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Abstract. An elastic-degenerate string is a sequence of n sets of strings
of total length N . It has been introduced to represent a multiple alignment
of several closely-related sequences (e.g. pan-genome) compactly. In this
representation, substrings of these sequences that match exactly are
collapsed, while in positions where the sequences differ, all possible
variants observed at that location are listed. The natural problem that
arises is finding all matches of a deterministic pattern of length m in an
elastic-degenerate text. There exists an O(nm2 + N)-time algorithm to
solve this problem on-line after a pre-processing stage with time and space
O(m). In this paper, we study the same problem under the edit distance
model and present an O(k2mG + kN)-time and O(m)-space algorithm,
where G is the total number of strings in the elastic-degenerate text
and k is the maximum edit distance allowed. We also present a simple
O(kmG + kN)-time and O(m)-space algorithm for Hamming distance.

Keywords: uncertain strings, elastic-degenerate strings, degenerate strings,
pan-genome, pattern matching

1 Introduction

There is a growing interest in the notion of pan-genome [20]. In the last ten
years, with faster and cheaper sequencing technologies, re-sequencing (that is,
sequencing the genome of yet another individual of a species) became more and
more a common task in modern genome analysis workflows. By now, a huge
amount of genomic variations within the same population has been detected (e.g.
in humans for medical applications, but not only), and this is only the beginning.
With this, new challenges of functional annotation and comparative analysis
have been raised. Traditionally, a single annotated reference genome is used as
a control sequence. The reference genome is a representative example of the
genomic sequence of a species. It serves as a reference text to which, for example,
fragments of newly sequenced genomes of individuals are mapped. Although a
single reference genome provides a good approximation of any individual genome,
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in loci with polymorphic variations, mapping and comparisons easily fail their
purposes. This is where a multiple genome, i.e. a pan-genome, would be a better
reference text [10].

In the literature, many different (compressed) representations and thus algo-
rithms have been considered for pattern matching on a set of similar texts [4, 5,
16, 21, 6, 3, 12]. A natural representation of pan-genomes, or fragments of them,
that we consider here are elastic-degenerate texts [11]. An elastic-degenerate
text is a sequence which compactly represents a multiple alignment of several
closely-related sequences. In this representation, substrings that match exactly
are collapsed, while in positions where the sequences differ (by means of substi-
tutions, insertions, and deletions of substrings), all possible variants observed at
that location are listed. Elastic-degenerate texts correspond to the Variant Call
Format (VCF), that is, the standard for storing gene sequence variations [19].

Consider, for example, the following multiple sequence alignment of three
closely-related sequences:

GAAAGTGAGCA

GAGACAAA-CA

G--A-ACAGCA

These sequences can be compacted into the single elastic-degenerate string:

T̃ = {G} ·


AA

AG

ε

 · {A} ·


GTG

CAA

AC

 · {A} ·
{
G

ε

}
· {CA}.

The total number of segments is the length of T̃ and the total number of letters
is the size of T̃ . The natural problem that arises is finding all matches of a
deterministic pattern P in text T̃ . We call this the Elastic-Degenerate
String Matching (EDSM) problem. The simplest version of this problem
assumes that a degenerate (sometimes called indeterminate) segment can contain
only single letters [9].

Due to the application of cataloguing human genetic variation [19], there has
been ample work in the literature on the off-line (indexing) version of the pattern
matching problem [10, 17, 14, 18, 15]. The on-line, more fundamental, version
of the EDSM problem has not been studied as much as indexing approaches.
Solutions to the on-line version can be beneficial for a number of reasons: (a)
efficient on-line solutions can be used in combination with partial indexes as
practical trade-offs; (b) efficient on-line solutions for exact pattern matching
can be applied for fast average-case approximate pattern matching similar to
standard strings [2]; (c) on-line solutions can be useful when one wants to search
for a few patterns in many degenerate texts similar to standard strings [1].

Previous Results. Let us denote by m the length of pattern P , by n the
length of T̃ , and by N > m the size of T̃ . A few results exist on the (exact)
EDSM problem. In [11], an algorithm for solving the EDSM problem in time
O(αγmn+N) and space O(N) was presented; where α and γ are parameters,
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respectively representing the maximum number of strings in any degenerate
segment of the text and the maximum number of degenerate segments spanned
by any occurrence of the pattern in the text. In [7], two new algorithms to solve
the same problem in an on-line manner1 were presented: the first one requires
time O(nm2 +N) after a pre-processing stage with time and space O(m); the
second requires time O(N · dmw e) after a pre-processing stage with time and space
O(m · dmw e), where w is the size of the computer word in the RAM model.

Our Contribution. Since genomic sequences are endowed with polymor-
phisms and sequencing errors, the existence of an exact match can result into
a strong assumption. The aim of this work is to generalize the studies of [11]
and [7] for the exact case, allowing some approximation in the occurrences of the
input pattern. We suggest a simple on-line O(kmG+ kN)-time and O(m)-space
algorithm, G being the total number of strings in T̃ and k > 0 the maximum
number of allowed substitutions in a pattern’s occurrence, that is nonzero Ham-
ming distance. Our main contribution is an on-line O(k2mG + kN)-time and
O(m)-space algorithm where the type of edit operations allowed is extended to
insertions and deletions as well, that is nonzero edit distance. These results are
good in the sense that for small values of k the algorithms incur (essentially) no
increase in time complexity with respect to the O(nm2+N)-time and O(m)-space
algorithm presented in [7].

Structure of the Paper. Section 2 provides some preliminary definitions
and facts as well as the formal statements of the problems we address. Section 3
describes our solution under the edit distance model, while Section 4 describes
the algorithm under the Hamming distance model.

2 Preliminaries

An alphabet Σ is a non-empty finite set of letters of size |Σ|. We consider the
case of a constant-sized alphabet, i.e. |Σ| = O(1). A string S on an alphabet Σ
is a sequence of elements of Σ. The set of all strings on an alphabet Σ, including
the empty string ε of length 0, is denoted by Σ∗. For any string S, we denote by
S[i . . . j] the substring of S that starts at position i and ends at position j. In
particular, S[0 . . . j] is the prefix of S that ends at position j, and S[i . . . |S| − 1]
is the suffix of S that begins at position i, where |S| denotes the length of S.

Definition 1 ([7]). An elastic-degenerate (ED) string T̃ = T̃ [0]T̃ [1] . . . T̃ [n− 1]
of length n on alphabet Σ, is a finite sequence of n degenerate letters. Every
degenerate letter T̃ [i] is a finite non-empty set of strings T̃ [i][j] ∈ Σ∗, with
0 ≤ j < |T̃ [i]|. The size N of T̃ is defined as

N =

n−1∑
i=0

|T̃ [i]|−1∑
j=0

|T̃ [i][j]|

assuming (for representation purposes only) that |ε|=1.
1 On-line refers to the fact that the algorithm reads the elastic-degenerate text set-by-set

in a serial manner.
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Definition 2. The total number of strings in T̃ is defined as G =
∑n−1

i=0 |T̃ [i]|.

Notice that n ≤ G ≤ N . A deterministic string is simply a string in Σ∗. The
Hamming distance is defined between two deterministic strings of equal length
as the number of positions at which the two strings have different letters. The
edit distance between two deterministic strings is defined as the minimum total
cost of a sequence of edit operations (that is, substitution, insertion, or deletion
of a letter) required to transform one string into the other. Here we only count
the number of edit operations, considering the cost of each to be 1. In [7] the
authors give a definition of a match between a deterministic string P and an ED
text T̃ ; here we extend their definition to deal with errors.

Definition 3. Given an integer k > 0, we say that a string P ∈ Σm kH -matches
(resp. kE-matches) an ED string T̃ = T̃ [0]T̃ [1] . . . T̃ [n− 1] of length n > 1 if all
of the following hold:

– there exists a non-empty suffix X of some string S ∈ T̃ [0];

– if n > 2, there exist strings Y1 ∈ T̃ [1],. . . ,Yt ∈ T̃ [t], for 1 ≤ t ≤ n− 2;

– there exists a non-empty prefix Z of some string S ∈ T̃ [n− 1];

– the Hamming (resp. edit) distance between P and XY1 . . . YtZ (note that
Y1 . . . Yt can be equal to ε) is no more than k.

We say that P has a kH-occurrence (resp. kE-) ending at position j in an ED
string T̃ of length n if either there exists a kH -match (resp. kE-) between P and
T̃ [i . . . j] for some 0 ≤ i < j ≤ n− 1 or P is at Hamming (resp. edit) distance of
at most k from a substring of some string S ∈ T̃ [j].

Example 4. (Running example) Consider P = GAACAA of length m = 6. The
following ED string has n = 7, N = 20, and G = 12. An 1H -occurrence is
underlined, and an 1E-occurrences is overlined.

T̃ = {G} ·


AA

AG

ε

 · {A} ·


GTG

CAA

AC

 · {A} ·
{
G

ε

}
· {CA}

A suffix tree STX for a string X of length m is a tree data structure where
edge-labels of paths from the root to the (terminal) node labelled i spell out
suffix X[i . . .m− 1] of X. STX can be built in time and space O(m). The suffix
tree can be generalized to represent the suffixes of a set of strings {X1, . . . , Xn}
(denoted by GSTX1,...,Xn

) with time and space costs still linear in the length of
the input strings (see [8], for details).

Given two strings X and Y and a pair (i, j), with 0 ≤ i ≤ |X| − 1 and
0 ≤ j ≤ |Y | − 1, the longest common extension at (i, j), denoted by lceX,Y (i, j),
is the length of the longest substring of X starting at position i that matches a
substring of Y starting at position j. For instance, for X = CGCGT and Y = ACG,
we have that lceX,Y (2, 1) = 2, corresponding to the substring CG.
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Fact 1 ([8]) Given a string X and its STX , and a set of strings W = {Y1, . . . , Yl},
it is possible to build the generalized suffix tree GSTX,W extending STX , in time

O(
∑l

h=1 |Yh|). Moreover, given two strings X and Y of total length q, for each
index pair (i, j), lceX,Y (i,j) queries can be computed in constant time per query,
after a pre-processing of GSTX,Y that takes time and space O(q).

We will denote by GST ∗X,Y such a pre-processed tree for answering lce queries.
The time is ripe now to formally introduce the two problems considered here.

[kE-EDSM] Elastic-Degenerate String Matching with Edit Distance:

Input: A deterministic pattern P of length m, an elastic-degenerate text T̃ of
length n and size N ≥ m, and an integer 0 < k < m.

Output: Pairs (i, d), i being a position in T̃ where at least one kE-occurrence of
P ends and d ≤ k being the minimal number of errors (insertions, deletions
and substitutions) for occurrence i.

[kH-EDSM] Elastic-Degenerate String Matching with Hamming Dis-
tance:

Input: A deterministic pattern P of length m, an elastic-degenerate text T̃ of
length n and size N ≥ m, and an integer 0 < k < m.

Output: Pairs (i, d), i being a position in T̃ where at least one kH -occurrence of
P ends and d ≤ k being the minimal number of mismatches for occurrence i.

3 An Algorithm for kE-EDSM

In [7] the exact EDSM problem (that is, for k = 0) was solved in time O(m2n+N).
Allowing up to k substitutions, insertions, and deletions in the occurrences clearly
entails a time-cost increase, but the solution proposed here manages to keep the
time-cost growth limited, solving the kE-EDSM problem in time O(k2mG+ kN),
G being the total number of strings in the ED text. At a high level, the kE-EDSM
algorithm (pseudocode shown below) works as follows.

Pre-processing phase: the suffix tree for the pattern P is built (line 1 in
pseudocode).

Searching phase: in an on-line manner, the text T̃ is scanned from left to right
and, for each T̃ [i]:

(1) It finds the prefixes of P that have a kE-match ending at T̃ [i]; if there exists
an S ∈ T̃ [i] that is long enough, it also searches for kE-occurrences of P that
start and end at position i (lines 6 and 16);

(2) It tries to extend at T̃ [i] a partial kE-occurrence of the pattern which has
started earlier in the ED text (lines 23 and 30);

(3) In both previous cases, if the occurrence of P also ends in T̃ [i], then it
outputs position i; otherwise it stores the prefixes of P extended at T̃ [i] (lines
7-9, 17-19, 24-26, 31-32).
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kE-EDSM(P ,m,T̃ ,n,k)

1 Build STP ;
2 for j = 0 to m− 1 do Vc[j]←∞;
3 Lc ← ∅;
4 Build GST ∗

P,T̃ [0]
;

5 forall S ∈ T̃ [0] do
6 L′ ← ∅; L′ ← kE-borders(P,m, S, |S|, GST ∗

P,T̃ [0]
, k);

7 forall (j, d) ∈ L′ do
8 if j = m− 1 ∧ d < Vc[m− 1] then Vc[m− 1] = d;
9 else insert(Lc,(j, d),Vc);

10 if Vc[m− 1] 6=∞ then report (0, Vc[m− 1]);
11 for i = 1 to n− 1 do
12 Lp ← Lc; Lc ← ∅;
13 Vp ← Vc; for j = 0 to m− 1 do Vc[j]←∞;
14 Build GST ∗

P,T̃ [i]
;

15 forall S ∈ T̃ [i] do
16 L′ ← ∅; L′ ← kE-borders(P,m, S, |S|, GST ∗

P,T̃ [i]
, k);

17 forall (j, d) ∈ L′ do
18 if j = m− 1 ∧ d < Vc[m− 1] then Vc[m− 1] = d;
19 else insert(Lc,(j, d),Vc);

20 if |S| < m then
21 forall p ∈ Lp do
22 L′ ← ∅;
23 L′ ← kE-extend(p+ 1,P ,m,S,|S|,GST ∗

P,T̃ [i]
,k − Vp[p]);

24 forall (j, d) ∈ L′ do
25 if j = m− 1 ∧ d+ Vp[p] < Vc[m− 1] then

Vc[m− 1] = d+ Vp[p];
26 else insert(Lc,(j, d+ Vp[p]), Vc);

27 if |S| ≥ m then
28 forall p ∈ Lp do
29 L′ ← ∅;
30 L′ ← kE-extend(p+ 1,P ,m,S,|S|,GST ∗

P,T̃ [i]
,k − Vp[p]);

31 forall (j, d) ∈ L′ do
32 if j = m− 1 ∧ d+ Vp[p] < Vc[m− 1] then

Vc[m− 1] = d+ Vp[p];

33 if Vc[m− 1] 6=∞ then report (i, Vc[m− 1]);

Step (1) of algorithm kE-EDSM is accomplished using algorithm kE-borders
described in Section 3.1. Step (2) is implemented by algorithm kE-extend
described in Section 3.2.

The following lemma follows directly from Fact 1.
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Lemma 5. Given P of length m and T̃ of length n and size N , building GST ∗
P,T̃ [i]

for all T̃ [i]’s takes total time O(mn+N).

Besides STP (built once as a pre-processing step) and GST ∗
P,T̃ [i]

(built for all

T̃ [i]’s), the algorithm uses the following data structures:

L′ A list re-initialized to ∅ for each S ∈ T̃ [i]: contains pairs (j, d) storing the
rightmost position j of P such that a kE-match of P [0 . . . j] ends at S with
edit distance d. L′ is filled in by kE-borders and kE-extend.

Vc A vector of size |P | re-initialized for each T̃ [i] (c stands for current position)
to Vc[j] = ∞ for all j’s: Vc[j] contains the lowest number of errors for a
partial kE-occurrence of P [0 . . . j]. For each pair (j, d) in L′, if Vc[j] < d then
Vc[j] is updated with d by the function insert. Vc[j] = ∞ denotes that a
partial kE-occurrence of P [0 . . . j] has not yet been found.

Lc A list re-initialized to ∅ for each T̃ [i]: contains the rightmost positions of all
the prefixes of P found ending at T̃ [i]. It is filled in by function insert for
each rightmost position j where Vc[j] turns into a value 6=∞.

Lp A list where at the beginning of each iteration i for T̃ [i], the Lc list for i− 1
is copied. Lp thus stores prefixes of P that ended at the previous position (p
stands for previous position).

Vp Similarly, in Vp the vector Vc of the previous position is copied.

Algorithm kE-EDSM needs to report each position i in T̃ where some kE-
occurrence of P ends with edit distance d, d being the minimal such value for
position i. To this aim, the last position of Vc can be updated with the following
criterion: each time an occurrence of P ending at T̃ [i], (m − 1, d), is found, if
Vc[m− 1] > d then we set Vc[m− 1] = d. After all S ∈ T̃ [i] have been examined,
if Vc[m− 1] 6=∞, the algorithm outputs the pair (i, Vc[m− 1]).

3.1 Algorithm kE-borders

For each i and for each S ∈ T̃ [i], Step (1) of the algorithm needs to find all
prefixes of P that are at distance at most k from a suffix of some S ∈ T̃ [i], as well
as kE-occurrences of P that start and end at position i if S is long enough. To
this end, we use and modify the Landau-Vishkin algorithm [13]. We first recall
some relevant definitions from [8] concerning the dynamic programming table.

Given an m by q dynamic programming table (m rows, q columns), the main
diagonal consists of cells (h, h) for 0 ≤ h ≤ min {m− 1, q − 1}. The diagonals
above the main diagonal are numbered 1 through (q− 1); the diagonal starting in
cell (0, h) is diagonal h. The diagonals below the main diagonal are numbered −1
through −(m− 1); the diagonal starting in cell (h, 0) is diagonal −h. A d-path
in the dynamic programming table is a path that starts in row zero and specifies
a total of exactly d errors (insertions, deletions and substitutions). A d-path is
farthest reaching in diagonal h if it is a d-path that ends in diagonal h, and
the index of its ending column c is ≥ to the ending column of any other d-path
ending in diagonal h.
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Algorithm kE-borders takes as input a pattern P of length m, a string
S ∈ T̃ [i] of length q, the GST ∗

P,T̃ [i]
and the upper bound k for edit distance; it

outputs pairs (j, d), where j is the rightmost position of the prefix of P that is
at distance d from a suffix of S, with the minimal value of d reported for each j.
In order to fulfill this task, at a high level, the algorithm executes the following
steps on a table having P at the rows and S at the columns:

(1a) For each diagonal 0 ≤ h ≤ q − 1 it finds lceP,S(0, h). This specifies the end
column of the farthest reaching 0-path on each diagonal from 0 to q − 1.

(1b) For each 1 ≤ d ≤ k, it finds the farthest reaching d-path on diagonal h,
for each −d ≤ h ≤ q − 1. This path is found from the farthest reaching
(d− 1)-paths on diagonals (h− 1), h and (h+ 1).

(1c) If a d-path reaches the last row of the dynamic programming table, then a
kE-occurrence of P with edit distance d that starts and ends at position i
has been found, and the algorithm reports (m− 1, d); if a d-path reaches the
end of S in row r, then the prefix of P ending at P [r] is at distance d from a
suffix of S, and the algorithm reports (r, d).

In Step (1b), the farthest reaching d-path on diagonal h can be found by
computing and comparing the following three particular paths that end on
diagonal h:

R1: Consists of the farthest reaching (d− 1)-path on diagonal h+ 1, followed
by a vertical edge to diagonal h, and then by the maximal extension along
diagonal h that corresponds to identical substrings. Function R1 takes as
input the length |X| of a string X, whose letters spell the rows of the dynamic
table, the length |Y | of a string Y , whose letters spell the columns, GST ∗X,Y

and the pair row-column (r, c) where the farthest reaching (d− 1)-path on
diagonal h+ 1 ends. It outputs pair (r1, c1) where path R1 ends. This path
represents a letter insertion in X.

R2: Consists of the dual case of R1 with a horizontal edge representing a letter
deletion in X.

R3: Consists of the farthest reaching (d− 1)-path on diagonal h followed by a
diagonal edge, and then by the maximal extension along diagonal h that
corresponds to identical substrings. Function R3 takes as input the length
|X| of a string X, whose letters spell the rows of the dynamic table, the
length |Y | of a string Y , whose letters spell the columns, GST ∗X,Y and the
pair row-column (r, c) where the farthest reaching (d− 1)-path on diagonal
h ends. It outputs pair (r3, c3) where path R3 ends. This path represents a
letter substitution.

Fact 2 ([8]) The farthest reaching path on diagonal h is the path among R1, R2

or R3 that extends the farthest along diagonal h.

In each one of the iterations in kE-borders, a diagonal is associated with two
variables pFRP and cFRP, storing the column reached by the farthest reaching
path (FRP) in the previous and in the current iteration, respectively.
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INSERT(L,(j, d),V )

1 if V [j] > d then
2 if V [j] =∞ then Insert j in L;
3 V [j]← d;

R1(|X|, |Y |, GST ∗X,Y , r, c)

1 if −1 ≤ r ≤ |X| − 1 ∧ −1 ≤ c ≤
|Y | − 1 then

2 l← lceX,Y (r + 2, c + 1);
3 c1 ← c + l;
4 r1 ← r + 1 + l;
5 return (r1, c1)

6 else return (r, c);

R2(|X|, |Y |, GST ∗X,Y , r, c)

1 if −1 ≤ r ≤ |X| − 1 ∧ −1 ≤ c ≤
|Y | − 1 then

2 l← lceX,Y (r + 1, c + 2);
3 c2 ← c + 1 + l;
4 r2 ← r + l;
5 return (r2, c2)

6 else return (r, c);

R3(|X|, |Y |, GST ∗X,Y , r, c)

1 if −1 ≤ r ≤ |X| − 1 ∧ −1 ≤ c ≤
|Y | − 1 then

2 l← lceX,Y (r + 2, c + 2);
3 c3 ← c + 1 + l;
4 r3 ← r + 1 + l;
5 return (r3, c3)

6 else return (r, c);

In algorithm kE-borders, at most k + q diagonals need to be taken into
account: the algorithm first finds the lce’s between P [0] and S[j], for all 0 ≤ j ≤
q−1, and hence it initializes q diagonals; after this, for each successive step (there
are at most k of them), it widens to the left one diagonal at a time, because an
initial deletion can be added; therefore, it will consider at most k + q diagonals.

Lemma 6. Given P of length m, T̃ of length n and size N , the GST ∗
P,T̃ [i]

, for all

i ∈ [0, n− 1], and an integer 0 < k < m, kE-borders finds all prefixes of P that
are at edit distance at most k from suffixes of S ∈ T̃ [i] and the kE-occurrences
of P that start and end at position i, in time O(k2G+ kN), G being the total
number of strings in T̃ .

Proof. For a string S ∈ T̃ [i], for each 0 ≤ d ≤ k and each diagonal −k ≤ h ≤
|S| − 1, the kE-borders algorithm must retrieve the end of three (d− 1)-paths
(constant-time operations) and compute the path extension along the diagonal
via a constant-time lce query (Fact 1). It thus takes time O(k2 + k|S|) to find all
prefixes of P that are at distance at most k from suffixes of S; the kE-occurrences
of P that start and end at position i are computed within the same complexity.

The total time is O(k2|T̃ [i]|+ k
∑|T̃ [i]|−1

j=0 |S|), for all S ∈ T̃ [i]. Since the size of

T̃ is N and the total number of strings in T̃ is G, the result follows. ut

3.2 Algorithm kE-extend

In Step (2), algorithm kE-EDSM needs to extend each partial kE-occurrence
that has started earlier in T̃ . That is, at text position T̃ [i], for each p ∈ Lp and
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kE-borders(P,m, S, q,GST ∗
P,T̃ [i]

, k)

1 for h = −(k + 1) to −1 do cFRP(h)← h− 1;
2 for h = 0 to q − 1 do
3 l← lceP,S(0, h);
4 cFRP(h)← l − 1 + h;
5 if l + h = q then report (l − 1, 0);
6 else
7 if l = m then report (m− 1, 0);

8 for d = 1 to k do
9 for h = −d to q − 1 do pFRP(h)← cFRP(h);

10 for h = −d to q − 1 do
11 (r1, c1)← R1(|P |, |S|, GST ∗

P,T̃ [i]
, pFRP(h + 1)− (h + 1), pFRP(h + 1));

12 (r2, c2)← R2(|P |, |S|, GST ∗
P,T̃ [i]

, pFRP(h− 1)− (h− 1), pFRP(h− 1));

13 (r3, c3)← R3(|P |, |S|, GST ∗
P,T̃ [i]

, pFRP(h)− h, pFRP(h));

14 cFRP(h)← max {c1, c2, c3};
15 if max {r1, r2, r3} = m− 1 then report (m− 1, d);
16 if max {c1, c2, c3} = q − 1 then report (q − 1− h, d);

for each string S ∈ T̃ [i], we try to extend P [p+ 1 . . .m− 1] with S. Once again,
we modify the Landau-Vishkin algorithm [13] to our purpose: it suffices to look
for the FRPs starting at the desired position only.

kE-extend takes as input a pattern P of length m, a string S ∈ T̃ [i] of length
q, the GST ∗

P,T̃ [i]
, the upper bound k for edit distance and the position j in P

where the extension should start; it outputs a list of distinct pairs (h, d), where
h is the index of P where the extension ends, and d is the minimum additional
number of errors introduced by the extension. Algorithm kE-extend somehow
performs a task which is the dual of that of kE-borders, as (i) it builds a
q× (m− 1− j) DP table (rather than a m× q table) and (ii) instead of searching
for occurrences of P starting anywhere within S, kE-extend checks whether
the whole S can extend the prefix P [0 . . . j − 1] detected at the previous text
position, and whether a prefix of S matches the suffix of P starting at P [j] (and
hence the whole P has been found). At a high level, the algorithm executes the
following steps:

(2a) It finds lceS,P (0, j) specifying the end column of the farthest reaching
0-path on diagonal 0 (as it builds a DP table for S and P [j . . .m− 1]).

(2b) For each 1 ≤ d ≤ k, it finds the farthest reaching d-path on diagonal h, for
each −d ≤ h ≤ d. This path is found from the farthest reaching (d− 1)-paths
on diagonals (h− 1), h and (h+ 1).

(2c) If a d-path reaches the last row of the dynamic programming table in
column c, then an occurrence of the whole S with edit distance d has been
found, and the algorithm reports (c + j, d), c + j being the position in P
where the occurrence ends; if a d-path reaches the end of P , then a prefix of
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S is at distance d from a suffix of P starting at position j, and the algorithm
reports (m− 1, d).

kE-extend(j, P,m, S, q,GST ∗
P,T̃ [i]

, k)

1 if S = ε then
2 for d = 0 to k do report (j + d, d);
3 else
4 for h = −(k + 1) to k + 1 do cFRP(h)← h− k − 1;
5 l← lceS,P (0, j);
6 cFRP(0)← l − 1;
7 if l = q then report (l + j − 1, 0);
8 for d = 1 to k do
9 for h = −d to d do pFRP(h)← cFRP(h);

10 for h = −d to d do
11 (r1, c1)← R1(|S|,m−1−j,GST ∗

P,T̃ [i]
, pFRP(h+1)−(h+1), pFRP(h+1));

12 (r2, c2)← R2(|S|,m−1−j,GST ∗
P,T̃ [i]

, pFRP(h−1)−(h−1), pFRP(h−1));

13 (r3, c3)← R3(|S|,m− 1− j,GST ∗
P,T̃ [i]

, pFRP(h)− h, pFRP(h));

14 cFRP(h)← max {c1, c2, c3};
15 if max {r1, r2, r3} = q − 1 then report (cFRP(h) + j, d);
16 if max {c1, c2, c3} = m− 1− j then report (m− 1, d);

Lemma 7. Given a prefix of P , a string S ∈ T̃ [i], the GST ∗
P,T̃ [i]

, and an integer

0 < k < m, kE-extend extends the prefix of P with S in time O(k2).

Proof. The kE-extend algorithm does k iterations: at iteration d, for each
diagonal −d ≤ h ≤ d, the end of three paths must be retrieved (constant-time
operations) and the path extension along diagonal h must be computed via
a constant-time lce query (Fact 1). The overall time for the extension is then
bounded by O(1 + 2 + · · ·+ (2k + 1))=O(k2). ut

The following lemma summarizes the time complexity of kE-EDSM.

Lemma 8. Given P of length m, T̃ of length n and total size N , and an integer
0 < k < m, algorithm kE-EDSM solves the kE-EDSM problem, in an on-line
manner, in time O(k2mG+ kN), G being the total number of strings in T̃ .

Proof. At the i-th iteration, algorithm kE-EDSM tries to extend each j ∈ Lp with

each string S ∈ T̃ [i]. By Lemma 5, building GST ∗
P,T̃ [i]

, for all i ∈ [0, n−1], requires

time O(mn+N). By Lemma 7, extending a single prefix with a string S costs time
O(k2); in Lp there are at most |P | = m prefixes; then to extend all of them with
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a single string S requires time O(mk2). In T̃ [i] there are |T̃ [i]| strings, so the time
cost rises to O(|T̃ [i]|mk2) for each T̃ [i], leading to an overall time cost of O(k2mG)
to perform extensions. By Lemma 6, all prefixes of P that are at distance at most
k from suffixes of S and the kE-occurrences of P that start and end at position i
can be found in time O(k2G+ kN); the overall time complexity for the whole
kE-EDSM algorithm is then O(mn+N + k2mG+ k2G+ kN) = O(k2mG+ kN).
The algorithm is on-line in the sense that any occurrence of the pattern ending
at position i is reported before reading T̃ [i+ 1]. ut

Theorem 9. The kE-EDSM problem can be solved on-line in time O(k2mG+
kN) and space O(m).

Proof. In order to obtain the space bound O(m), it is necessary to modify
algorithm kE-EDSM. The proposed method works as follows: each string S ∈ T̃ [i]
is (conceptually) divided into windows of size 2m (except for the last one, whose

length is ≤ m) overlapping by m. Let Wj be the j-th window in S, 1 ≤ j ≤ |S|m .

Instead of building GST ∗
P,T̃ [i]

for each degenerate letter T̃ [i], the algorithm now

builds GST ∗P,Wj
for each 1 ≤ j ≤ |S|m and for each S ∈ T̃ [i]: since the windows are

of size 2m, this can be done in both time and space O(m). Both algorithms kE-
borders and kE-extend require space linear in the size of the string that spell
the columns of the dynamic programming table, that is either P (in extensions)
or a window of size 2m (in borders). Each list (Lc, Lp, L′) and each vector (Vc,
Vp) requires space O(m), so the overall required space is actually O(m).

The time bound is not affected by these modifications of the algorithm: the
maximum number of windows in T̃ [i], in fact, is max {|T̃ [i]|, Ni

m }, where Ni =∑|T̃ [i]|−1
j=0 |T̃ [i][j]|. This means that it takes time O(m|T̃ [i]|) or O(mNi

m ) = O(Ni)

to build and pre-process every suffix tree for T̃ [i]. Algorithm kE-borders re-
quires time O(k2 + km) = O(km) (because k < m) for each window: again,
this must be multiplied by the number of windows in T̃ [i], so the time is
max {O(km|T̃ [i]|),O(kNi))} for T̃ [i]. Coming to algorithm kE-extend, nothing
changes, as prefixes of P can only be extended by prefixes of S, so it suffices to
consider one window for each S: it still requires time O(k2mG) over the whole
ED text. Summing up all these considerations, it is clear that the overall time is

O(

n−1∑
i=0

[max {m|T̃ [i]|, Ni}+ max {km|T̃ [i]|, kNi}] + k2mG) =

= O(

n−1∑
i=0

[max {km|T̃ [i]|, kNi}] + k2mG)

which is clearly bounded by O(k2mG+ kN). ut

4 An Algorithm for kH-EDSM

The overall structure of algorithm kH -EDSM (pseudocode not shown) is the same
as kE-EDSM. The two algorithms differ in the functions used to perform Step
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(1) (kH -borders rather than kE-borders) and Step (2) (kH -extend rather
than kE-extend). The new functions take as input the same parameters as the
old ones and, like them, they both return lists of pairs (j, d) (pseudocode shown
below). Unlike kE-borders and kE-extend, with kH -borders and kH -extend
such pairs now represent (partial) occurrences of P in T̃ with Hamming distance.

kH -borders(P ,m,S,q,GST ∗
P,T̃ [i]

,k)

1 for h = 0 to q − 1 do
2 count← 0;
3 j ← 0;
4 h′ ← h;
5 while count ≤ k do
6 l← lceP,S(j, h′);
7 if h′ + l = q then report (q − h− 1, count) ;
8 else
9 if h′ + l + 1 = q ∧ count + 1 ≤ k then report (q − h, count + 1) ;

10 else
11 if j + l = m then report (m− 1, count) ;
12 else
13 if j + l + 1 = m ∧ count + 1 ≤ k then report

(m− 1, count + 1) ;
14 else
15 count← count + 1;
16 j ← j + l + 1;
17 h′ ← h′ + l + 1;

At the i-th iteration, for all S ∈ T̃ [i] and any position h in S, kH -borders
determines whether a prefix of P is at distance at most k from the suffix of S
starting at position h via executing up to k+1 lce queries in the following manner:
computing l = lceP,S(0, h), it finds out that P [0 . . . l − 1] and S[h . . . h+ l − 1]
match exactly and P [l] 6= S[h+ l]. It can then skip one position in both strings
(the mismatch P [l] 6= S[h+ l]), increasing the error-counter by 1, and compute
the lceP,S(l + 1, h + l + 1). This process is performed up to k + 1 times, until
either (i) the end of S is reached, and then a prefix of P is at distance at most k
from the suffix of S starting at h (lines 7-12 in pseudocode); or (ii) the end of P
is reached, then a kH -occurrence of P has been found (lines 13-17 in pseudocode).
If the end of S nor the end of P are reached, then more than k mismatches are
required, and the algorithm continues with the next position (that is, h+ 1) in S.

The following lemma gives the total cost of all the calls of algorithm kH -
borders in kH -EDSM.

Lemma 10. Given P of length m, T̃ of length n and size N , the GST ∗
P,T̃ [i]

, for

all i ∈ [0, n − 1], and an integer 0 < k < m, kH-borders finds all prefixes of
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kH -extend(j,P ,m,S,q,GST ∗
P,T̃ [i]

,k)

1 if S = ε then report (j, 0);
2 else
3 count← 0;
4 h← 0;
5 j′ ← j;
6 while count ≤ k do
7 l← lceP,S(i′, j);
8 if h + l = q then report (j′ + l − 1, count) ;
9 else

10 if h + l + 1 = q ∧ count + 1 ≤ k then report (j′ + l, count + 1) ;
11 else
12 if j′ + l = m then report (m− 1, count) ;
13 else
14 if j′ + l + 1 = m ∧ count + 1 ≤ k then report

(m− 1, count + 1) ;
15 else
16 count← count + 1;
17 h← h + l + 1;
18 j′ ← j′ + l + 1;

P that are at Hamming distance at most k from suffixes of S ∈ T̃ [i] and the
kH-occurrences of P that start and end at position i, in time O(kN).

Proof. For any position h in S, the kH -borders algorithm finds the prefix of P
that is at distance at most k from the suffix of S starting at position h in time
O(k) by performing up to k + 1 lce queries (Fact 1). Over all positions of S, the
method therefore requires time O(k|S|). Doing this for all S ∈ T̃ [i] and for all
i ∈ [0, n− 1] leads to the result. ut

At the i-th iteration, for each partial kH -occurrence of P started earlier
(represented by j ∈ Lp similar to algorithm kE-EDSM) kH -extend tries to
extend it with a string from the current text position. To this end, for each
string S ∈ T̃ [i], it checks whether some partial occurrence can be extended with
the whole S starting from position j of P , or whether a full kH -occurrence can
be obtained by considering only a prefix of S for the extension. The algorithm
therefore executes up to k + 1 lce queries with the same possible outcomes and
consequences mentioned for kH -borders.

The following lemma gives the total cost of all the calls of algorithm kH -
extend in kH -EDSM.

Lemma 11. Given P of length m, T̃ of length n and size N , the GST ∗
P,T̃ [i]

, for

all i ∈ [0, n− 1], and an integer 0 < k < m, kH-extend finds all the extensions
of prefixes of P required by kH-EDSM in time O(kmG), G being the total number
of strings in T̃ .
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Proof. Algorithm kH -extend determines in time O(k) whether a partial kH -
occurrence of P can be extended by S by performing up to k+1 constant-time lce
queries (Fact 1); checking whether a full kH -occurrence is obtained by considering
only a prefix of S for the extension can be performed within the same complexity.
Since P has m different prefixes, extending all of them costs O(km) per each
string S. Given that there are G such strings, the overall time is O(kmG). ut

Lemma 12. Given P of length m, T̃ of length n and total size N , and an integer
0 < k < m, algorithm kH-EDSM solves the kH-EDSM problem, in an on-line
manner, in time O(kmG+ kN), G being the total number of strings in T̃ .

Proof. At the i-th iteration, algorithm kH -EDSM tries to extend each j ∈ Lp

with each string S ∈ T̃ [i]. By Lemma 5, building GST ∗
P,T̃ [i]

, for all i ∈ [0, n− 1],

requires time O(mn+N). By Lemma 11, extending prefixes of P stored in Lp

with each string S ∈ T̃ [i] has an overall time cost of O(kmG). By Lemma 10,
finding prefixes of P that are at distance at most k from suffixes of S ∈ T̃ [i]
and the kH -occurrences of P that start and end at position i takes time O(kN)
in total. Summing up, the overall time complexity for the whole kH -EDSM
algorithm is then O(mn + N + kmG + kN) = O(kmG + kN), as G ≥ n. The
algorithm is on-line in the sense that any occurrence of the pattern ending at
position i is reported before reading T̃ [i+ 1]. ut

The proof of Theorem 9 suggests a way in which algorithm kE-EDSM can
be run on-line in space O(m); it should be straightforward to see that a similar
modification of algorithm kH -EDSM leads to the following result.

Theorem 13. The kH-EDSM problem can be solved on-line in time O(kmG+
kN) and space O(m).
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