N. Shadbolt, K. O-'hara, T. Berners-lee, N. Gibbins, H. Glaser et al., Linked Open Government Data: Lessons from Data.gov.uk, IEEE Intelligent Systems, vol.27, issue.3, pp.16-24, 2012.
DOI : 10.1109/MIS.2012.23

URL : http://eprints.soton.ac.uk/340564/4/Linked+OGD.pdf

K. Breitman, P. Salas, M. A. Casanova, and D. Saraiva, Open government data in Brazil, IEEE Intelligent Systems, vol.27, issue.3, pp.45-49, 2012.
DOI : 10.1109/MIS.2012.25

L. N. Mutuku and J. Colaco, Increasing Kenyan open data consumption, Proceedings of the 6th International Conference on Theory and Practice of Electronic Governance, ICEGOV '12, p.18, 2012.
DOI : 10.1145/2463728.2463733

F. Artigas and S. A. Chun, Visual analytics for open government data. 14th, Conf. From E-Government to Smart Gov. dg.o 2013, pp.298-299, 2013.
DOI : 10.1145/2479724.2479729

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak et al., DBpedia: A Nucleus for a Web of Open Data, 2007.
DOI : 10.1007/978-3-540-76298-0_52

P. N. Mendes, M. Jakob, A. García-silva, and C. Bizer, DBpedia spotlight, Proceedings of the 7th International Conference on Semantic Systems, I-Semantics '11, pp.1-8, 2011.
DOI : 10.1145/2063518.2063519

M. Janssen, Y. Charalabidis, and A. Zuiderwijk, Benefits, Adoption Barriers and Myths of Open Data and Open Government, Information Systems Management, vol.28, issue.3, pp.258-268, 2012.
DOI : 10.1080/10580530.2010.493846

URL : https://repository.tudelft.nl/islandora/object/uuid%3A952c8b0e-c55e-4443-9b41-14c38806a840/datastream/OBJ/download

M. Kassen, A promising phenomenon of open data: A case study of the Chicago open data project, Government Information Quarterly, vol.30, issue.4, pp.508-513, 2013.
DOI : 10.1016/j.giq.2013.05.012

D. Nadeau, A survey of named entity recognition and classification, Linguist. Investig, pp.3-26, 2007.
DOI : 10.1075/bct.19.03nad

R. Grishman, Message Understanding Conference-6, Proceedings of the 16th conference on Computational linguistics -, 1996.
DOI : 10.3115/992628.992709

A. Mccallum and W. Li, Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons, Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003 -, pp.188-191, 2003.
DOI : 10.3115/1119176.1119206

A. Borthwick and J. Sterling, NYU: Description of the MENE named entity system as used, MUC-7. ? Conf. (MUC-7, 1998.

M. Asahara and Y. Matsumoto, Japanese Named Entity extraction with redundant morphological analysis, Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology , NAACL '03, pp.8-15, 2003.
DOI : 10.3115/1073445.1073447

J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal et al., Robust disambiguation of named entities in text, pp.782-792, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01122678

H. Ji and R. Grishman, Data selection in semi-supervised learning for name tagging, Proceedings of the Workshop on Information Extraction Beyond The Document, IEBeyondDoc '06, pp.48-55, 2006.
DOI : 10.3115/1641408.1641414

E. Alfonseca and S. Manandhar, An unsupervised method for general named entity recognition and automated concept discovery. ? Conf, Gen. ?, 2002.

C. H. Ku, A. Iriberri, G. Leroy, and D. Ph, Natural Language Processing and e- Government : Crime Information Extraction from Heterogeneous Data Sources, The procedings of the 9th Annual International Digital Government Research Conference ACM International Conference Proceedings Series, pp.162-170, 2006.

H. Dalianis, M. Rosell, and E. Sneiders, Clustering E-Mails for the Swedish Social Insurance Agency ??? What Part of the E-Mail Thread Gives the Best Quality?, pp.115-120, 2010.
DOI : 10.1007/978-3-642-14770-8_14

F. Amato, . Mazzeo, V. Moscato, and . Picariello, Semantic Management of Multimedia Documents for E-Government Activity, 2009 International Conference on Complex, Intelligent and Software Intensive Systems, pp.1193-1198, 2009.
DOI : 10.1109/CISIS.2009.195

L. M. Williams, S. A. Cody, and J. Parnell, Prospecting for new collaborations: mining syllabi for library service opportunities, The Journal of Academic Librarianship, vol.30, issue.4, pp.270-275, 2004.
DOI : 10.1016/j.acalib.2004.04.009

R. Basanya, A. Ojo, T. Janowski, and F. Turini, Mining Collaboration Opportunities to Support Joined-Up Government, IFIP Adv. Inf. Commun. Technol, pp.362-359, 2011.
DOI : 10.1007/978-3-642-23330-2_40

URL : https://hal.archives-ouvertes.fr/hal-01569976

L. Wan, J. Chen, and D. Gu, An Information Mining Model of Intelligent Collaboration Based on Agent Technology, International Conference on Applied Sciences, Engineering and Technology, ICASET 2014. Scientific.net, 2014.
DOI : 10.4028/www.scientific.net/AMR.998-999.1096

C. Palmer, J. A. Harding, R. Swarnkar, B. P. Das, and R. I. Young, Generating rules from data mining for collaboration moderator services, Journal of Intelligent Manufacturing, vol.17, issue.4, pp.313-330, 2013.
DOI : 10.1080/713827180

URL : https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/9523/7/IntManudataminingRevised_with_figures.pdf