H. Ammari, K. [. Hamdache, A. Burman, M. A. Ern, and . Fernandez, Global existence and regularity of solutions to a system of nonlinear Maxwell's equations Explicit Runge Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems Dispersion and absorption in dielectrics -I Alternating current characteristics, J. Math. Anal. Appl. SIAM J. Numer. Anal. M. König, and J. Niegemann. Discontinuous Galerkin methods in nanophotonics . Laser and Photonics Reviews Journal of Chemical Physics, vol.286, issue.9, pp.51-632019, 1941.

T. Cazenave and A. Haraux, Introduction auxprobì emes d'´ evolution semi-linéaires, Dru00] P. Drude. Zur elektronentheorie der metalle, pp.566-613, 1900.

J. W. Fleming, Material dispersion in lightguide glasses, Electronics Letters, vol.14, issue.11, pp.326-328, 1978.
DOI : 10.1049/el:19780222

L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno, and E. Corthout, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, ESAIM: Mathematical Modelling and Numerical Analysis, vol.11, issue.6, pp.1149-11762231, 1996.
DOI : 10.1007/978-3-642-59721-3_47

URL : https://hal.archives-ouvertes.fr/hal-00210500

B. Gustavsen, S. D. Semlyen-[-gykr12-]-s, J. C. Gedney, T. C. Young, J. A. Kramer et al., Rational approximation of frequency domain responses by vector fitting A discontinuous Galerkin finite element time-domain method modeling of dispersive media Model dispersive media in FDTD method with complex-conjudate pole-residue pairs, Trans. Power Del. IEEE Transactions on Antennas and Propagation Trans. Microw. Wireless Compon. Lett, vol.14, issue.16, pp.1052-10611969, 1999.

F. Hao and P. Nordlander, Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles, Chemical Physics Letters, vol.446, issue.1-3, pp.115-118, 2007.
DOI : 10.1016/j.cplett.2007.08.027

M. Hochbruck, T. [. Pazur, R. W. Johnson, . [. Christy, R. W. Johnson et al., Implicit runge-kutta methods and discontinuous Galerkin discretizations for linear Maxwell's equations Optical constants of the noble metals Optical constants of transition metals Analysis of a time domain finite element method for 3d maxwell's equations in dispersive media Optimization by simulated annealing, SIAM J. Numer. Anal. Physical Review B Physical Review B Comput. Meth. App. Mech. Engng. Science, vol.53, issue.220, pp.485-5074370, 1972.

J. Y. Lu and Y. H. Chang, Implementation of an efficient dielectric function into the finite difference time domain method for simulating the coupling between localized surface plasmons of nanostructures, Superlattices and Microstructures, vol.47, issue.1, pp.60-65, 2009.
DOI : 10.1016/j.spmi.2009.07.017

J. Li, Y. Chen, and V. Elander, Mathematical and numerical study of wave propagation in negative-index materials, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.45-48, pp.3976-3987, 2008.
DOI : 10.1016/j.cma.2008.03.017

J. Li, Error analysis of fully discrete mixed finite element schemes for 3-D Maxwell???s equations in dispersive media, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.33-34, pp.3081-3094, 2007.
DOI : 10.1016/j.cma.2006.12.009

J. [. Li, C. Lanteri, and . Scheid, Numerical convergence and physical fidelity analysis for Maxwell???s equations in metamaterials, Project-team Nachos, pp.3161-3172432, 2009.
DOI : 10.1016/j.cma.2009.05.018

D. Levy and E. Tadmor, From Semidiscrete to Fully Discrete: Stability of Runge--Kutta Schemes by The Energy Method, SIAM Review, vol.40, issue.1, pp.40-73, 1998.
DOI : 10.1137/S0036144597316255

B. Novotny, L. D. Hechtpal98-]-e, ]. Palikpaz83, Z. Pazy, T. Pirzadeh et al., Principles of nano-optics Handbook of Optical Constants of Solids Semigroups of linear operators and applications to partial differential equations Plasmoninterband coupling in Nickel nanoantennas A dgtd method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects, of Applied Mathematical SciencesSSL + 15, pp.158-162, 1948.

A. Vial, T. Laroche, M. Dridi, and L. L. Cunff, A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method, Applied Physics A, vol.6, issue.23, pp.849-853, 2011.
DOI : 10.1103/PhysRevB.6.4370

C. Wolff, R. Rodriguez-oliveros, and K. Busch, Simple magneto???optic transition metal models for time???domain simulations, Optics Express, vol.21, issue.10, pp.12022-12037, 2013.
DOI : 10.1364/OE.21.012022

B. Wang, Z. Xie, and Z. Zhang, Error analysis of a discontinuous Galerkin method for Maxwell equations in dispersive media, Journal of Computational Physics, vol.229, issue.22, pp.8552-8563, 2010.
DOI : 10.1016/j.jcp.2010.07.038