M. Long, W. Ong, and J. Reed, Computational methods in metabolic engineering for strain design, Current Opinion in Biotechnology, vol.34, pp.135-176, 2015.
DOI : 10.1016/j.copbio.2014.12.019

D. Machado and M. Herrgård, Co-evolution of strain design methods based on flux balance and elementary mode analysis, Metabolic Engineering Communications, vol.2, pp.85-92, 2015.
DOI : 10.1016/j.meteno.2015.04.001

E. Simeonidis and N. Price, Genome-scale modeling for metabolic engineering, Journal of Industrial Microbiology & Biotechnology, vol.26, issue.24, pp.327-3810, 2015.
DOI : 10.1093/bioinformatics/btq602

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455951/pdf

S. Becker, A. Feist, M. Mo, G. Hannum, B. Palsson et al., Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox, Nature Protocols, vol.14, issue.3, pp.727-765, 2007.
DOI : 10.1038/nprot.2007.99

J. Schellenberger, R. Que, R. Fleming, I. Thiele, J. Orth et al., Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0, Nature Protocols, vol.249, issue.9, pp.1290-307, 2011.
DOI : 10.1165/rcmb.2007-0306OC

J. Orth, I. Thiele, and B. Palsson, What is flux balance analysis?, Nature Biotechnology, vol.19, issue.3, pp.245-253, 2010.
DOI : 10.1038/nrmicro1949

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108565/pdf

D. Khan and H. Westerhoff, Control theory of regulatory cascades, Journal of Theoretical Biology, vol.153, issue.2, pp.255-85, 1991.
DOI : 10.1016/S0022-5193(05)80426-6

L. Wang, I. Birol, and V. Hatzimanikatis, Metabolic Control Analysis under Uncertainty: Framework Development and Case Studies, Biophysical Journal, vol.87, issue.6, pp.3750-63, 2004.
DOI : 10.1529/biophysj.104.048090

URL : https://doi.org/10.1529/biophysj.104.048090

A. Burgard, P. Pharkya, and C. Maranas, Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization, Biotechnology and Bioengineering, vol.18, issue.6, pp.647-57, 2003.
DOI : 10.1002/bit.10803

A. Chowdhury, A. Zomorrodi, and C. Maranas, Bilevel optimization techniques in computational strain design, Computers & Chemical Engineering, vol.72, pp.363-72, 2014.
DOI : 10.1016/j.compchemeng.2014.06.007

URL : https://doi.org/10.1016/j.compchemeng.2014.06.007

P. Pharkya and C. Maranas, An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems, Metabolic Engineering, vol.8, issue.1, 2006.
DOI : 10.1016/j.ymben.2005.08.003

N. Tepper and T. Shlomi, Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways, Bioinformatics, vol.26, issue.4, pp.536-579, 2009.
DOI : 10.1093/bioinformatics/btp704

URL : https://academic.oup.com/bioinformatics/article-pdf/26/4/536/672867/btp704.pdf

D. Segrè, D. Vitkup, and G. Church, Analysis of optimality in natural and perturbed metabolic networks, Proceedings of the National Academy of Sciences, vol.69, issue.6, pp.15112-15119, 2002.
DOI : 10.1002/1097-0290(20000920)69:6<664::AID-BIT11>3.0.CO;2-H

K. Patil, I. Rocha, J. Förster, and J. Nielsen, Evolutionary programming as a platform for in silico metabolic engineering, BMC Bioinformatics, vol.6, issue.1, pp.308-318, 2005.
DOI : 10.1186/1471-2105-6-308

I. Rocha, P. Maia, P. Evangelista, P. Vilaça, S. Soares et al., OptFlux: an open-source software platform for in silico metabolic engineering, BMC Systems Biology, vol.4, issue.1, pp.45-55, 2010.
DOI : 10.1186/1752-0509-4-45

URL : https://bmcsystbiol.biomedcentral.com/track/pdf/10.1186/1752-0509-4-45?site=bmcsystbiol.biomedcentral.com

N. Stanford, P. Millard, and N. Swainston, RobOKoD: microbial strain design for (over)production of target compounds, Frontiers in Cell and Developmental Biology, vol.98, 2015.
DOI : 10.1007/s00253-014-6004-0

URL : https://hal.archives-ouvertes.fr/hal-01269218

J. Koziol, Comments on the rank product method for analyzing replicated experiments. {FEBS} Letters, pp.941-945, 2010.

R. Eisinga, R. Breitling, and T. Heskes, The exact probability distribution of the rank product statistics for replicated experiments, FEBS Letters, vol.19, issue.6, pp.677-82, 2013.
DOI : 10.1093/bioinformatics/19.2.185

J. Caldas and S. Vinga, Global Meta-Analysis of Transcriptomics Studies, PLoS ONE, vol.18, issue.2, 2014.
DOI : 10.1371/journal.pone.0089318.s002

T. Heskes, R. Eisinga, and R. Breitling, A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments, Bmc Bioinformatics, vol.15, pp.12859-12873, 2014.

J. Storey, A direct approach to false discovery rates, Times Cited:2602 Cited References Count, pp.479-9810, 2002.
DOI : 10.1007/978-1-4899-4541-9

URL : http://genomine.org/papers/directfdr.pdf

A. Chowdhury, A. Zomorrodi, and C. Maranas, k-OptForce: Integrating Kinetics with Flux Balance Analysis for Strain Design, PLoS Computational Biology, vol.4, issue.2, 2014.
DOI : 10.1371/journal.pcbi.1003487.s001

URL : http://doi.org/10.1371/journal.pcbi.1003487

T. Shlomi, O. Berkman, and E. Ruppin, Regulatory on/off minimization of metabolic flux changes after genetic perturbations, Proceedings of the National Academy of Sciences, vol.235, issue.1, pp.7695-700, 2005.
DOI : 10.1111/j.1574-6968.2004.tb09562.x

R. Breitling, P. Armengaud, A. Amtmann, and P. Herzyk, Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments, FEBS Letters, vol.5, issue.1-3, pp.83-92, 2004.
DOI : 10.1186/1471-2105-5-34

D. Critchlow, Metric Methods for Analyzing Partially Ranked Data Lecture notes in statistics, cm. Bibliography: p. [210]-213. Includes index. Lecture notes in statistics, pp.216-85025044, 1985.

P. Diaconis, A Generalization of Spectral Analysis with Application to Ranked Data, doi:10.1214/Aos/1176347251 Av321 Times Cited:73 Cited References Count, pp.949-7966, 1989.
DOI : 10.1214/aos/1176347251

N. Tepper and T. Shlomi, Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways, Bioinformatics, vol.26, issue.4, pp.536-579, 2009.
DOI : 10.1093/bioinformatics/btp704

URL : https://academic.oup.com/bioinformatics/article-pdf/26/4/536/672867/btp704.pdf

V. Wendisch, J. Jorge, F. Pérez-garcía, and E. Sgobba, Updates on industrial production of amino acids using Corynebacterium glutamicum, World Journal of Microbiology and Biotechnology, vol.4, issue.1, pp.105-115, 2016.
DOI : 10.1021/sb500332c

M. Cavia-saiz, M. Busto, M. Pilar-izquierdo, N. Ortega, M. Perez-mateos et al., Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study, Journal of the Science of Food and Agriculture, vol.1675, issue.7, pp.1238-1282, 2010.
DOI : 10.1016/j.bbagen.2004.08.011

A. Jagetia, G. Jagetia, and S. Jha, Naringin, a grapefruit flavanone, protects V79 cells against the bleomycin-induced genotoxicity and decline in survival, Journal of Applied Toxicology, vol.16, issue.5, pp.122-154, 2007.
DOI : 10.4161/cbt.83

N. Kallscheuer, M. Vogt, A. Stenzel, J. Gätgens, M. Bott et al., Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2 S )-flavanones, Metabolic Engineering, vol.38, pp.47-55, 2016.
DOI : 10.1016/j.ymben.2016.06.003

E. Zelle, K. Nöh, and W. Wiechert, Growth and Production Capabilities of Corynebacterium glutamicum: Interrogating a Genome-scale Metabolic Network Model, Chap, vol.4, pp.39-56, 2015.
DOI : 10.21775/9781910190050.04

K. Kjeldsen and J. Nielsen, metabolic network, Biotechnology and Bioengineering, vol.68, issue.2, pp.583-97, 2009.
DOI : 10.1099/00221287-147-5-1365

Z. Fowler, W. Gikandi, and M. Koffas, Increased Malonyl Coenzyme A Biosynthesis by Tuning the Escherichia coli Metabolic Network and Its Application to Flavanone Production, Applied and Environmental Microbiology, vol.75, issue.18, pp.5831-5840, 2009.
DOI : 10.1128/AEM.00270-09