 2017 IEEE International Conference on Data Mining (ICDM), p.ICDM, 2017.
DOI : 10.1109/ICDM.2017.41

N. Parikh and S. Boyd, Proximal Algorithms, Foundations and Trends?? in Optimization, vol.1, issue.3, pp.123-231, 2013.
DOI : 10.1561/2400000003

URL : http://www.nowpublishers.com/article/DownloadSummary/OPT-003

T. Pong, P. Tseng, J. S. Ye, and J. , Trace Norm Regularization: Reformulations, Algorithms, and Multi-Task Learning, SIAM Journal on Optimization, vol.20, issue.6, pp.3465-3489, 2010.
DOI : 10.1137/090763184

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh et al., ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, vol.1010, issue.1, pp.211-252, 2015.
DOI : 10.1007/978-3-642-15555-0_11

URL : http://dspace.mit.edu/bitstream/1721.1/104944/1/11263_2015_Article_816.pdf

J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization methods and software, pp.625-653, 1999.
DOI : 10.1080/10556789908805766

URL : http://www.unimaas.nl/~sturm/papers/guide.ps.gz

K. Toh, M. Todd, and R. Tütüncü, SDPT3?a MATLAB software package for semidefinite programming , version 1.3. Optimization methods and software, pp.545-581, 1999.
DOI : 10.1080/10556789908805762

N. Tran, T. Peel, and S. Skhiri, Distributed frank-wolfe under pipelined stale synchronous parallelism, 2015 IEEE International Conference on Big Data (Big Data), 2015.
DOI : 10.1109/BigData.2015.7363755

H. Wai, J. Lafond, A. Scaglione, and E. Moulines, Decentralized Frank???Wolfe Algorithm for Convex and Nonconvex Problems, IEEE Transactions on Automatic Control, vol.62, issue.11, pp.5522-5537, 2017.
DOI : 10.1109/TAC.2017.2685559

URL : https://hal.archives-ouvertes.fr/hal-01668247

Y. Wang, V. Sadhanala, W. Dai, W. Neiswanger, S. Sra et al., Parallel and distributed blockcoordinate Frank-Wolfe algorithms, 2016.

M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica, Spark: Cluster Computing with Working Sets, 2010.