A. N. Borodin and P. Salminen, Handbook of Brownian motion-facts and formulae. Probability and its Applications, 1996.

A. Budhiraja, F. , and W. , Uniform in time interacting particle approximations for nonlinear equations of Patlak-Keller-Segel type, Electron. J. Probab, vol.22, issue.8, p.37, 2017.

P. Cattiaux, P. , and L. , The 2-D stochastic Keller-Segel particle model: existence and uniqueness. ALEA Lat, Am. J. Probab. Math. Stat, vol.13, pp.447-463, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01263156

L. Corrias, M. Escobedo, and J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane, J. Differential Equations, vol.257, pp.1840-1878, 2014.

N. Fournier, J. , and B. , Stochastic particle approximation of the Keller-Segel equation and two-dimensional generalization of Bessel processes, Ann. Appl. Probab, vol.27, pp.2807-2861, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01171481

J. Ha?kovec and C. Schmeiser, Convergence of a stochastic particle approximation for measure solutions of the 2D Keller-Segel system, Comm. Partial Differential Equations, vol.36, pp.940-960, 2011.

D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol.840, 1981.
DOI : 10.1007/bfb0089647

T. Hillen, P. , and A. , The one-dimensional chemotaxis model: global existence and asymptotic profile, Math. Methods Appl. Sci, vol.27, pp.1783-1801, 2004.
DOI : 10.1002/mma.569

J. Jabir, D. Talay, and M. Toma?evi´toma?evi´c, Mean-field limit of a particle approximation of the one-dimensional parabolic-parabolic Keller-Segel model without smoothing, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01668926

I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol.113, 1991.

A. Makhlouf, Representation and Gaussian bounds for the density of Brownian motion with random drift, Commun. Stoch. Anal, vol.10, pp.151-162, 2016.

K. Osaki, Y. , and A. , Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac, vol.44, pp.441-469, 2001.

B. Perthame, PDE models for chemotactic movements: parabolic, hyperbolic and kinetic, Appl. Math, vol.49, pp.539-564, 2004.
DOI : 10.1007/s10492-004-6431-9

URL : http://calvino.polito.it/%7Emcrtn/PUBLICATIONS_files/FranceN/chemo_survey.pdf

Z. Qian and W. Zheng, Sharp bounds for transition probability densities of a class of diffusions, C. R. Math. Acad. Sci. Paris, vol.335, pp.953-957, 2002.

M. Toma?evi´toma?evi´c,

A. Y. Veretennikov, Parabolic equations and itô's stochastic equations with coefficients discontinuous in the time variable, Mathematical notes of the Academy of Sciences of the USSR, vol.31, pp.278-283, 1982.