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Abstract

Spatial constraint systems are algebraic structures from concurrent constraint program-

ming to specify spatial and epistemic behavior in multi-agent systems. In this paper

spatial constraint systems are used to give an abstract characterization of the notion of

normality in modal logic and to derive right inverse/reverse operators for modal lan-

guages. In particular, a necessary and sufficient condition for the existence of right

inverses is identified and the abstract notion of normality is shown to correspond to the

preservation of finite suprema. Furthermore, a taxonomy of normal right inverses is

provided, identifying the greatest normal right inverse as well as the complete family

of minimal right inverses. These results are applied to existing modal languages such
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as the weakest normal modal logic, Hennessy-Milner logic, and linear-time temporal

logic. Some implications of these results are also discussed in the context of modal

concepts such as bisimilarity and inconsistency invariance.

Keywords: constraint systems, concurrent constraint programming, concurrency

theory, modal logic, inverse operators.
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1. Introduction

In this paper we give an abstract characterization of the notion of normality in modal

logic and derive right inverse operators for modal languages. We shall do this by using

spatial constraint systems [1].

Spatial Constraint Systems. Constraint systems are algebraic structures for the se-

mantics of process calculi from concurrent constraint programming (CCP) [2, 3, 1,

4, 5, 6]. They specify the domain and elementary operations and partial information

upon which programs (processes) of these calculi may act. In this paper we shall study

constraint systems as semantic structures for modal logic.

A constraint system (CS) can be formalized as a complete lattice (Con,v). The el-

ements of Con represent partial information and we shall think of them as being as-

sertions. The elements of Con are traditionally referred to as constraints since they

naturally express partial information (e.g., x > 42). The orderv corresponds to entail-

ment between constraints, c v d means c can be derived from d, or that d represents as

much information as c. Consequently, the order v, the join t, the bottom true and the

top false of the lattice correspond respectively to entailment, conjunction, the empty

information and the join of all (possibly inconsistent) information.

A distinctive property of CCP processes is that they can be interpreted as both con-

current computational entities and logic specifications (e.g., process composition can

be seen as parallel execution and conjunction). The CCP operations and their logical

counterparts typically have a corresponding elementary construct or operation on the

elements of the constraint system. In particular, parallel composition and conjunction

correspond to the join operation while local variables and existential quantification cor-

respond to a cylindrification operation on the set of constraints [2] that project away

the information of a given existential (or local) variable.

Similarly, the notion of computational space and the epistemic notion of belief in the

spatial concurrent constraint programming (SCCP) process calculi [1] correspond to

a family of functions [·]i : Con → Con on the elements of the constraint system
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Con that preserve the join operation. These functions are called space functions. A

CS equipped with space functions is called a spatial constraint system (SCS). From

a computational point of view, given c ∈ Con, the assertion (constraint) [c]i specifies

that c resides within the space of agent i. From an epistemic point of view, the assertion

[c]i specifies that agent i considers c to be true (i.e. that in the world of agent i assertion

c is true). Both intuitions convey the idea of c being local (subjective) to agent i.

The Extrusion Problem. Given a space function [·]i, the extrusion problem consists in

finding/constructing a right inverse of [·]i, called extrusion function, satisfying some

basic requirements (e.g., preservation of the join operation). By right inverse of [·]i
we mean a function ↑i : Con → Con such that [ ↑ic ]i = c. The computational

interpretation of ↑i is that of a process being able to extrude any c from the space [·]i.

The extruded information c may not necessarily be part of the information residing in

the space of agent i. For example, using properties of space and extrusion functions we

shall see that [ dt ↑ic ]i = [ d ]i t c specifying that c is extruded (while d is still in the

space of i). The extruded c could be inconsistent with d (i.e., ctd = false), it could be

related to d (e.g., c v d), or simply unrelated to d. From an epistemic perspective, we

can use ↑i to express utterances by agent i and such utterances could be intentional lies

(i.e., inconsistent with their beliefs), informed opinions (i.e., derived from the beliefs),

or simply arbitrary statements (i.e., unrelated to their beliefs). One can then think of

extrusion/utterance as the right inverse of space/belief.

Modal Logic. Modal logics [7] extend propositional logic with n ≥ 1 operators

�1,�2, . . . ,�n, expressing modalities. Depending on the intended meaning of the

modalities, a particular modal logic can be used to reason about space, knowledge, be-

lief or time, among others. For example, in doxastic modal logic, the logic of belief,

the formula�iφ (often written asBiφ) specifies that agent i believes φ and the formula

�i¬�jψ specifies that agent i believes that the agent j does not believe ψ. We shall

also be interested in inverse modalities. An operator �−1
i is a (right) inverse modality

for �i if the formula �i�
−1
i φ is logically equivalent to φ. Inverse operators arise as,

among others, past operators in temporal logic [8], utterances in epistemic logic [9],
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and backward moves in modal logic for concurrency [10]

Kripke Semantics. The most representative semantic models for modal logics are Kripke

Structures (KS) [11]. A KS M can be represented as a state graph with n ≥ 1 tran-

sition relations 1−→M ,
2−→M , . . . ,

n−→M and a function πM that specifies the set of

propositions πM (s) that are true at each state (or world) s ofM . A pointed KS is a pair

(M, s) where s is a state of M . We shall say that (M, s) is model of (or satisfies) a

propositional formula p if p ∈ πM (s). Boolean operators are defined as usual; (M, s)

is a model of φ ∧ ψ if it is a model of both φ and ψ, and it is a model of ¬φ if it is

not model of φ. For the modal case, (M, s) is said to be a model of �iφ if (M, t) is a

model of φ for every t reachable from s through an i-labelled transition; i.e. s i−→M t.

We shall use [[φ ]] to denote the set of all models of φ. Different families of KS give

rise to different modal logics. For example, the theorems of the S5 epistemic logic are

those modal formulae that are satisfied by all pointed KS whose transition relations are

equivalences.

Normal Modal Operators. In modal logic one is often interested in normal modalities:

Roughly, a modal operator �i is normal in a given modal logic system if (1) �iφ is a

theorem whenever φ is a theorem, and (2) �i(φ⇒ ψ)⇒ (�iφ⇒ �iψ) is a theorem.

Normal modalities are ubiquitous in logic; e.g., the box operator in the the logic system

K and its extensions [11], and the always and next operators as well as the weak past

operator from temporal logic [12], the necessity operator from Hennessy-Milner (HM)

logic [13], the knowledge operator from epistemic logic, the belief operator from dox-

astic logic [14] are all normal. In fact, any operator �i whose models are defined with

the above-mentioned Kripke semantics, is normal.

This paper. Although the notion of spatial constraint system is intended to give an al-

gebraic account of spatial and epistemic assertions, we shall show in this paper that it is

sufficiently robust to give an algebraic account of more general modal logic assertions.

The main focus of this paper is the study of the above-mentioned extrusion problem
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for meaningful families of SCS’s called Kripke spatial constraint systems introduced

in [1].

The constraints (or elements) of Kripke SCS’s are sets of pointed KS, i.e., models of

modal logics formulae, ordered by reversed inclusion. Consequently, they can be used

as semantic domains for modal logic in a natural way. For example, let us suppose

that the set of models [[φ ]] is a constraint in a Kripke SCS. The set [[�iφ ]] can be

compositionally obtained, using the space function [·]i of agent i, as the constraint

[ [[φ ]] ]i in the Kripke SCS. Furthermore, if there exists an extrusion function ↑i for

the space function [·]i (see extrusion problem above) then we can derive an inverse

modality �−1
i for �i by defining [[�−1

i φ ]] as ↑i [[φ ]] .

Contributions. This paper contributes to the theory of constraint systems [2] by giving

an algebraic characterization of the notion of normal modalities as space functions and

by providing a complete taxonomy of extrusion functions from Kripke SCS’s. It also

contributes to the theory of modal logic by using this characterization and taxonomy to

prove new expressiveness results for various modal systems and related notions. More

precisely, our contributions are the following:

1. We give an algebraic characterization of the notion of normality in modal logic

by building upon work on Geometric Logic [15] and show that this abstract no-

tion corresponds exactly to preservation of the join operation.

2. We derive a complete characterization for the existence of right inverses of space

functions: The weakest restriction on the elements of the constraint systems (i.e.,

KS’s) that guarantees the existence of right inverses.

3. We give a characterization and derivations of extrusion functions that are nor-

mal (and thus they correspon to normal inverse modalities). In particular we

identify the maximum normal extrusion function and a family of minimal normal

extrusion functions.

4. Finally we discuss the application of our results in the context of specific modal

systems and related concepts such as the minimal logic system K [11], the modal
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logic of linear-time temporal logic (LTL) [12], and bisimilarity. In particular, we

prove that there is no reverse modality for the box operator of the logic system K

nor for the always operator of LTL and we also derive existing inverse modalities

for the next operator of LTL. We use our taxonomy results to show that, unlike

HM-logic formulae, bisimilarity is not preserved by formulae in HM-logic ex-

tended with a reverse modality for the necessity operator: I.e., there are bisimilar

pointed KS that do not satisfy the same formulae. This shows that the extended

logic is more expressive than HM-logic.

This submission is the extended and revised version of [16] for the special issue of

selected papers from ICTAC 2016. In this version we have included all proofs as well

as new material in Section 5 corresponding to the derivation of all minimal normal right

inverses. The work in [16] does not study minimal right inverses. This submission thus

offers a complete taxonomy of normal right inverses. The new material is also used in

the Applications section to prove an expressiveness result in the context of bisimilarity

invariance in Section 6.4.

In previous work [17] and its extended version [18] the authors derived an inverse

modality but only for the specific case of a logic of belief and only a sufficient (but

not necessary) condition was identified. Unlike the present work, [17, 18] were neither

concerned with giving a complete characterization of the existence of right inverses, a

complete taxonomy of extrusion functions, nor deriving normal inverses.

Organization.

This article is structured as follows. In Section 2 we recall the notions of constraint

system and spatial constraint system. In Section 3 we give an algebraic characterization

of the notion of normality in modal logic and show that this abstract notion is equivalent

to preservation of finite joins. Section 4 and Section 5 are the core sections of the paper.

In Section 4 we identify necessary and sufficient conditions for the existence of right

inverses of space functions. In Section 5 we turn our attention to the derivation and

classification of normal right inverses. Finally, in Section 6 we discuss and apply our

results in the context of the modal system K, LTL, and bisimilarity.

8



For the sake of clarity and readability this paper includes an index table for notation

and a table of contents.

2. Background: Spatial Constraint Systems

In this section we recall the notion of basic constraint system [3] and the more recent

notion of spatial constraint system [1]. We presuppose basic knowledge of order theory

and modal logic [19, 7, 11, 20].

The concurrent constraint programming model of computation [2] is parametric in a

constraint system (CS) specifying the structure and interdependencies of the partial

information that computational agents can ask of and post in a shared store.

We shall use the following notions and notations from order theory.

Notation 2.1 (Lattices and Limit Preservation). Let C be a partially ordered set (poset)

(Con,v). We shall use
⊔
S to denote the least upper bound (LUB) (also called supre-

mum or join) of the elements in S if it exists, and similarly
d
S is the greatest lower

bound (GLB) (also called infimum or meet) of the elements in S if it exists. We say

that C is a complete lattice iff each subset of Con has a LUB and a GLB in Con . A

non-empty set S ⊆ Con is directed iff every finite subset of S has an upper bound

in S. Also c ∈ Con is compact iff for any directed subset D of Con , c v
⊔
D im-

plies c v d for some d ∈ D. A complete lattice C is said to be algebraic iff for each

c ∈ Con, the set of compact elements below it forms a directed set and the LUB of

this directed set is c. A self-map on Con is a function f : Con → Con . Let (Con,v)

be a complete lattice. The self-map f on Con preserves the LUB of a set S ⊆ Con

iff f(
⊔
S) =

⊔
{f(c) | c ∈ S}. The preservation of the GLB of a set is defined analo-

gously. We say f preserves finite/infinite suprema iff it preserves the LUB of arbitrary

finite/infinite sets. Preservation of finite/infinite infima is defined similarly. The order

v extends naturally to self-maps; we shall write f v g, where f and g are self-maps

on Con if and only if f(c) v g(c) for every c ∈ Con.
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Constraint systems can be formalized as complete algebraic lattices [3]1. The elements

of the lattice, the constraints, represent (partial) information. A constraint c can be

viewed as an assertion. The lattice order v is meant to capture (reverse) entailment of

information: c v d, alternatively written d w c, means that the assertion d represents

at least as much information as c. Thus we may think of c v d as saying that d entails

c or that c can be derived from d. The least upper bound (LUB) operator t represents

join of information; c t d, the least element in the underlying lattice above c and d.

Thus c t d can be seen as an assertion stating that both c and d hold. The top element

represents the LUB of all, possibly inconsistent, information, hence it is referred to as

false . The bottom element true represents the empty information.

Definition 2.2 (Constraint Systems [3]). A constraint system (CS) C is a complete

algebraic 2 lattice (Con,v). The elements of Con are called constraints. The symbols

t, true and false will be used to denote the least upper bound (LUB) operation, the

bottom, and the top element of C, respectively.

We shall now describe two typical concrete constraint systems taken from [18, 3,

2].

Example 2.3 (Herbrand Constraint System [2, 3, 18]). The Herbrand CS captures

syntactic equality between terms t, t′, . . . built from a first-order alphabet L with vari-

ables x, y, . . ., function symbols, and equality =. The constraints are (equivalent

classes of) sets of equalities over the terms of L: E.g., {x = t, y = t} is a con-

straint. The relation c v d holds if the equalities in c follow from those in d: E.g.,

{x = y} v {x = t, y = t}. The constraint false is the set of all term equalities in

L and true is (the equivalence class of) the empty set. The compact elements are the

1An alternative syntactic characterization of CS, akin to Scott information systems, is given in [2].
2Recall CS’s can also be used a semantic domains for concurrent constraint programming (CCP) lan-

guages. The restriction to algebraic lattices is for semantic purposes and a full discussion of this technical

issue is beyond the scope of this paper (the reader is referred to [3]). Briefly speaking, CCP programs can

post or query constraints but these constraints must be compact (finite). The result of a possibly infinite com-

putation is the join of all the (compact) constraints posted during the computation. Algebraicity of constraint

systems [3] means that any constraint is the join of compact constraints below it. This assumption is needed

for correspondence results between the denotational semantics and their operational counterpart.
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(equivalence class of) finite sets of equalities. The LUB is the (equivalence class of) set

union.

In the above example constraints are represented as set of equations and thus the join

(LUB) of constraints corresponds to the equivalent class of union of their equations. We

can also view a constraint c as a representation of a set of variable assignments [21].

For instance a constraint x > 42 can be thought of as the set of assignments mapping x

to a value greater than 42; i.e., the solutions to (or models of) x > 42. In this case the

join of constraints naturally corresponds to the intersection of their assignments, false

as the empty set of assignments, and true as the set of all assignments.

Example 2.4 (Boolean Constraint System [18, 21]). Let Φ be a set of primitive propo-

sitions. A boolean (or truth) assignment π over Φ is a total map from Φ to the set

{0, 1}. We use A(Φ) to denote the set of all such boolean assignments. We can now

define the Boolean CS B(Φ) as (P(A(Φ)),⊇): The powerset of assignments ordered

by ⊇. Thus constraints in Con are sets of assignments, v is ⊇, false is ∅, true is

A(Φ), the join operator t is ∩, and the meet operator u is ∪. A constraint c in B(Φ)

is compact iff A(Φ) \ c is a finite set.

Notice that logic propositions can be straightforwardly interpreted as constraints in

B(Φ). Let L0(Φ) be the propositional language built from Φ by the grammar

φ, ψ, . . . := p | φ ∧ ψ | ¬φ (1)

where p ∈ Φ. We shall use the classical abbreviations φ ∨ ψ for ¬(¬φ ∧ ¬ψ), φ⇒ ψ

for ¬φ∨ψ, ff for p∧¬p, and tt for ¬ff . A boolean assignment π satisfies φ iff π |= φ

where |= is defined inductively as follows: π |= p iff π(p) = 1, π |= φ ∧ ψ iff π |= φ

and π |= ψ, and π |= ¬φ iff π 6|= φ. We interpret each formula φ as the constraint

BJφK def
= {π ∈ A(Φ) | π |= φ} in B(Φ). Clearly BJφK v BJψK holds iff ψ ⇒ φ is

valid, i.e., satisfied by every truth assignment.

Spatial Constraint Systems. The authors of [1] extended the notion of CS to account

for distributed and multi-agent scenarios where agents have their own space for keeping

their local information and performing their computations.
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Let G = {1, . . . , n} be an underlying set of agents. Intuitively, each agent i ∈ G

has a space function [·]i from constraints to constraints. Recall that constraints can be

viewed as assertions. Thus, given a constraint c, we can think of [c]i as an assertion

stating that c is a piece of information residing within a space attributed to agent i.

An alternative epistemic logic interpretation of [c]i is an assertion stating that agent i

believes c or that c holds within the space of agent i (but it may not hold elsewhere).

Both interpretations convey the idea that c is local to agent i. Similarly, [[c]j]i is a

hierarchical spatial specification stating that c holds within the local space the agent i

attributes to agent j. Nesting of spaces can be of any depth. We can think of a constraint

of the form [c]i t [d]j as an assertion specifying that c and d hold within two parallel

spaces that belong to agents i and j, respectively. From a computational/ concurrency

point of view, we think of t as parallel composition. As mentioned before, from a

logic point of view the join of information t corresponds to conjunction.

Definition 2.5 (Spatial Constraint System [1]). An n-agent (n > 0) spatial constraint

system (n-SCS) C is a CS (Con,v) equipped with n self-maps [·]1, . . . , [·]n over its

set of constraints Con such that:

S.1 [true]i = true, and

S.2 [c t d]i = [c]i t [d]i for each c, d ∈ Con.

Axiom S.1 requires space functions to be strict maps (i.e bottom preserving). Intu-

itively, it states that having an empty local space amounts to nothing. Axiom S.2 states

that the information in a given space can be distributed to. Notice that requiring S.1 and

S.2 is equivalent to requiring that each [·]i preserves finite suprema. Also S.2 implies

that each [·]i is monotonic: I.e., if c w d then [c]i w [d]i.

Remark 2.6. Notice that S.1 and S.2 are the only requirenments for space functions.

For example, nothing prevents us from having [false]i 6= false. Intuitively, inconsis-

tencies generated by an agent may be confined within its own space. It is also possible

to have [c]i t [d]j 6= false even when c t d = false , i.e., we may have agents whose

information is inconsistent with that of other agents. We could also have [c]i = [d]i for
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some c, d such that c 6= d. Depending on the intended model this could be interpreted

as saying that agent i cannot distinguish c from d.

The following SCS instance will be properly defined in Section 4.1. We find it conve-

nient to briefly describe it in the following example to give some intuitions about space

functions.

Example 2.7 (Kripke SCS’s [1]). In Example 2.4 we illustrated the Boolean CS B(Φ)

whose elements represent sets of boolean assignments ordered by reversed inclusion.

This allowed us to interpret each boolean formula φ, built from Φ, as the constraint

BJφK including all the assignments that satisfy φ.

Similarly, we can provide a family of SCS’s, called Kriple SCS’s [1], whose constraints

are sets of pointed Kripke structures ordered by reversed inclusion. Recall that pointed

Kripke structures, briefly described in the introduction and defined in Section 4.1, are

the standard models of modal logic. In a Kripke SCS each constraint c is equated to a

set of pointed KS pairs of the form (M, s). The order v is ⊇, false is ∅, true is the set

of all pointed KS under consideration and the join operator t is ∩. The space functions

are given by [c]i = {(M, s) | ∀t : s
i−→M t, (M, t) ∈ c}. This allows us to interpret

any modal formula as a constraint; the set of pointed KS that satisfy the formula. In

particular if [[φ ]] is the constraint interpretation in a Kripke SCS then [[[φ ]]]i is the

interpretation of �iφ.

To give a spatial intuition about the definition of [c]i in a Kripke SCS, let us consider

states (or worlds) s and t such that s i−→M t. Intuitively, s i−→M t means that t is a

world that agent i considers possible in the world s (of a KS M ). In spatial terms we

can think of t as being a local world for agent i wrt to the outside world s. Then if the

constraint [c]i holds true in the outside world s of agent i (wrt M ), i.e., (M, s) ∈ [c]i

then c must be true in their local world t (wrt M ), i.e., (M, t) ∈ c.

We refer the reader to Section 4.1 to see Kripke SCS’s in full detail.

Extrusion and utterance. We can also equip each agent i with an extrusion function

↑i : Con → Con . Intuitively, within a space context [·]i, the assertion ↑ic specifies that
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c must be posted outside of agent i’s space. This is captured by requiring the following

extrusion axiom:

(E.1) [ ↑ic ]i = c. (2)

In other words, we view extrusion/utterance as the right inverse of space/belief (and

thus space/belief as the left inverse of extrusion/utterance).

Definition 2.8 (Extrusion). Given an n-SCS (Con,v, [·]1, . . . , [·]n), we say that ↑i is

an extrusion function for the space [·]i iff ↑i is a right inverse of [·]i, i.e., iff Axiom E.1

in Eq. 2 is satisfied.

From the above definitions it follows that [c t ↑id]i = [c]i t d. From a spatial point

of view, agent i extrudes d from its local space. From an epistemic view this can be

seen as an agent i that believes c and utters d to the outside world. If d is inconsistent

with c, i.e., ct d = false , we can see the utterance as an intentional lie by agent i: The

agent i utters an assertion inconsistent with their own beliefs.

Example 2.9. Let e = [c t ↑i[a]j ]i t [d]j . The constraint e specifies that agent i has

c and wishes to transmit, via extrusion, a addressed to agent j. Agent j has d in their

space. Indeed, with the help of E.1 and S.2, we can derive e w [d t a]j thus stating

that e entails that a will be in the space of j.

The Extrusion/Right Inverse Problem. A legitimate question is: Given space [·]i
can we derive an extrusion function ↑i for it ? From set theory we know that there is

an extrusion function (i.e., a right inverse) ↑i for [·]i iff [·]i is surjective. Recall that

the pre-image of y ∈ Y under f : X → Y is the set f−1(y) = {x ∈ X | y = f(x)}.

Thus the extrusion ↑i can be defined as a function, called choice function, that maps

each element c to some element from the pre-image of c under [·]i.

The existence of the above-mentioned choice function assumes the Axiom of Choice.

The next proposition from [9] gives some constructive extrusion functions. It also iden-

tifies a distinctive property of space functions for which a right inverse exists.

Proposition 2.10 ([9]). Let [·]i be a space function of SCS. Then

1. If [false]i 6= false then [·]i does not have any right inverse.
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2. If [·]i is surjective and preserves arbitrary suprema then ↑i : c 7→
⊔
[c]
−1
i is a

right inverse of [·]i and preserve arbitrary infima.

3. If [·]i is surjective and preserves arbitrary infima then ↑i : c 7→
d
[c]
−1
i is a right

inverse of [·]i and preserve arbitrary suprema.

We have presented spatial constraint systems as algebraic structures for spatial and

epistemic behaviour as that was their intended meaning. Nevertheless, we shall see

that they can also provide an algebraic structure to reason about Kripke models with

applications to modal logics.

In Section 4 we shall study the existence, constructions and properties of right inverses

for a meaningful family of SCS’s; the Kripke SCS’s. The importance of such a study is

the connections we shall establish between right inverses and reverse modalities which

are present in temporal, epistemic and other modal logics. Property (1) in Proposition

2.10 can be used as a test for the existence of a right inverse. The space functions of

Kripke SCS’s preserve arbitrary suprema, thus Property (2) will be useful. They do

not preserve in general arbitrary (or even finite) infima so we will not apply Property

(3).

It is worth noticing that the derived extrusion ↑i in Property (3) preserves arbitrary

suprema; this implies ↑i is normal in a sense we shall make precise next. Normal

self-maps give an abstract characterization of normal modal operators, a fundamental

concept in modal logic. We will be therefore interested in deriving normal inverses.

The notion of normality is important because it is in normal modal logics where the

axiom K (i.e. �i(φ → ψ) → (�iφ → �iψ)) is satisfied, which allow us to provide

modal logics with a Kripke semantics.

3. Constraint Frames and Normal Self Maps

Spatial constraint systems are algebraic structures for spatial and mobile behavior. By

building upon ideas from Geometric Logic and Heyting Algebras [15] we can also

make them suitable as semantics structures for modal logic. In this section we give an
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algebraic characterization of the concept of normal modality as the maps preserving

finite suprema.

We can define a general form of implication by adapting the corresponding notion

from Heyting Algebras to constraint systems. Intuitively, a Heyting implication c→ d

in our setting corresponds to the weakest constraint one needs to join c with to derive

d. Similarly, the negation of a constraint c, written ∼ c, can be seen as the weakest

constraint inconsistent with c.

Definition 3.1 (Constraint Frames). A constraint system (Con,v) is said to be a con-

straint frame iff its LUBs distribute over arbitrary meets: For every c ∈ Con and

S ⊆ Con we have c t
d
S =

d
{c t e | e ∈ S}. Given a constraint frame (Con,v)

and c, d ∈ Con , define Heyting implication c → d as
d
{e ∈ Con | c t e w d} and

Heyting negation as ∼c def
= c→ false.

The following basic properties of Heyting implication are immediate consequences of

the above definitions.

Proposition 3.2. Let (Con,v) be a constraint frame. For every c, d, e ∈ Con:

1. c t (c→ d) = c t d

2. c w (d→ e) iff c t d w e

3. c→ d = true iff c w d

Proof. The proof proceeds as follows:

1. c t (c→ d) = c t d

This is proved in Lemma 1 (Modus Ponens) of [18]. For self-containedness we

have included the proof of this item.

We need to prove c t
d
{e | d v e t c} = c t d. Recall that by definition

LUBs distribute over arbitrary meets in any frame.

• First we prove c t
d
{e | d v e t c} v c t d. Let S = {e | d v e t c}.

Since d ∈ S, we conclude
d
S v d. Thus, c t

d
S v c t d as wanted.
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• We now prove c t d v c t
d
{e | d v e t c}. Let S = {e | d v e t c}.

Distributing the LUB over the meet we obtain c t
d
S =

d
{c t e | e ∈

S}. Since each c t e w d for every e ∈ S then d v
d
{c t e | e ∈ S} =

c t
d
S. Therefore c t d v c t c t

d
S = c t

d
S.

2. c w (d→ e) iff c t d w e

• Assume c w (d→ e). Then we have ctd w (d→ e)td. Therefore, from

Proposition 3.2 (1) (modus ponens) we obtain c t d w d t e and c t d w e

as wanted.

• Suppose c t d w e. Because d → e =
d
S where S = {a | a t d w e},

and c ∈ S, then c w (d→ e).

3. c → d = true iff c w d. By Proposition 3.2 (2), we know that e w (c → d)

iff e t c w d. Let us take e = true . Then, true w (c → d) iff true t c w d.

Therefore, true = (c → d) iff c w d as wanted.

From a computational point of view, we can think of c→ d as a process that triggers d

if c is present in the space the process is placed. We illustrate this next.

Example 3.3. A simple example can be obtained by taking d = a→ b in Example 2.9,

i.e., e = [c t ↑i[a]j ]i t [a → b]j . We can use Proposition 3.2 item 1, S.2, and E.1 to

obtain e w [a t b]j . Thus i can send a to j and cause b to be triggered in the space of

j.

Example 3.4. A more complex example involves extrusion from i to j and back from j

to i by letting a to be the conditional d→ ↑j[d]i in the constraint e = [c t ↑ [a]j ]i t

[d]j defined in Example 2.9. Intuitively the agent i sends a conditional process a to

the space of j. Once in this space, d is entailed and thus d is sent to the space of i via

extrusion. Indeed one can verify that e w [a t d]i.
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3.1. Normal Self-Maps

In modal logics one is often interested in normal modal operators. The formulae of a

modal logic are those of propositional logic extended with modal operators. Roughly

speaking, a modal logic operator m is normal iff (1) the formula m(φ) is a theorem

(i.e., true in all models for the underlying modal language) whenever the formula φ is a

theorem, and (2) the implication formula m(φ⇒ ψ)⇒ (m(φ)⇒ m(ψ)) is a theorem.

Since constraints can be viewed as logic assertions, we can think of modal operators

as self-maps on constraints. Thus, using Heyting implication3, we can express the

normality condition in constraint frames as follows.

Definition 3.5 (Normal Maps). Let (Con,v) be a constraint frame. A self-map m on

Con is said to be normal if (1) m(true) = true and (2) m(c → d) → (m(c) →

m(d)) = true for each c, d ∈ Con.

We now prove that the normality requirement is equivalent to the requirement of pre-

serving finite suprema. The next theorem states that Condition (2) in Definition 3.5 is

equivalent to the seemingly simpler condition: m(c t d) = m(c) tm(d).

Theorem 3.6 (Normality & Finite Suprema). Let C be a constraint frame (Con,v)

and let f be a self-map on Con. Then f is normal if and only if f preserves finite

suprema.

Proof. It suffices to show that for any bottom preserving self-map f , ∀c, d ∈ Con :

f (c → d)→ (f (c)→ f (d)) = true iff ∀c, d ∈ Con : f(ct d) = f(c)t f(d). (Both

conditions require f to be bottom preserving, i.e., f(true) = true , and preservation of

non-empty finite suprema is equivalent to the preservation of binary suprema.)

• Assume that ∀c, d ∈ Con : f (c → d) → (f (c) → f (d)) = true . Take two

arbitrary c, d ∈ Con. We first prove f(c t d) w f(c) t f(d). From the

assumption and Proposition 3.2(3) we obtain

f((c t d)→ d) w f(c t d)→ f(d). (3)

3Logical (boolean) implication is a particular instance of Heyting implication [15].
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From Proposition 3.2(3) (c t d) → d = true. Since f(true) = true we have

f((c t d) → d) = true. We must then have, from Equation 3, f(c t d) →

f(d) = true as well. Using Proposition 3.2(3) we obtain f(c t d) w f(d). In a

similar fashion, by exchanging c and d in Equation 3, we can obtain f(d t c) w

f(c). We can then conclude f(c t d) w f(c) t f(d) as wanted.

We now prove f(c) t f(d) w f(c t d). From the assumption and Proposition

3.2(3) we have

f(c→ (d→ c t d)) w f(c)→ f(d→ c t d). (4)

Using Proposition 3.2 one can verify that c → (d → c t d) = true. Since

f(true) = true we have f(c → (d → c t d)) = true. From Equation 4, we

must then have f(c) → f(d → c t d) = true and by using Proposition 3.2(3)

we conclude f(c) w f(d→ ctd). From the assumption and Proposition 3.2(3)

f(d → c t d) w f(d) → f(c t d). We then have f(c) w f(d → c t d) w

f(d) → f(c t d). Thus f(c) w f(d) → f(c t d) and then using Proposition

3.2(2) we obtain f(c) t f(d) w f(c t d) as wanted.

• Assume that ∀c, d ∈ Con : f(c t d) = f(c) t f(d). Take two arbitrary c, d ∈

Con. We shall prove f(c → d) → (f(c) → f(d)) = true . From Proposition

3.2(2-3) it suffices to prove f(c→ d)t f(c) w f(d). Using the the assumption

and Proposition 3.2(1) we obtain f(c → d) t f(c) = f(c t (c → d)) =

f(c t d) = f(c) t f(d) w f(d) as wanted.

It then follows from the above theorem that space functions from constraint frames are

indeed normal self-maps, since they preserve finite suprema. Another immediate con-

sequence of the above theorem is that every normal self-map is also monotone.

Corollary 3.7. Let C be a constraint frame (Con,v) and let f be a normal self-map

on Con. If c v d then f(c) v f(d).
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3.2. Summary

In this section we have characterized the notion of normal self-maps as those that pre-

serve finite LUBs. This characterization will be useful in the next section when we turn

our attention to normal right-inverse self-maps.

4. Extrusion Problem for Kripke Constraint Systems

This and the next section are the main and more technical parts of the paper. We will

study the extrusion/right inverse problem for a meaningful family of spatial constraint

systems (SCS); the Kripke SCS. In particular we shall derive and give a complete char-

acterization of normal extrusion functions as well as identify the weakest condition on

the elements of the SCS under which extrusion functions may exist. To illustrate the

importance of this study it is convenient to give some intuition first.

Kripke structures (KS) are a fundamental mathematical tool in logic and computer sci-

ence. They can be seen as transition systems and they are often used to give semantics

to modal logics. A KS M provides a relational structure with a set of states and one or

more accessibility relations i−→M between them: s i−→M t can be seen as a transition,

labelled with i, from s to t in M . Broadly speaking, a model-based Kripke semantics

equates each modal formula φ to a certain set JφK of pairs (M, s), called pointed KS’s,

where s is a state of the KS M . In particular, in modal logics with one or more modal

(box) operators �i, the formula �iφ is equated to J�iφK = {(M, s) | ∀t : s
i−→M

t, (M, t) ∈ JφK}.

Analogously, in a Kripke SCS each constraint c is equated to a set of pairs (M, s) of

pointed KS. Furthermore, for each space [·]i we have [c]i = {(M, s) | ∀t : s
i−→M

t, (M, t) ∈ c}. This means that formulae can be interpreted as constraints and in

particular �i can be interpreted by [·]i as J�iφK = [ JφK ]i.

Inverse modalities �−1
i , also known as a reverse modalities, are used in many modal

logics. In tense logics they represent past operators [22] and in epistemic logic they

represent utterances [9]. The basic property of a (right) inverse modality is given by
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the axiom �i(�
−1
i φ) ⇔ φ. In fact, given a modal logic one may wish to see if it can

be extended with reverse modalities (e.g., is there a reverse modality for the always

operator of temporal logic?).

Notice that if we have an extrusion function ↑i for [·]i we can provide the semantics

for inverse modalities �−1
i by letting J�−1

i φK = ↑i( JφK ) (thus J�i(�
−1
i φ)K = JφK).

Therefore deriving extrusion functions and establishing the weakest conditions under

which they exist is a relevant issue. Furthermore, the algebraic structure of Kripke SCS

may help us establish desirable properties of the reverse modality such as that of being

normal (Definition 3.5).

4.1. KS and Kripke SCS

We begin by recalling some notions and notations related to Kripke models.

Definition 4.1 (Kripke Structures). An n-agent (n > 0) Kripke Structure (KS) M over

a set of primitive propositions Φ is a tuple (S, π,R1, . . . ,Rn) where

• S is a non-empty set of states,

• π : S → (Φ → {0, 1}) is an interpretation associating with each state a truth

assignment to the primitive propositions in Φ, and

• Ri is a binary relation on S.

A pointed KS is a pair (M, s) where M is a KS and s, called the actual world, is a

state of M .

We shall use the following notation in the rest of the paper.

Notation 4.2. Each Ri is referred to as the accessibility relation for agent i. We shall

use i−→M to refer to the accessibility relation of agent i in M . We write s i−→M t to

denote (s, t) ∈ Ri. We use Ii(M, s) = {(M, t) | s i−→M t} to denote the pointed

KS reachable through Ri from the pointed KS (M, s). The interpretation function

π tells us what primitive propositions are true at a given world: p holds at state s

iff π(s)(p) = 1. We shall use SM and πM to denote the set of states and interpretation

function of M .
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We now define the Kripke SCS w.r.t. a set Sn(Φ) of pointed KS. Notice that in Example

2.4 constraints represented sets of boolean assignments, which allowed us to interpret

each propositional formula as a constraint (i.e. the set of assignments satisfying the

formula). Similarly, in a Kripke SCS constraints are sets of (pointed) KS models. This

will allows us to interpret each modal formula as constraints.

Definition 4.3 (Kripke Spatial Constraint Systems [1]). Let Sn(Φ) be a (non-empty)

set of n-agent Kripke structures over a set of primitive propositions Φ. Let ∆ be the set

of all pointed Kripke structures (M, s) such that M ∈ Sn(Φ).

A Kripke n-SCS for Sn(Φ) is a SCS K(Sn(Φ)) = (Con,v, [·]1, . . . , [·]n) where

Con = P(∆), v = ⊇, and for every i ∈ {1, . . . , n} :

[ c ]i
def
= {(M, s) ∈ ∆ | Ii(M, s) ⊆ c} (5)

In the Kripke-based semantics of modal logic (Section 6) every pointed KS is a model

of the constant true and no pointed KS is a model of the constant false. This is consis-

tent with the reversed inclusion v = ⊇ order of Kripke constraint systems. We clarify

this in the following remark.

Remark 4.4. The structure K(Sn(Φ)) = (Con,v, [·]1, . . . , [·]n) is a complete alge-

braic lattice given by a powerset ordered by reversed inclusion⊇ [23]. The LUB (join)

t is set intersection, the meet u is set union, the top element false is the empty set ∅,

and bottom true is the set ∆ of all pointed Kripke structures (M, s) with M ∈ Sn(Φ).

Notice that K(Sn(Φ)) is a frame since meets are unions and LUBs are intersections so

the requirement of distributivity is satisfied. Furthermore, each [·]i preserves arbitrary

suprema (intersection) and thus, from Theorem 3.6 it is a normal self-map.

Proposition 4.5 ([18]). Let K(Sn(Φ)) = (Con,v, [·]1, . . . , [·]n) as in Definition 4.3.

1. K(Sn(Φ)) is an n-agent spatial constraint frame.

2. Each [·]i preserves arbitrary suprema.
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4.2. Complete Characterization of the Existence of Right Inverses

We now address the question of whether a given Kripke constraint system can be ex-

tended with extrusion functions. We shall identify a sufficient and necessary condition

on accessibility relations for the existence of an extrusion function ↑i given the space

[·]i. We also give explicit right inverse constructions.

Notation 4.6. For notational convenience, we take the set Φ of primitive propositions

and n to be fixed from now on and omit them from the notation. E.g., we write M

instead ofMn(Φ).

The following notions play a key role in our complete characterization, in terms of

classes of KS, of the existence of right inverses for Kripke space functions.

Definition 4.7 (Determinacy). Let S and R be the set of states and an accessibility

relation of a KS M , respectively. Given s, t ∈ S, we say that s determines t w.r.t. R if

(s, t) ∈ R. We say that s uniquely determines t w.r.t. R if s is the only state in S that

determines t w.r.t. R. A state s ∈ S is said to be determinant w.r.t. R if it uniquely

determines some state in S w.r.t. R. Furthermore, R is determinant-complete if every

state in S is determinant w.r.t. R.

(We shall often omit “w.r.t. R” when no confusion can arise.)

Let us have a look at some of the following examples of determinacy.

Example 4.8. Figure 1 illustrates some typical determinant-complete accessibility re-

lations for agent i. Notice that any determinant-complete relation i−→M is necessarily

serial (or left-total): i.e., For every s ∈ SM , there exists t ∈ SM such that s i−→M t.

Tree-like accessibility relations where all paths are infinite are determinant-complete

(Figure 1.(ii) and Figure 1.(iii)). Also some non-tree like structures such as Figure 1.(i)

and Figure 1.(v). Figure 1.(iv) shows a non determinate-complete accessibility relation

by taking the transitive closure of Figure 1.(iii).

The following proposition gives an alternative definition of determinant states. First,

we need the following notation.

Notation 4.9. Recall that Ii(M, s) = {(M, t) | s i−→M t} where i−→M denotes

the accessibility relation of agent i in the KS M . We extend this definition to sets
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Figure 1: Accessibility relations for an agent i. In each sub-figure we omit the corresponding KS Mk from

the edges and draw s
i−→ t whenever s i−→Mk

t.

of states as Ii(M,S) =
⋃

s∈S Ii(M, s). Furthermore, we shall write s
i

_M t to

mean that s uniquely determines t w.r.t. i−→M . Analogously, we define �i(M, s)
def
=

{(M, t) | s i
_M t}.

Proposition 4.10. Let s ∈ SM . The state s is determinant w.r.t. i−→M if and only if

for every S′ ⊆ SM : If Ii(M, s) ⊆ Ii(M,S′) then s ∈ S′.

Proof. The proof proceeds as follows :

• Assume that s ∈ SM is determinant w.r.t. i−→M . Let us proceed by con-

tradiction and assume that there exists an S′ ⊆ SM such that Ii(M, s) ⊆

Ii(M,S′) and s 6∈ S′. Since s is determinant w.r.t. i−→M there must ex-

ist a t such that s i−→M t and s′ 6 i−→M t for any s′ ∈ S′. By definition of

Ii, (M, t) ∈ Ii(M, s) and (M, t) 6∈ Ii(M,S′) which is a contradiction since

Ii(M, s) ⊆ Ii(M,S′).

• Assume for every S′ ⊆ SM , if Ii(M, s) ⊆ Ii(M,S′) then s ∈ S′. To reach

a contradiction, let us suppose that s is not determinant w.r.t. i−→M . By our
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assumption that s is not determinant w.r.t. i−→M it follows that for any ti such

that s i−→M ti there must be si 6= s such that si
i−→M ti. Now, take S′′ =

{s1, s2, . . . }. Notice that Ii(M, s) ⊆ Ii(M,S′′). Applying the assumption,

we conclude s ∈ S′′, a contradiction.

The following theorem provides a complete characterization, in terms of classes of KS,

of the existence of right inverses for space functions.

Theorem 4.11 (Completeness). Let [·]i be a space function of a Kripke SCS K(S).

Then [·]i has a right inverse if and only if for every M ∈ S the accessibility relation
i−→M is determinant-complete.

Proof.

• Suppose that for every M ∈ S, i−→M is determinant-complete. By the Axiom

of Choice, [·]i has a right inverse if [·]i is surjective. Thus, it suffices to show that

for every set of pointed KS d, there exists a set of pointed KS c such that [c]i = d.

Take an arbitrary d and let c = Ii(M
′, S′) where S′ = {s | (M, s) ∈ d}. From

Definition 4.3 we conclude d ⊆ [c]i. It remains to prove d ⊇ [c]. Suppose

d 6⊇ [c]. Since d ⊆ [c] we have d ⊂ [c]. Then there must be an (M ′, s′),

with M ′ ∈ S, such that (M ′, s′) 6∈ d and (M ′, s′) ∈ [c]. But if (M ′, s′) ∈

[c]i then from Definition 4.3 we conclude that Ii(M
′, s′) ⊆ c = Ii(M

′, S′).

Furthermore (M ′, s′) 6∈ d implies s′ 6∈ S′. It then follows from Proposition 4.10

that s′ is not determinant w.r.t. i−→M ′ . This leads us to a contradiction since
i−→M ′ is supposed to be determinant-complete.

• Suppose [·]i has a right inverse. By the Axiom of Choice, [·]i is surjective. We

claim that i−→M is determinant-complete for every M ∈ S. To show this claim

let us assume there is M ′ ∈ S such that i−→M is not determinant-complete.

From Proposition 4.10 we should have s ∈ S and S′ ⊆ S such thatIi(M
′, s) ⊆

Ii(M
′, S′) and s 6∈ S′. Since [c′]i is surjective, there must be a set of pointed KS

c′ such that {(M ′, s′) | s′ ∈ S′} = [c′]i.We can then verify, using Definition 4.3,
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that Ii(M,S′) ⊆ c′. Since Ii(M
′, s) ⊆ Ii(M

′, S′) then Ii(M
′, s) ⊆ c′. It

then follows from Definition 4.3 that (M ′, s) ∈ [c′]i. But [c′]i = {(M ′, s′) | s′ ∈

S′} then s ∈ S′, a contradiction.

Henceforth we use MD to denote the class of KS’s whose accessibility relations are

determinant-complete. It follows from Theorem 4.11 that S =MD is the largest class

for which space functions of a Kripke K(S) have right inverses.

4.3. Deriving Maximum Right-Inverse

Let K(S) = (Con,v, [·]1, . . . , [·]n) be the Kripke SCS. The Axiom of Choice and

Theorem 4.11 tell us that each [·]i has a right inverse (extrusion function) if and only

if S ⊆ MD. We are interested, however, in explicit constructions of the right in-

verses.

Remark 4.12. Recall, from Remark 4.4, that any Kripke SCS K(S) = (Con,v

, [·]1, . . . , [·]n) is ordered by reversed inclusion (i.e., v = ⊇). Thus, for example, say-

ing that some f is the least function w.r.t. ⊆ satisfying certain conditions is equivalent

to saying that f is the maximum function w.r.t. v satisfying the same conditions. As

usual given two self-maps f and g over Con we define f v g iff f(c) v g(c) for every

c ∈ Con .

Since any Kripke SCS space function preserve arbitrary suprema (Proposition 4.5), we

can apply Proposition 2.10.2 to obtain the following canonical maximum right-inverse

construction. Recall that [c]−1
i = {d | c = [d]i} denotes the pre-image of c under

[·]i.

Definition 4.13 (Maximum Right Inverse). Let K(S) = (Con,v, [·]1, . . . , [·]n) be a

Kripke SCS over S ⊆ MD. We define ↑M
i

as the following self-map on Con: ↑M
i

: c 7→⊔
[c]
−1
i .

It follows from Proposition 2.10.2 that ↑M
i

is a right inverse of [·]i, and furthermore,

from its definition it is clear that ↑M
i

is the maximum right inverse of [·]i w.r.t. v.
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4.4. Summary

In this section we singled out determinacy-completeness as a necessary and sufficient

condition on KS’s to guarantee the existence of right inverses (Theorem 4.11). In the

rest of the paperMD is used to denote the class of KS’s whose accessibility relations

are determinant-complete;MD is thus the largest class for which space functions of a

Kripke SCS have right inverses. We shall also assume Kripke SCS’s K(S) = (Con,v

, [·]1, . . . , [·]n) with S ⊆MD.

We also derived ↑M
i

as the maximum right inverse of [·]i w.r.t. the underlying Kripke

SCS order. As shown next, however, ↑M
i

is not necessarily normal in the sense of Defi-

nition 3.5. In the next section we shall derive and classify normal right inverses.

5. Deriving Normal Right-Inverses

This section is devoted to provide a complete taxonomy, based on the underlying SCS

order, of right inverse constructions that are normal. As discussed in Section 6 the

Kripke semantics of several inverse modalities in the literature corresponds to normal

right inverses of space functions. The notion of indeterminacy and multiple determi-

nacy introduced in Definition 5.1 will play a central role.

Let us first extend the terminology in Definition 4.7.

Definition 5.1 (Indeterminacy and Multiple Determinacy). Let S and R be the set of

states and an accessibility relation of a KS M , respectively. Given t ∈ S, we say that

t is determined w.r.t. R if there is s ∈ S such that s determines t w.r.t. R, else we

say that t is indetermined (or initial) w.r.t. R. Similarly, we say that t is multiply, or

ambiguously, determined if it is determined by at least two different states in S w.r.t.

R. Additionally, we shall say that t is uniquely determined if it is determined by only

one state in S w.r.t. R.

(As in Definition 4.7, we shall often omit “w.r.t. R” when no confusion can occur.)

The following statement and Theorem 3.6 lead us to conclude that the presence of inde-

termined/initial states or multiple-determined states causes ↑M
i

not to be normal.
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Proposition 5.2. Let K(S) = (Con,v, [·]1, . . . , [·]n) and ↑M
i

as in Definition 4.13.

Let nd(S) = {(M, t) | M ∈ S & t is indetermined w.r.t. i−→M} and md(S) =

{(M, t) |M ∈ S & t is multiply determined w.r.t. i−→M}:

• If nd(S) 6= ∅ then ↑M
i
(true) 6= true.

• If md(S) 6= ∅ then ↑M
i
(c t d) 6= ↑M

i
(c) t ↑M

i
(d) for some c, d ∈ Con.

Proof.

• If nd(S) 6= ∅ then ↑M
i
(true) 6= true.

Assume nd(S) 6= ∅. Take c to be the complement of nd(S) in Con . Using

Equation 5 we have (1) [c]i = true and from the assumption (2) c 6= true (recall

that true is the set of all pointed KS, see Remark 4.4). From (1) and (2) we have

↑M
i
(true) =

⊔
[c]
−1
i 6= true .

• If md(S) 6= ∅ then ↑M
i
(c t d) 6= ↑M

i
(c) t ↑M

i
(d) for some c, d ∈ Con.

Suppose md(S) 6= ∅. Take t ∈ md(S), then there exist s, s′ s.t. s i−→M t and

s′
i−→M t. Let c = {(M, s)} and d = {(M, s′)}. Recall that ↑M

i
is a right inverse

of [·]i. Because of this any constraint e = [↑M
i
(e)]i = {(M, s′′) | Ii(M, s′′) ⊆

↑M
i
(e)}, therefore (M, t) ∈ ↑M

i
(c) ∩ ↑M

i
(d). Now, ↑M

i
(c ∩ d) = ↑M

i
(false) = false

because Proposition 2.10 and ↑M
i
(false) =

⊔
[false]

−1
i (recall that false is the

empty set, see Remark 4.4). We therefore conclude ↑M
i
(c t d) = ↑M

i
(c ∩ d) 6=

↑M
i
(c) ∩ ↑M

i
(d) = ↑M

i
(c) t ↑M

i
(d).

The following central lemma provides distinctive properties of any normal right in-

verse.

Lemma 5.3. Let K(S) = (Con,v, [·]1, . . . , [·]n) be the Kripke SCS over S ⊆ MD.

Suppose that f is a normal right inverse of [·]i. Then for every M ∈ S, c ∈ Con:

1. Ii(M, s) ⊆ f(c) if (M, s) ∈ c,

2. {(M, t)} ⊆ f(c) if t is multiply determined w.r.t. i−→M , and
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3. true ⊆ f (true).

Proof. The proof proceeds as follows :

1. Ii(M, s) ⊆ f(c) if (M, s) ∈ c. Assume (M, s) ∈ c. By definition of Ii

we have Ii(M, s) = {(M, t) | s i−→M t}. Then for every (M, t) belonging

to Ii(M, s) t is determined w.r.t. i−→M . Given that f is a right inverse of

[·]i, it must satisfy [f(c)]i = c. By Definition 4.3 we have [c]i = {(M, s) |

Ii(M, s) ⊆ c}, then [f(c)]i = {(M, s) | Ii(M, s) ⊆ f(c)}. Therefore, since

[f(c)]i = c = {(M, s) | Ii(M, s) ⊆ f(c)} then Ii(M, s) ⊆ f(c) as wanted.

2. {(M, t)} ⊆ f(c) if t is multiply determined w.r.t. i−→M . Assume t is multi-

ply determined w.r.t. i−→M . Therefore we know that if there exists s, s′ with

s 6= s′ such that s i−→M t and s′
i−→M t. From Corollary 3.7 we know

if c ⊆ d then f(c) ⊆ f(d). Then it follows that false ⊆ d and f(false) ⊆

f (d). Thus, it suffices to prove that (M, t) ∈ f(false). From the assump-

tion that f is a normal right inverse then by Theorem 3.6 it preserves suprema

f({(M, s)} ∩ {(M, s′)}) = f({(M, s)}) ∩ f({(M, s′)}). Since s 6= s′ then

{(M, s)} ∩ {(M, s′)} = ∅. From Lemma 5.3 (1) s i−→M t and s′ i−→M t

we know {(M, t)} ⊆ f({(M, s)}) ∩ f({(M, s′)}). Therefore by Corollary 3.7,

{(M, t)} ⊆ f({(M, s)}∩{(M, s′)}) which is the same as {(M, t)} ⊆ f(false).

Then, we know f(false) ⊆ f (c) therefore {(M, t)} ⊆ f(c) as wanted.

3. true ⊆ f (true). Trivial from the assumption that f is a normal-right inverse.

As stated in the above lemma, for every normal right inverse f , f(c) must necessarily

include every (M, t) such that t is multiply determined w.r.t. i−→M , as well as every

(M, t) where t is uniquely determined w.r.t. i−→M by some s with (M, s) ∈ c.

5.1. Deriving Maximum Normal Right Inverse

Lemma 5.3 above tells us what sets should necessarily be included in every f(c) if f

is to be both normal and a right inverse of [·]i. It turns out that it is sufficient to include
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exactly those sets to obtain a normal right inverse of [·]i. In other words Lemma 5.3

gives us a complete set of conditions for normal right inverses. In fact, the least self-

map f w.r.t. ⊆, i.e., the maximum one w.r.t. the lattice order v, satisfying Conditions

1,2 and 3 in Lemma 5.3 is indeed a normal right inverse. We shall call such a function

the maximum normal right inverse ↑MN
i
.

Definition 5.4 (Maximum Normal-Right Inverse). Let K(S) = (Con,v, [·]1, . . . , [·]n)

be a Kripke SCS over S ⊆MD. We define the maximum normal right inverse for agent

i, ↑MN
i

as the following self-map on Con:

↑MN
i

(c)
def
=

 true if c = true

{(M, t) | t is determined w.r.t. i−→M & ∀s : s
i

_M t, (M, s) ∈ c}
(6)

(Recall that s
i

_M t means that s uniquely determines t w.r.t. i−→M .)

The following theorem states that ↑MN
i

(c) is indeed the maximum normal right inverse

of [·]i w.r.t. v.

Theorem 5.5. Let K(S) = (Con,v, [·]1, . . . , [·]n) and ↑MN
i

as in Definition 5.4.

• The self-map ↑MN
i

is a normal right inverse of [·]i,

• For every normal right inverse f of [·]i, we have f v ↑MN
i

.

Proof.

• The self-map ↑MNi is a normal right inverse of [·]i.

To prove it is a right inverse we prove [↑MNi (c)]i = c. From Theorem 3.6 to prove

that is a normal map it suffices to show that ↑MNi (true) = true and ↑MNi (c t d) =

↑MNi (c) t ↑MNi (d) (equivalent to proving ↑MNi (c ∩ d) = ↑MNi (c) ∩ ↑MNi (d)).

– [↑MNi (c)]i = c. Suppose (M, s) ∈ [↑MNi (c)]i. Then Ii(M, s) ⊆ ↑MNi (c)

from Definition 4.3. Since s is determinant w.r.t. i−→M , there exists t s.t.

s
i

_M t and (M, t) ∈ ↑MNi (c). Therefore by definition of ↑MNi , (M, s) ∈ c.

Now suppose (M, s) ∈ c, then for all states in Ii(M, s), they are either

uniquely determined by s or multiply determined w.r.t. i−→M , therefore

Ii(M, s) ⊆ ↑MNi (c), and consequently (M, s) ∈ [↑MNi (c)]i.
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– ↑MNi (true) = true . By definition of ↑MNi .

– ↑MNi (c ∩ d) = ↑MNi (c) ∩ ↑MNi (d). We first prove monotonicity (i.e. if c ⊆ d

then ↑MNi (c) ⊆ ↑MNi (d)). For this, suppose c ⊆ d. If (M, t) ∈ ↑MNi (c) then

by definition of ↑MNi t is determined w.r.t. i−→M . If there exists a state s

with (M, s) ∈ c s.t. s
i

_M t then (M, s) ∈ d, thus (M, t) ∈ ↑MNi (d). If

such state does not exist, then t is multiply determined w.r.t. i−→M and

consequently (M, t) ∈ ↑MNi (d). We now proceed with the proof.

∗ ↑MNi (c∩ d) ⊆ ↑MNi (c)∩↑MNi (d). Because c∩ d ⊆ c and c∩ d ⊆ d. Then

↑MNi (c∩ d) ⊆ ↑MNi (c) and ↑MNi (c∩ d) ⊆ ↑MNi (d) by monotonicity of ↑MNi .

Thus ↑MNi (c ∩ d) ⊆ ↑MNi (c) ∩ ↑MNi (d).

∗ ↑MNi (c)∩↑MNi (d) ⊆ ↑MNi (c∩d). Suppose (M, t) ∈ ↑MNi (c)∩↑MNi (d). Then

from the definition of ↑MNi , t is determined w.r.t. i−→M of ↑MNi . If there

exists s s.t. s
i

_M t, then (M, s) ∈ c and (M, s) ∈ d. Suppose there

exists such state s. Then (M, s) ∈ c∩d and (M, t) ∈ ↑MNi (c∩d). If not,

then t is multiply determined w.r.t. i−→M hence (M, t) ∈ ↑MNi (c ∩ d)

by definition of ↑MNi .

• For every normal right inverse f of [·]i, we have f v ↑MNi .

Suppose f is a normal right inverse. We then need to prove ↑MNi (c) ⊆ f(c)

for every c. Keep in mind that v is ⊇ in K(S). It suffices to prove that if

(M, t) ∈ ↑MNi (c) then (M, t) ∈ f(c). Take any (M, t) ∈ ↑MNi (c). Then:

1. t is determined w.r.t. i−→M , and

2. if t is uniquely determined w.r.t. i−→M , then s
i

_M t for some (M, s) ∈ c.

Suppose t is uniquely determined w.r.t. i−→M . Therefore, by Condition 1 of

Lemma 5.3 (i.e. Ii(M, s) ⊆ f if (M, s) ∈ c) we have that (M, t) ∈ f(c). Now

suppose it is not uniquely determined, then t is multiply determined w.r.t. i−→M .

Therefore by Condition 2 of Lemma 5.3 (M, t) ∈ f(c).
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Notice that ↑MN
i

(c) excludes indetermined states if c 6= true . It turns out that we can add

them and still obtain a normal right inverse. We shall see in the next section that this

kind of normal right inverse arises in the context of linear-time temporal logic.

Definition 5.6 (A Normal-Right Inverse). Let K(S) = (Con,v) be a Kripke SCS over

S ⊆ MD. Define ↑N
i

: Con → Con as ↑N
i
(c)

def
= {(M, t) | ∀s : s

i
_M t, (M, s) ∈

c}.

Clearly ↑N
i
(c) includes every (M, t) such that t is indetermined w.r.t. i−→M . We now

show that it is indeed a normal right inverse.

Theorem 5.7. Let K(S) = (Con,v, [·]1, . . . , [·]n) and ↑N
i

as in Definition 5.6. The

self-map ↑N
i

is a normal right inverse of [·]i.

Proof. To prove that ↑Ni is a right inverse we prove [↑Ni (c)]i = c. To prove that it is a

normal map, by Theorem 3.6, it suffices to prove ↑Ni (true) = true and ↑Ni (c t d) =

↑Ni (c) t ↑Ni (d) (equivalent to proving ↑Ni (c ∩ d) = ↑Ni (c) ∩ ↑Ni (d)).

• [↑Ni (c)]i = c. Suppose (M, s) ∈ [↑Ni (c)]i. Then Ii(M, s) ⊆ ↑Ni (c) from Def-

inition 4.3. As s is determinant w.r.t. i−→M , there exists t s.t. s
i

_M t and

(M, t) ∈ ↑Ni (c). Therefore by definition of ↑Ni , (M, s) ∈ c. Now suppose

(M, s) ∈ c, then for all states in Ii(M, s), they are either uniquely determined

by s or multiply determined w.r.t. i−→M , therefore Ii(M, s) ⊆ ↑Ni (c), and con-

sequently (M, s) ∈ [↑Ni (c)]i.

• ↑Ni (true) = true . We have ↑Ni (true) = {(M , t) | ∀s : s
i

_M t , (M , s) ∈

true}. Since (M, s) ∈ true trivially holds, (M, t) ∈ ↑Ni (true) for any (M, t).

Thus ↑Ni (true) = true .

• ↑Ni (c ∩ d) = ↑Ni (c) ∩ ↑Ni (d). We first prove monotonicity (i.e. if c ⊆ d then

↑Ni (c) ⊆ ↑Ni (d)). For this, suppose c ⊆ d and (M, t) ∈ ↑Ni (c). If there exists a

state s with (M, s) ∈ c s.t. s
i

_M t then (M, s) ∈ d, thus (M, t) ∈ ↑Ni (d). If

such state does not exist, then (M, t) ∈ ↑Ni (d). We now proceed with the proof.

– ↑Ni (c ∩ d) ⊆ ↑Ni (c) ∩ ↑Ni (d). We know c ∩ d ⊆ c and c ∩ d ⊆ d. Then, by

monotonicity of ↑Ni , ↑Ni (c ∩ d) ⊆ ↑Ni (c) and ↑Ni (c ∩ d) ⊆ ↑Ni (d). Therefore
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↑Ni (c ∩ d) ⊆ ↑Ni (c) ∩ ↑Ni (d).

– ↑Ni (c) ∩ ↑Ni (d) ⊆ ↑Ni (c ∩ d). Suppose (M, t) ∈ ↑Ni (c) ∩ ↑Ni (d). If there

exists s s.t. s
i

_M t, then (M, s) ∈ c and (M, s) ∈ d. Now suppose there

exists such s, therefore (M, s) ∈ c ∩ d and (M, t) ∈ ↑Ni (c ∩ d). If this is

not the case, then t is not determined w.r.t. i−→M by any other state, hence

(M, t) ∈ ↑Ni (c ∩ d) by definition of ↑Ni .

5.2. Deriving Minimal Normal-Right Inverses

In Definition 5.6 we included in ↑N
i
(c) all indetermined states. We did not include,

however, the states that are uniquely determined by states not in c. It turns out that,

under certain conditions, we can add all but one of them to ↑N
i
(c) and obtain a minimal

normal right inverse.

We shall see that not adding all uniquely determined is a necessary condition to guar-

antee that the resulting self-map is still a right inverse. We shall use choice functions

to select the uniquely-determined states that are not added. Nevertheless, we shall also

show that such selection must obey certain conditions to guarantee that the resulting

right inverse self-map is still normal.

Remark 5.8. A map m is a choice function (or selector) for a collection of nonempty

sets if it maps each set S in the collection to some element m(S) of S. Recall that

�i(M, s) denotes the set of all (M, t) such that s uniquely determines t w.r.t. i−→M

(see Notation 4.9). Notice that �i(M, s) 6= ∅ since we are assuming that each (M, s)

must be determining w.r.t. i−→M .

Below we define a minimal right inverse ↑mN
i,s , where s is a family of selectors, following

the above intuitions. Given c ∈ Con, we shall use a selector sc̄ ∈ s that chooses an

element in each set in the collection { �i(M, s) }(M,s)/∈c. These selected elements are

not included in ↑mN
i,s(c).

Definition 5.9 (Minimal Normal-Right Inverse). Let K(S) = (Con,v, [·]1, . . . , [·]n)
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be a Kripke SCS over S ⊆MD. Define ↑mNi,s : Con → Con as

↑mN
i,s(c)

def
= {(M, t) | ∀s : s

i
_M t, (M, s) ∈ c} ∪ (7)⋃

(M,s)/∈c

�i(M, s) \ {sc̄ ( �i(M, s) )} (8)

where s is a family { sc̄ }c∈Con such that (1) sc̄ is a selector for { �i(M, s) }(M,s)/∈c,

and (2) if c ⊆ d then sc̄(�i(M, s)) = sd̄(�i(M, s)) for every (M, s) 6∈ d.

From the above definition of ↑mN
i,s(c) it is easy to see that :

• (7) includes the indetermined states, the multiply determined states and the uniquely

determined states by any state s such that (M, s) ∈ c, and

• (8) includes uniquely determined states by any s′ such that (M, s′) /∈ c but it

excludes uniquely determined states selected by the choice function sc̄ in Defi-

nition 5.9 (1).

In the following example we will illustrate that if we were to include these selected

states, ↑mN
i,s(c) would not be a right inverse of [·]i.

s1

t1 t2

s2

t3 t4

s3

t5

...
...

...
...

...

i i i i i i

i i i i i

c d

Figure 2: Accessibility relations corresponding to the KS M for an agent i.

Example 5.10. Consider Figure 2 with c = {(M, s1), (M, s2)} and d = {(M, s3)}.

Let s be a family of selectors that includes sd̄ and sc̄. Assume that sd̄(�i(M, s1)) =

(M, t1), sd̄(�i(M, s2)) = (M, t3) and sc̄(�i(M, s3)) = (M, t5). From Definition 5.9

we obtain

↑mN
i,s(c) = {(M, t1), (M, t2), (M, t3), (M, t4)}.

Let us now consider h(c) = ↑mN
i,s(c) ∪ sc̄(�i(M, s3)) to be ↑mN

i,s(c) plus the pointed KS

from �i(M, s3) selected by the choice function sc̄. We would then obtain

h(c) = {(M, t1), (M, t2), (M, t3), (M, t4), (M, t5)}.
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Notice that any self-map g such that g(c) = h(c) cannot be a right inverse for [·]i.

From Definition 4.3 we would have

[g(c)]i = {(M, s1), (M, s2), (M, s3)} 6= c.

Notice that the selection of elements that are not included in ↑mN
i,s(c) need to obey Con-

dition (2) in Definition 5.9. This condition is needed for the normality of ↑mN
i,s(c). We

illustrate this in the following example.

s1

t1 t2 t3

s2

t4 t5

s3

t6

...
...

...
...

...
...

i i i i i i

i i i i i i

d
c

Figure 3: Accessibility relations corresponding to the KS M for an agent i.

Example 5.11. Consider Figure 3 with c = {(M, s2)} and d = {(M, s1), (M, s2)}.

Let s be a family of selectors that includes sc̄, sd̄ and sc∩d. Suppose that sc̄(�i(M, s1)) =

(M, t1) = sc∩d(�i(M, s1)), sc̄(�i(M, s3)) = (M, t5) = sc∩d(�i(M, s3)), and

sd̄(�i(M, s3)) = (M, t6).

We have c ⊆ d but sc̄(�i(M, s3)) 6= sd̄(�i(M, s3)) hence s does not satisfy Condition

(2) in Definition 5.9.

Notice that if we were to drop Condition (2) in Definition 5.9 we would obtain the

following.

↑mN
i,s(c) ={(M, t3), (M, t4), (M, t2), (M, t6)}

↑mN
i,s(d) ={(M, t1), (M, t2), (M, t3), (M, t4), (M, t5)}

↑mN
i,s(c ∩ d) = ↑mN

i,s(c) ={(M, t3), (M, t4), (M, t2), (M, t6)}

And since ↑mN
i,s(c) ∩ ↑mN

i,s(d) = {(M, t3), (M, t4), (M, t2)} then we would conclude

↑mN
i,s(c) ∩ ↑mN

i,s(d) 6= ↑mN
i,s(c ∩ d).
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Then ↑mN
i,s would not be a normal right inverse of [·]i (Theorem 3.6)

Now we prove that the function ↑mN
i,s(·) presented in Definition 5.9 is a normal right

inverse of the space function [·]i.

Theorem 5.12. Let K(S) = (Con,v, [·]1, . . . , [·]n) and ↑mN
i,s as in Definition 5.9. The

self-map ↑mN
i,s is a normal right inverse of [·]i.

Proof. To prove that ↑mNi,s is a right inverse we prove [↑mNi,s(c)]i = c. To prove that it is a

normal map, by Theorem 3.6, it suffices to prove ↑mNi,s(true) = true and ↑mNi,s(c t d) =

↑mNi,s(c) t ↑mNi,s(d) (equivalent to proving ↑mNi,s(c ∩ d) = ↑mNi,s(c) ∩ ↑mNi,s(d)).

• [↑mNi,s(c)]i = c. The proof of this equality is similar to corresponding one in the

proof of Theorem 5.7. Suppose (M, s) ∈ [↑mNi,s(c)]i. Then Ii(M, s) ⊆ ↑mNi,s(c)

from Definition 4.3. Since every state from K(S) is determinant w.r.t. i−→M ,

there must be t s.t. s
i

_M t and (M, t) ∈ ↑mNi,s(c). Therefore by definition of ↑mNi,s ,

(M, s) ∈ c. Now suppose (M, s) ∈ c, then for all states in Ii(M, s), they are

either uniquely determined by s or multiply determined w.r.t. i−→M , therefore

Ii(M, s) ⊆ ↑mNi,s(c), and consequently (M, s) ∈ [↑mNi,s(c)]i by Definition 4.3.

• ↑mNi,s(true) = true . The proof of this equality is also similar to corresponding one

in the proof of Theorem 5.7. Recall that true is the set of all pointed KS’s (M, s)

(with M ∈ S) while false is the empty set. Thus ∅ =
⋃

(M,s)/∈true �i(M, s) \

{sc̄(�i(M, s))}. From Definition 5.9 we obtain ↑mN
i,s(true) = {(M , t) | ∀s :

s
i

_M t , (M , s) ∈ true} = true .

• ↑mNi,s(c∩d) = ↑mNi,s(c)∩↑mNi,s(d). We first prove monotonicity of ↑mNi,s : If c ⊆ d then

↑mNi,s(c) ⊆ ↑mNi,s(d). Suppose c ⊆ d and (M, t) ∈ ↑mNi,s(c). We want to prove that

(M, t) ∈ ↑mNi,s(d). If t is indetermined or multiply determined w.r.t. i−→M then

trivially, from Definition 5.9, (M, t) is included ↑mNi,s(d). Otherwise, t is uniquely

determined and thus we must have an s such that s
i

_M t. If (M, s) ∈ c then

since c ⊆ d, we have (M, s) ∈ d and thus (M, t) ∈ ↑mNi,s(d) by Definition 5.9.

Otherwise (M, s) /∈ c and since (M, t) ∈ ↑mNi,s(c) we conclude from Definition

5.9 that

(M, t) ∈ �i(M, s) \ {sc̄(�i(M, s))}.
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If (M, s) ∈ d, then (M, t) ∈ {(M, t) | ∀s : s
i

_M t, (M, s) ∈ d} and (M, t) ∈

↑mNi,s(d). Otherwise (M, s) /∈ d and then from Condition (2) in Definition 5.9 we

conclude that (M, t) ∈ �i(M, s) \ {sd̄(�i(M, s))}. Hence from Definition 5.9

we conclude (M, t) ∈ ↑mNi,s(d) as wanted.

We now proceed to prove ↑mNi,s(c ∩ d) = ↑mNi,s(c) ∩ ↑mNi,s(d). The direction ↑mNi,s(c ∩

d) ⊆ ↑mNi,s(c) ∩ ↑mNi,s(d) is an immediate consequence of the the monotonicity of

↑mNi,s(·). To show that ↑mNi,s(c)∩ ↑mNi,s(d) ⊆ ↑mNi,s(c∩ d) it is convenient to define the

following sets:

A′1 ={(M, t) | ∀s : s
i

_M t, (M, s) ∈ c},

A′′1 ={(M, t) | ∀s : s
i

_M t, (M, s) ∈ d},

A′2 =
⋃

(M,s)/∈c

�i(M, s) \ {sc̄(�i(M, s))},

A′′2 =A′′1 , A
′
3 = A′1,

A′′3 =
⋃

(M,s)/∈d

�i(M, s) \ {sd̄(�i(M, s))},

A′4 =A′2, A
′′
4 = A′′3 .

And

B1 ={(M, t) | ∀s : s
i

_M t, (M, s) ∈ c ∩ d},

B2 =
⋃

(M,s)/∈c∩d

�i(M, s) \ {sc∩d(�i(M, s))}.

From Definition 5.9 we have ↑mNi,s(c ∩ d) = B1 ∪ B2. Using Definition 5.9 and

distributive set laws we obtain ↑mNi,s(c) ∩ ↑mNi,s(d) = (A′1 ∪ A′2) ∩ (A′′1 ∪ A′′3) =⋃
i∈I Ai where Ai = A′i ∩ A′′i for i ∈ I = {1, 2, 3, 4}. It is easy to verify that

A1 ⊆ B1 and A4 ⊆ B2. Using Condition (2) in Definition 5.9 we conclude

A′2 ⊆ B2 and A′′3 ⊆ B2. Thus, A2 ⊆ A′2 ⊆ B2, A3 ⊆ A′′3 ⊆ B2. Therefore

↑mNi,s(c) ∩ ↑mNi,s(d) ⊆ ↑mNi,s(c ∩ d) as wanted.

We shall show that the family of normal right inverses in Definition 5.9 are minimal
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(w.r.t. v) normal right inverses for the space function [·]i in the sense that there are no

normal right inverses below them. More precisely, h is a minimal normal right inverse

of [·]i iff h is a normal right inverse of [·]i and there is no other normal right inverse

g(·) of [·]i such that g v h.

Theorem 5.13. Let K(S) = (Con,v, [·]1, . . . , [·]n) and ↑mN
i,s as in Definition 5.9.

Then ↑mN
i,s is a minimal normal right inverse of [·]i.

Proof. We prove that there is no other normal right inverse g(·) for the space function

[·]i such that g(c) v ↑mNi,s(c) for every c ∈ Con. Recall that g(c) v ↑mNi,s(c) is equivalent

to ↑mNi,s(c) ⊆ g(c) (Remark 4.12).

By way of contradiction let us assume that there exists a normal right inverse g(·) for

[·]i, different from ↑mNi,s(·), such that ↑mNi,s(c) ⊆ g(c) for all c ∈ Con . Thus there must

be (M, t) and c ∈ Con such that (M, t) ∈ g(c) and (M, t) /∈ ↑mNi,s(c).

Since (M, t) /∈ ↑mNi,s(c), we can use Lemma 5.3 and Definition 5.9 to show that

(M, s) /∈ c and that (M, t) = sc̄(�i(M, s)) (9)

where s uniquely determines t in M (i.e., s
i

_M t).

From Equation 9 and Definition 5.9 it follows that �i(M, s) \ {(M, t)} is included in

↑mNi,s(c). But ↑mNi,s(c) ⊆ g(c) and (M, t) ∈ g(c) thus

�i(M, s) ⊆ g(c). (10)

From Lemma 5.3(2) and the assumption that g is a normal right inverse, g(c) includes

all (M, t) such that t is multiply determined w.r.t. i−→M . Consequently, using Equa-

tion 10 we conclude

Ii(M, s) ⊆ g(c). (11)

Since we assumed that g is a right inverse of [·]i we have [g(c)]i = c. We can use

Equation 11 and Definition 4.3 to conclude (M, s) ∈ [g(c)]i. Hence (M, s) ∈ c, a

contradiction with Equation 9.
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The above theorem identifies a family of minimal normal right inverses indexed by

collections of choice functions. The next theorem tell us that the family is complete in

the sense that every normal right inverse is bounded from below by some minimal right

inverse ↑mN
i,s .

Theorem 5.14. Let K(S) = (Con,v, [·]1, . . . , [·]n) as in Definition 5.9. Suppose

that g is a normal right inverse of the space function [·]i. Then there exists a minimal

normal right inverse ↑mN
i,s as in Definition 5.9 such that ↑mN

i,s v g.

Proof. Given a normal right inverse g of [·]i we will show the existence of a minimal

right inverse ↑mN
i,s of [·]i for some s such that for every c ∈ Con if (M, t) ∈ g(c) then

(M, t) ∈ ↑mNi,s(c) (see Remark 4.12).

From Theorem 5.12, Lemma 5.3 and Definition 5.9, ↑mNi,s(c) includes every (M, t) such

that t is multiply determined or indetermined w.r.t. i−→M as well as every (M, t) such

that t is uniquely determined w.r.t. i−→M by some s with (M, s) ∈ c. Consequently,

it suffices to prove that for every (M, t) such that t is uniquely determined by some s

with (M, s) /∈ c if (M, t) ∈ g(c) then (M, t) ∈ ↑mNi,s(c). More precisely, it suffices

to prove that there exists a family of selectors s such that the following holds for any

c ∈ Con:

If (M, t) ∈ g′(c) then (M, t) ∈ ↑mNi,s(c) (12)

where g′(e) def
= g(e) ∩

⋃
(M,s)/∈e �i(M, s).

We need to prove some properties about g′. The first property is the following:

If (M, s) /∈ c then �i(M, s) \ g′(c) 6= ∅. (13)

This property follows from the fact that g is normal and a right inverse. We prove

something stronger: If (M, s) /∈ c then g′(c) ⊂ �i(M, s). Notice that if (M, s) /∈

c then g′(c) ⊆ �i(M, s) since the sets �i(M, s′) of states uniquely-determined by

s′ are mutually exclusive. Then by way of contradiction suppose (M, s) /∈ c and

g′(c) = �i(M, s). Since g′(c) ⊆ g(c) we would have �i(M, s) ⊆ g(c). From Lemma

5.3(2) and the assumption that g is a normal right inverse, g(c) includes all (M, t) such

that t is multiply determined w.r.t. i−→M . Since �i(M, s) ⊆ g(c) we then conclude
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Ii(M, s) ⊆ g(c). But g is a right inverse of [·]i thus [g(c)]i = c. Using Definition 4.3

we would then conclude (M, s) ∈ [g(c)]i. Hence (M, s) ∈ c, a contradiction with the

assumption in Equation 13.

The second property we claim about g′ is the following:

If c ⊆ d and (M, s) 6∈ d then �i(M, s) \ g′(d) ⊆ �i(M, s) \ g′(c) (14)

To prove this property, suppose that c ⊆ d, (M, s) 6∈ d, and (M, t) ∈ �i(M, s)\g′(d).

Thus (M, t) ∈ �i(M, s) and (M, t) 6∈ g′(d). Since (M, s) 6∈ d we have (M, t) ∈⋃
(M,s)/∈d �i(M, s). But (M, t) 6∈ g′(d), and we must have (M, t) /∈ g(d). Since g is

normal it is monotone (Corollary 3.7), consequently c ⊆ d and (M, t) /∈ g(d) implies

(M, t) /∈ g(c). Hence (M, t) /∈ g′(c). It follows that (M, t) ∈ �i(M, s) \ g′(c) as

wanted.

To conclude the proof we now identify a minimal normal right inverse ↑mN
i,s that sat-

isfies Equation 12. Let s to be a family of choice functions {sc̄}c∈Con such that (I)

sc̄(�i(M, s)) ∈ �i(M, s) \ g′(c) and (II) sc̄(�i(M, s)) = sd̄(�i(M, s)) for every

(M, s) 6∈ d whenever c ⊆ d. Notice that because of Equation 13 condition (I) can be

fulfilled. Similarly, with the help of Equations 13 and 14, condition (II) can also be

fulfilled. Clearly s satisfies the selection conditions in Definition 5.9. Thus we have

↑mN
i,s

↑mN
i,s(c) = {(M, t) | ∀s : s

i
_M t, (M, s) ∈ c} ∪⋃

(M,s)/∈c

�i(M, s) \ {sc̄(�i(M, s))}

Because of (I), this minimal right inverse ↑mN
i,s is easily seen to satisfy Equation 12

which concludes the proof.

5.3. Summary

In this section we derived normal right inverses and classified them according to the

underlying Kripke SCS order. We focused on normal right inverses, because as we
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shall illustrate in the next section, they are ubiquitous in modal logic. We identified

the maximum normal right inverse ↑MN
i

, a normal right inverse ↑N
i

and the family of

all minimal right inverses, denoted as {↑mN
i,s}. The following corollary summarizes our

classification.

Corollary 5.15 (Taxonomy). Fix a Kripke SCS K(S) = (Con,v, [·]1, . . . , [·]n) with

S ⊆MD. Then

1. ↑mN
i,s v ↑

N
i
v ↑MN

i
for every s as in Definition 5.9, and

2. for every normal right inverse g of [·]i, there exists s as in Definition 5.9 such

that

↑mN
i,s v g v ↑

MN
i

(i.e., ↑mN
i,s(c) ⊇ g(c) ⊇ ↑MN

i
(c) for every c ∈ Con .)

where ↑MN
i
, ↑N

i
and ↑mN

i,s are given as in Definitions 5.4, 5.6 and 5.9 w.r.t. K(S).

The upper and lower bounds in Corollary 5.15(2) are useful to prove whether some e

is in a given normal-right inverse g. Thus if e ∈ ↑MN
i

(c) then e ∈ g(c) and if e /∈ ↑mN
i,s(c)

for every s then e /∈ g(c). We shall use these properties in the next section.

The following table summarizes the right inverses presented in Corollary 5.15 .

Maximum Right Inverse

↑M
i

The maximum right inverse for the space function [·]i wrt v (⊇).

↑M
i
(c) is the minimum set (wrt ⊆) of pointed Kripke structures such

that [↑M
i
(c)]i = c. The function ↑M

i
is not normal (Definition 3.5) as

shown in Proposition 5.2.

Definition 4.13.

Normal Right Inverses

↑MN
i

The maximum normal right inverse of [·]i wrt v (⊇). The function

↑MN
i

is normal and ↑MN
i

(c) is the minimum set (wrt⊆) of pointed Kripke

structures such that [↑MN
i

(c)]i = c.

Definition 5.4.

↑N
i

A normal right inverse of [·]i. The function ↑N
i

is normal and the set

↑N
i
(c) is given by ↑MN

i
(c) plus those pointed Kripke structures (M, t)

such that t is indetermined w.r.t. i−→M .

Definition 5.6.

↑mN
i,s

A minimal normal right inverse of [·]i wrtv (⊇). The function ↑mN
i,s

is

normal and ↑mN
i,s

(c) is a maximal set (wrt ⊆) of pointed Kripke struc-

tures, determined by a choice function sc, such that [↑MN
i

(c)]i = c.

Definition 5.9.
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6. Applications

In this section we will illustrate and briefly discuss the results obtained in the previous

sections in the context of modal logic.

Modal formulae can be interpreted as constraints in the SCS K(Sn(Φ)). First we recall

the notion of modal language.

Definition 6.1 (Modal Language). Let Φ be a set of primitive propositions. The modal

language Ln(Φ) is given by the following grammar:

φ, ψ, . . . := p | φ ∧ ψ | ¬φ | �iφ

where p ∈ Φ and i ∈ {1, . . . , n}.We shall use the abbreviations φ∨ψ for ¬(¬φ∧¬ψ),

φ⇒ ψ for ¬φ ∨ ψ, φ⇔ ψ for (φ⇒ ψ) ∧ (ψ ⇒ φ), the constant false ff for p ∧ ¬p,

and the constant tt for ¬ff .

We say that a pointed KS (M, s) satisfies φ iff (M, s) |= φ where |= is defined induc-

tively as follows:

(M, s) |= p iff πM (s)(p) = 1

(M, s) |= φ ∧ ψ iff (M, s) |= φ and (M, s) |= ψ

(M, s) |= ¬φ iff (M, s) 6|= φ

(M, s) |= �iφ iff (M, t) |= φ for every t such that s i−→M t.

Bisimilarity is a central equivalence in concurrency theory [24].

Definition 6.2 (Bisimilarity ([24])). Let B a symmetric relation on pointed KS’s. The

relation is said to be a bisimulation iff for every ((M, s), (N, t)) ∈ B: (1) πM (s) =

πN (t) and (2) if s i−→M s′ then there exists t′ s.t. t i−→N t′ and ((M, s′), (N, t′)) ∈

B. We say that (M, s) and (N, t) are (strongly) bisimilar, written (M, s) ∼s (N, t) if

there exists a bisimulation B such that ((M, s), (N, t)) ∈ B.

Bisimilarity-invariance. The well-known result of bisimilarity-invariance of modal

satisfiability [13] implies that if (M, s) ∼s (N, t) then (M, s) and (M, t) satisfy ex-

actly the same formulae in Ln(Φ).
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Modal logics are typically interpreted over different classes of KS’s obtained by impos-

ing conditions on their accessibility relations. Let Sn(Φ) be a non-empty set of n-agent

Kripke structures over a set of primitive propositions Φ. A modal formula φ is said to

be valid in Sn(Φ) iff (M, s) |= φ for each (M, s) such that M ∈ Sn(Φ).

We can interpret modal formulae as constraints in a given Kripke SCS C = K(Sn(Φ))

as follows.

Definition 6.3 (Kripke Constraint Interpretation). Let C be a Kripke SCS K(Sn(Φ)).

Given a modal formula φ in the modal language Ln(Φ), its interpretation in the Kripke

SCS C is the constraint CJφK inductively defined as follows:

CJpK = {(M, s) | πM (s)(p) = 1}

CJφ ∧ ψK = CJφK tCJψK

CJ¬φK = ∼ CJφK

CJ�iφK = [ CJφK ]i

Remark 6.4. One can verify that for any Kripke SCS K(Sn(Φ)), the Heyting negation

∼ c (Def. 3.1) is ∆ \ c where ∆ is the set of all pointed Kripke structures (M, s) such

that M ∈ Sn(Φ) (i.e., boolean negation). Similarly, Heyting implication c → d is

equivalent to (∼ c) ∪ d (i.e., boolean implication).

It is easy to verify that the constraint CJφK includes those pointed KS (M, s), where

M ∈ Sn(Φ), such that (M, s) |= φ. Thus, φ is valid in Sn(Φ) if and only if CJφK =

true .

Notice that from Proposition 4.5 and Theorem 3.6, each space function [·]i of K(Sn(Φ))

is a normal self-map. From Definitions 3.5 and 6.3 we can derive the following stan-

dard property stating that �i is a normal modal operator:

1. (Necessitation) If φ is valid in Sn(Φ) then �iφ is valid in Sn(Φ), and

2. (Distribution) �i(φ⇒ ψ)⇒ (�iφ⇒ �iψ) is valid in Sn(Φ).
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6.1. Right-Inverse Modalities

Reverse modalities, also known as inverse modalities, arise naturally in many modal

logics. For example in temporal logics they are past operators [12], in modal logics for

concurrency they represent backward moves [10], in epistemic logic they correspond

to utterances [9].

To illustrate our results in the previous sections, let us fix a modal language Ln(Φ)

(whose formulae are) interpreted in an arbitrary Kripke SCS C = K(Sn(Φ)). Suppose

we wish to extend it with modalities �−1
i , called reverse modalities also interpreted

over the same set of KS’s Sn(Φ) and satisfying some minimal requirement. The new

language is given by the following grammar.

Definition 6.5 (Modal Language with Reverse Modalities). Let Φ be a set of primitive

propositions. The modal language L+r
n (Φ) is given by the following grammar:

φ, ψ, . . . := p | φ ∧ ψ | ¬φ | �iφ | �−1
i φ

where p ∈ Φ and i ∈ {1, . . . , n}.

The minimal semantic requirement for each�−1
i is that, regardless of the interpretation

we give to �−1
i φ, we should have:

�i�
−1
i φ ⇔ φ valid in Sn(Φ). (15)

We then say that �−1
i is a right-inverse modality for �i (by analogy to the notion of

right inverse function).

Since CJ�iφK = [ CJφK ]i, we can use the results in the previous sections to derive

semantic interpretations for�−1
i φ by using a right inverse ↑i for the space function [·]i

in Definition 6.3. Assuming that such a right inverse exists, we can then interpret the

reverse modality in C as

CJ�−1
i φK = ↑i( CJφK ). (16)

Since each ↑i is a right inverse of [·]i, it is easy to verify that the interpretation satisfies

the requirement in Equation 15. Furthermore, from Theorem 4.11 we can conclude

that for each M ∈ Sn(Φ), i−→M must necessarily be determinant-complete.
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6.2. Normal Inverses Modalities

We can choose ↑i in Equation 16 from the set {↑N
i
, ↑MN

i
, ↑M

i
, ↑mN

i,s} of right inverse con-

structions in Section 4.3. Assuming that ↑i is a normal self-map (e.g., either ↑N
i
, ↑MN

i
,

or ↑mN
i,s ), we can show from Definition 3.5 and Equation 16 that �−1

i is itself a normal

modal operator in the following sense: (1) If φ is valid in Sn(Φ) then �−1
i φ is valid in

Sn(Φ), and (2) �−1
i (φ⇒ ψ)⇒ (�−1

i φ⇒ �−1
i ψ) is valid in Sn(Φ).

6.3. Inconsistency Invariance

We can conclude from Proposition 2.10(1) that since we assumed a right inverse of [·]i,

we should have

¬�iff valid in Sn(Φ). (17)

Indeed using the fact that [·]i is a normal self-map with an inverse ↑i and Theorem 3.6,

we can verify the following:

CJ�iff K = CJ�i(ff ∧�−1i ff )K = CJ�i(ff )∧�i(�
−1
i ff )K = CJ�i(ff )∧ff K = CJff K.

This implies �iff ⇔ ff is valid in Sn(Φ) and this amounts to say that ¬�iff is valid

in Sn(Φ).

Modal systems such Kn or HM [13] where ¬�iff is not an axiom cannot be extended

with a reverse modality satisfying Equation 15 (without restricting their models). The

issue is that the axiom ¬�iff , typically needed in epistemic, doxastic and tempo-

ral logics, would require the accessibility relations of agent i to be serial (recall that

determinant-complete relations are necessarily serial). In fact�iff is used in HM logic

to express deadlocks w.r.t. i; (M, s) |= �iff iff there is no s′ such that s i−→M s′.

Clearly there cannot be state deadlocks w.r.t. i if i−→M is required to be serial for each

M .

6.4. Bisimilarity Invariance

Recall that bisimilarity invariance states that bisimilar pointed KS’s satisfy the same

formulae inLn(Φ). The addition of a reverse modality�−1
i may violate this invariance,
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in the sense that bisimilar pointed KS’s may not longer satisfy the same formulae in

L+r
n (Φ). This can be viewed as saying that the addition of inverse modalities increases

the distinguishing power of the original modal language. We prove this next as an

application of our taxonomy of normal right inverses in Section 5.

Let us suppose that the chosen right inverse ↑i in Equation 16 is any normal self-map

whatsoever. Now take v and s4 as in Figure 4. Suppose that πM5
(v) = πM1

(si)

for every si in the states of M1. Clearly (M1, s4) ∼s (M5, v). Since s4 is multiply

determined then from Definition 5.4 (m, s4) ∈ ↑MN
i

(false). Using Corollary 5.15(2) we

obtain (m, s4) ∈ ↑i(false), and thus (M1, s4) |= �−1
i ff .

Since v is uniquely determined, applying Definition 5.9 we conclude that (M5, v) /∈

↑mN
i,s(false) for any s. From Corollary 5.15(2) it follows that (M5, v) /∈ ↑i(false) and

thus (M5, v) 6|= �−1
i ff .

s1

s3 s4

s2

s5

...
...

...

i i i i

i i i

(i) M1

v

i

(ii) M5

Figure 4: Accessibility relations for an agent i. In each sub-figure we omit the corresponding KS Mk from

the edges and draw s
i−→ t whenever s i−→Mk

t.

Thus, from the bounds for normal right inverses provided in this paper we have shown

that regardless of the normal interpretation of�−1
i , the formula�−1

i ff can tell uniquely

determined states from multiply determined ones but bisimilarity cannot tell them ap-

part.

6.5. Temporal Operators

We conclude this section with a brief discussion on some right inverse linear-time

modalities. Let us suppose that we have two agents n = 2 in our modal language
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Ln(Φ) under consideration. Thus, we can interpret them in Kripke SCS as C =

K(S2(Φ)).

Assume further that the intended meaning of the two modalities �1 and �2 are the

next operator (#) and the henceforth/always operator (2), respectively, in a linear-time

temporal logic. In order to obtain the intended meaning we take S2(Φ) to be the largest

set such that: If M ∈ S2(Φ), where M is a 2-agent KS, the accessibility relation
1−→M is isomorphic to the successor relation on the natural numbers and 2−→M is the

reflexive and transitive closure of 1−→M . The relation 1−→M is intended to capture the

linear flow of time. Intuitively, s 1−→M t means that the state t is the only next state

for s. Similarly, s 2−→M t, with s 6= t, is intended to capture the fact that t is one of

the infinitely many future states for s.

Let us first consider the modality �1 to be the next operator �1 = #. Notice that the

accessibility relation 1−→M is determinant-complete, because this is isomorphic to the

successor relation, therefore every state is uniquely determining its successor, and by

Theorem 4.11 there exists a right inverse of [·]i. If we apply Equation 16 taking as the

inverse ↑1 = ↑M
1
, i.e., the maximum right inverse of [·]1, we obtain �−1

1 = �, which

corresponds to a past modality known in the literature as the strong previous operator

[12]. Formally, the operator � is given by (M, t) |= � φ iff there exists s such that

s
M−→1 t and (M, s) |= φ.

If we take ↑i to be the normal right inverse ↑N
i
, we obtain �−1

1 = �̃ the past modality

known as weak previous operator [12]. The formal definition of the operator �̃ is given

by (M, t) |= �̃ φ iff for every s if s M−→1 t then (M, s) |= φ. Notice that the only

difference between the two operators is the following: If s is an indetermined/initial

state w.r.t. 1−→M then (M, s) 6|= � φ and (M, s) |= �̃ φ for any φ. It follows that � is

not a normal operator, since �tt is not valid in S2(Φ) but tt is.

Now consider the modality �2 to be the always operator �2 = 2. Notice that the

accessibility relation 2−→M is not determinant-complete because there are not determi-

nant states in the structure. Take any increasing chain s0
1−→M s1

1−→M . . . Then,

state s1 is not determinant because for every sj such that s1
2−→M sj we also have
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s0
2−→M sj . Theorem 4.11 tell us that there is no right inverse ↑2 of [·]i that can give

us an operator �−1
2 satisfying Equation 15 .

By analogy to the above-mentioned past operators, one may think that the past operator

it-has-always-been� [8] may provide a reverse modality for 2 in the sense of Equation

15. The operator is given by (M, t) |= �φ iff (M, s) |= φ for every s such that

s
2−→M t. Clearly 2� φ ⇒ φ is valid in S2(Φ) but φ⇒ 2� φ is not.

7. Concluding Remarks and Related Work

We gave an algebraic counterpart of the notion of normality from modal logic: A

self-map is normal if and only if it preserves finite suprema. We then studied the ex-

istence and derivation of right inverses (extrusion) of space functions for the Kripke

spatial constraint systems. We showed that being determinant-complete is the weakest

condition on KS’s that guarantees the existence of such right inverses. We identified

the maximum normal right inverse as well as all minimal right inverses of any given

space function. To illustrate our results we applied them to modal logic by using space

functions and their right inverses as the semantic counterparts of box modalities and

their right inverse modalities. We discussed their implications in the context of modal

concepts such as bisimilarity invariance, inconsistency invariance and temporal modal-

ities.

Most of the related work was discussed in the previous sections. The constraint sys-

tems in this paper can be seen as a modal extension of geometric logic [15]. Modal

logic has also been studied from an algebraic perspective by using modal extensions of

boolean and Heyting algebras in [25, 20, 26]. These works, however, do not address

issues related to inverse modalities. Inverse modalities have been used in temporal,

epistemic and logic for concurrency. In [8] the authors discuss inverse temporal and

epistemic modalities from a proof theory perspective. The work in [10, 27, 28] uses

modal logic with reverse modalities for specifying true concurrency and [29, 30] use

backward modalities for characterizing branching bisimulation. None of these works
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are concerned with an algebraic approach or with deriving inverse modalities for modal

languages.

Residuation theory [31] can be used for elegant characterizations of minimal informa-

tion and inverse operators. In fact it has been used in the context of soft concurrent

constraint programming, e.g. to allow for non-idempotent tell/post operations [32].

Soft CCP requires a richer notion of constraint system based on residuation theory. As

future work, it is natural to consider spatial extensions of the constraint systems from

[32] towards a more general framework of spatial soft CCP.

In the present paper we used spatial constraint systems (SCS’s) as an abstract repre-

sentation of modal logics. This helped us to prove new expressiveness results for these

logics. As future work we plan to use SCS’s as an abstract representation of process

calculi. We expect to use this representation to prove expressiveness results similar to

those in [33, 34] which are inspired by the close connection between processes and

formulae.
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Index

v, entailment, order relation, 9

t,
⊔

, join, LUB, supremum, 9

u,
d

, meet, GLB, infimum, 9

false (top), all (possibly inconsistent)

information, 9

true (bottom), empty information,

9

directed set, 9

compact element, 9

C, (Con,v), constraint system, CS,

10

Con , set of constraints, 10

Φ, set of primitive propositions,

11

B(Φ), boolean constraint system,

11

A(·), set of assignments, 11

L0(·), propositional language, 11

B[[·]], boolean interpretation, 11

(Con,v, [·]1, . . . , [·]n), spatial constraint

system, scs, 12

[·], space function, 12

S.1, first space axiom, 12

S.2, second space axiom, 12

E.1, extrusion axiom, 14

[·]−1, pre-image under [·] , 14

→, Heyting implication, 16

∼, Heyting negation, 16

constraint frame, 16

m(·), normal map, 18

(M, s), pointed Kripke structure,

21

π, states interpretation, 21

Ii(M, s), M states accessible by i from

s, 21

SM and πM , set of states and

interpretation function of M ,

21

K(Sn(·)), Kripke SCS, 22

Sn(·), set of Kripke structures, 22

[c]i(·), space function for Kripke

structures, 22

∆, set of pointed Kripke structures,

22

R, accessibility relation of a Kripke

structure, 23

�i(M, s), M states uniquely determined

by i from s, 23

Ii(M,S), M states determined by i from

states in S, 23

R, accessibility relation of a Kripke

structure, 23

MD, class of Kripke structures whoseR

are determinant-complete,

26

↑M
i
, maximum right inverse for space

function [·]i of agent i,

26

nd(·), set of indetermined states ,

27

md(·), set of multiply determined states,

27
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↑MN
i

, maximum normal-right inverse for

space function [·]i of agent i,

30

↑N
i
, a normal-right inverse for space

function [·]i of agent i,

32

↑mNi,s , minimal normal-right inverse for

space function [·]i of agent i,

33

s, family of choice functions/selectors,

33

{↑mN
i,s
}, family of minimal right inverses

for the space function [·]i of

agent i., 40

Ln(·), modal language, 42

tt , constant true, 42

ff , constant false, 42

|=, satisfiability relation, 42

∧,∨,⇒,⇔, logical operators, 42

�, box modality/modality, 42

∼s, bisimilarity relation, 42

B, bisimulation relation, 42

C[[φ]], Kripke SCS interpretation of φ,

43

�−1, reverse modality, 44

#, next operator in linear-time temporal

logic, 47

2, always/henceforth operator in

linear-time temporal logic,

47

�, strong previous operator, 47

�, it-has-always-been operator, 48
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