R. Amadini, J. Mauro, and . Sunny-as, Available at https://github, pp.sunny-as, 2015.

R. Amadini, M. Gabbrielli, and J. Mauro, Abstract, Theory and Practice of Logic Programming, vol.41, issue.4-5, pp.509-524, 2014.
DOI : 10.1007/s10601-008-9051-2

R. Amadini, F. Biselli, M. Gabbrielli, T. Liu, and J. Mauro, Feature Selection for SUNNY: A Study on the Algorithm Selection Library, 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp.25-32, 2015.
DOI : 10.1109/ICTAI.2015.18

URL : https://hal.archives-ouvertes.fr/hal-01227600

R. Amadini, M. Gabbrielli, and J. Mauro, A Multicore Tool for Constraint Solving, Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI, pp.232-238, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01227592

R. Amadini, M. Gabbrielli, and J. Mauro, Portfolio approaches for constraint optimization problems, Annals of Mathematics and Artificial Intelligence, vol.15, issue.3, pp.229-246, 2016.
DOI : 10.1109/ICTAI.2001.974466

URL : https://hal.archives-ouvertes.fr/hal-01227939

B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky et al., ASlib: A benchmark library for algorithm selection, Artificial Intelligence, vol.237, pp.41-58, 2016.
DOI : 10.1016/j.artint.2016.04.003

URL : http://arxiv.org/pdf/1506.02465

R. Kohavi and G. H. John, Wrappers for feature subset selection, Artificial Intelligence, vol.97, issue.1-2, pp.273-324, 1997.
DOI : 10.1016/S0004-3702(97)00043-X

URL : https://doi.org/10.1016/s0004-3702(97)00043-x

M. Lindauer, R. Bergdoll, and F. Hutter, An Empirical Study of Per-instance Algorithm Scheduling, Proceedings of the International Conference on Learning and Intelligent Optimization (LION), volume 10079 of LNCS, pp.253-259, 2016.
DOI : 10.1016/S0065-2458(08)60520-3

T. Liu and . Sunny-oasc, Available at https://github, 2017.