A. Taflove and S. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2005.

S. Pernet, X. Ferriéres, and G. Cohen, High spatial order finite element method to solve Maxwell's equations in time domain, IEEE Transactions on Antennas and Propagation, vol.53, issue.9, pp.2889-2899, 2006.
DOI : 10.1109/TAP.2005.856046

J. Hesthaven and T. Warburton, Nodal High-Order Methods on Unstructured Grids, Journal of Computational Physics, vol.181, issue.1, pp.186-221, 2002.
DOI : 10.1006/jcph.2002.7118

V. Kabakian, V. Shankar, and W. Hall, Unstructured Grid-Based Discontinuous Galerkin Method for Broadband Electromagnetic Simulations, Journal of Scientific Computing, vol.20, issue.3, pp.405-431, 2004.
DOI : 10.1023/B:JOMP.0000025932.17082.18

M. Chen, B. Cockburn, and F. Reitich, High-order RKDG Methods for Computational Electromagnetics, Journal of Scientific Computing, vol.40, issue.1-3, pp.22-23, 2005.
DOI : 10.1109/APS.2002.1017059

URL : http://www.math.umn.edu/~reitich/ChenCockburnReitich04.pdf

B. Cockburn, F. Li, and C. Shu, Locally divergence-free discontinuous Galerkin methods for the Maxwell equations, Journal of Computational Physics, vol.194, issue.2, pp.588-610, 2004.
DOI : 10.1016/j.jcp.2003.09.007

L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, ESAIM: Mathematical Modelling and Numerical Analysis, vol.11, issue.6, pp.1149-1176, 2005.
DOI : 10.1007/978-3-642-59721-3_47

URL : https://hal.archives-ouvertes.fr/hal-00210500

G. Cohen, X. Ferriéres, and S. Pernet, A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell???s equations in time domain, Journal of Computational Physics, vol.217, issue.2, pp.340-363, 2006.
DOI : 10.1016/j.jcp.2006.01.004

S. Dosopoulos and J. Lee, Interconnect and lumped elements modeling in interior penalty discontinuous Galerkin time-domain methods, Journal of Computational Physics, vol.229, issue.22, pp.8521-8536, 2010.
DOI : 10.1016/j.jcp.2010.07.036

S. Dosopoulos and J. Lee, Interior Penalty Discontinuous Galerkin Finite Element Method for the Time-Dependent First Order Maxwell's Equations, IEEE Transactions on Antennas and Propagation, vol.58, issue.12, pp.4085-4090, 2010.
DOI : 10.1109/TAP.2010.2078445

J. Alvarez, L. Angulo, A. Bretones, and S. Garcia, A Spurious-Free Discontinuous Galerkin Time-Domain Method for the Accurate Modeling of Microwave Filters, IEEE Transactions on Microwave Theory and Techniques, vol.60, issue.8, pp.2359-2369, 2012.
DOI : 10.1109/TMTT.2012.2202683

J. Alvarez, L. Angulo, A. Bretones, and S. Garcia, 3-D Discontinuous Galerkin Time-Domain Method for Anisotropic Materials, IEEE Antennas and Wireless Propagation Letters, vol.11, pp.1182-1185, 2012.
DOI : 10.1109/LAWP.2012.2220952

B. Z. Dosopoulos and J. F. Lee, Non-conformal and parallel discontinuous Galerkin time domain method for Maxwell???s equations: EM analysis of IC packages, Journal of Computational Physics, vol.238, issue.1, pp.48-70, 2013.
DOI : 10.1016/j.jcp.2012.11.048

P. Li, L. Jiang, and H. Bagci, Cosimulation of Electromagnetics-Circuit Systems Exploiting DGTD and MNA, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.4, issue.6, pp.1052-1061, 2014.
DOI : 10.1109/TCPMT.2014.2316137

R. Diehl, K. Busch, and J. Niegemann, Comparison of Low-Storage Runge-Kutta Schemes for Discontinuous Galerkin Time-Domain Simulations of Maxwell's Equations, Journal of Computational and Theoretical Nanoscience, vol.7, issue.8, p.1572, 2010.
DOI : 10.1166/jctn.2010.1521

S. G. Hille, R. Kullock, and L. M. Eng, Improving Nano-Optical Simulations Through Curved Elements Implemented within the Discontinuous Galerkin Method Computational, Journal of Computational and Theoretical Nanoscience, vol.7, issue.8, pp.1581-1586, 2010.
DOI : 10.1166/jctn.2010.1522

M. König, K. Busch, and J. Niegemann, The Discontinuous Galerkin Time-Domain method for Maxwell???s equations with anisotropic materials, Photonics and Nanostructures -Fundamentals and Applications, pp.303-309, 2010.
DOI : 10.1016/j.photonics.2010.04.001

K. Busch, M. König, and J. Niegemann, Discontinuous Galerkin methods in nanophotonics, Laser and Photonics Reviews, vol.5, pp.1-37, 2011.
DOI : 10.1364/iprsn.2012.im3b.1

H. Songoro, M. Vogel, and Z. Cendes, Keeping Time with Maxwell's Equations, IEEE Microwave Magazine, vol.11, issue.2, pp.42-49, 2010.
DOI : 10.1109/MMM.2010.935779

S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.16, issue.5, pp.815-841, 2006.
DOI : 10.1006/jcph.1996.0100

URL : https://hal.archives-ouvertes.fr/hal-00607709

M. Grote and T. Mitkova, Explicit local time-stepping methods for Maxwell???s equations, Journal of Computational and Applied Mathematics, vol.234, issue.12, pp.3283-3302, 2010.
DOI : 10.1016/j.cam.2010.04.028

URL : https://doi.org/10.1016/j.cam.2010.04.028

A. Taube, M. Dumbser, C. Munz, and R. Schneider, A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol.129, issue.42-44, pp.22-77, 2009.
DOI : 10.1007/978-3-662-21858-7

L. Moya, Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell???s equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.150, issue.5, pp.1225-1246, 2012.
DOI : 10.1016/0375-9601(90)90092-3

L. Moya, S. Descombes, and S. Lanteri, Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, J. Sci. Comp, vol.56, issue.1, pp.190-218, 2013.

B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems, SIAM Journal on Numerical Analysis, vol.47, issue.2, pp.1319-1365, 2009.
DOI : 10.1137/070706616

N. Nguyen and J. Peraire, Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics, Journal of Computational Physics, vol.231, issue.18, pp.5955-5988, 2012.
DOI : 10.1016/j.jcp.2012.02.033

N. Nguyen, J. Peraire, and B. Cockburn, Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell???s equations, Journal of Computational Physics, vol.230, issue.19, pp.7151-7175, 2011.
DOI : 10.1016/j.jcp.2011.05.018

L. Li, S. Lanteri, and R. , Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time???harmonic Maxwell's equations, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol.32, issue.3, pp.1112-1138, 2013.
DOI : 10.1137/0710022

L. Li, S. Lanteri, and R. , A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations, J. Comput. Phys, pp.256-563, 2014.

E. Hairer, C. Lubich, and M. Roche, The numerical solution of differential algebraic systems by Runge-Kutta methods, Lecture Notes in Mathematics, vol.1409, 1989.
DOI : 10.1007/BFb0093947

P. Amestoy, I. Duff, and J. Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers, Computer Methods in Applied Mechanics and Engineering, vol.184, issue.2-4, pp.501-520, 2000.
DOI : 10.1016/S0045-7825(99)00242-X

URL : https://hal.archives-ouvertes.fr/hal-00856651

J. Chabassier and S. Imperiale, Fourth-order energy-preserving locally implicit time discretization for linear wave equations, International Journal for Numerical Methods in Engineering, vol.50, issue.6, pp.593-622, 2015.
DOI : 10.1016/j.wavemoti.2012.11.002

URL : https://hal.archives-ouvertes.fr/hal-01264048