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Abstract. Shopping malls are characterized by a high density of users.
The use of direct device-to-device (D2D) communications may signifi-
cantly mitigate the load imposed on the cellular systems in such environ-
ments. In addition to high user densities, the communicating entities are
inherently mobile with very specific attractor-based mobility patterns.
In this paper, we propose a model for characterizing time-dependent
signal-to-interference ratio (SIR) in shopping malls. Particularly, we use
fractional Fokker-Plank equation for modeling the non-linear functional
of the average SIR value, defined on a stochastic fractal trajectory. The
evolution equation of the average SIR is derived in terms of fractal mo-
tion of the tagged receiver and the interfering devices. We illustrate the
use of our model by showing that the behavior of SIR is generally varying
for different types of fractals.

Keywords: mobility, fractal stochastic motion, time-dependent metrics, aver-
age SIR evolution, device-to-device communications

1 Introduction

The numbers of hand-held devices have dramatically increased over the past
decade [1] followed by a tremendous traffic growth brought along by the emerg-
ing spectrum consumers [2]. This trend is expected to be continued towards
new growing markets of wearable electronics that integrate into the next gen-
eration (5G) communications paradigm [3, 4] and direct device-to-device (D2D)
connectivity as part of it [5]. At the same time, International Telecommunica-
tions Union (ITU) has recently provided 5G requirements including several novel
scenarios [6] and offered some considerations on the mobility support [7].
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While the communications quality in conventional outdoor scenarios could
be improved by increasing the density of wireless infrastructure nodes [8], the
indoor case is much more sensitive to wireless interference [9]. It is particularly
important for the enclosed offices, corridors within their premises, and shopping
malls [10]. The typical environments of this type could be described as cubical
areas with different sizes where the user movement is fairly predictable [11], [12].

The mobility pattern of a user in the indoor premises depends on a number
of factors dictating the movement trajectory, that is, it is not an entirely “ran-
dom” process. A typical example of the corresponding mobility model could be
described as a relatively slow movement of users inside the shops and faster move-
ment between them. Similar behavior is observed in the dynamics of fractal sets,
see, e.g., [13], [14]. The analysis of stable connectivity between mobile devices in
such a scenario could be considered as a challenging task in the context of 5G
communications systems [15], [16], [17], [18].

A conventional way to study the performance of wireless networks is to uti-
lize the tools of stochastic geometry. According to this approach, the locations
of communicating entities are represented by employing a static spatial point
process. The metrics of interest, such as the signal-to-interference ratio (SIR)
moments and distributions, are then obtained by analyzing the distances be-
tween a receiver, a transmitter, and other communicating stations [19], [20].
This approach is however limited to static time-averaged measures. At the same
time, accounting for the fact that communication sessions are always of finite
durations, time-dependent metrics are often of interest.

In this work, a model for analyzing the dynamics of the connection qual-
ity indicator, the so-called SIR, is developed. We consider the case, where the
movement of transceivers is considered as a set of paths that are random on a
fractal set process. The proposed model is a representative abstraction for the
aforementioned office or shopping mall scenario, where the fractal set represents
the attraction points of a shopping mall (specific areas inside the shops). The
analysis is based on the Fokker-Planck equation with fractional spatial deriva-
tives. The model considers the distribution of coordinates for the receiver, the
transmitter, and the interfering stations, as well as the level of mobility, and
translates them into the average SIR evolution in time. The use of fractal sets
allows to explicitly include the effects of spatial movement correlation thus ad-
equately representing the real-life scenarios. We illustrate the application of the
proposed model and demonstrate that the behavior of SIR is generally varying
for different types of fractals, that is, spatial correlation of the movement process.

The rest of this work is organized as follows. The system model, metrics of
interest, and SIR trajectory modeling are introduced in Section 2. The formula-
tion for the time evolution of SIR is derived in Section 3. The numerical results
and the conclusions are drawn in the last section.
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2 System Model and Preliminaries

2.1 Random Walks over Fractal Sets

We consider a set of users moving over the fractal set. We focus on a tagged re-
ceiver and N interfering stations. The random movement trajectory of a user is
represented as a random walk on the three-dimensional fractal set [17]. Fokker-
Planck equation with fractional derivatives that represents the distribution func-
tion on such sets has been studied in [21]. One of the crucial assumptions in
our model is that the motion of each spatial coordinate is small movements
independent. With this assumption at hand, the evolution equation in the one-
dimensional coordinate space can be considered as a basic model. This equation
is the following

δf(x, t)

δt
+
δ(u(x, t)f(x, t))

δx
= B(t)

δ2αf(x, t)

δx2α
, (1)

where f(x, t) is a continuously differentiable function of the coordinates and time,
u(x, t) is the so-called drift velocity, which is defined as the average velocities of
the respective two-dimensional distribution [17], that is,

u(x, t)f(x, t) =

∫
F (x, v, t)vdv, (2)

where the integration is performed over the entire mobility domain by consider-
ing the boundary conditions.

The non-negative diffusion coefficient B(t) is determined as

B(t) =
1

2

dσ2

dt
− covx,u(t), (3)

where

σ2(t) =

∫
(x− x(t))2f(x, t)dx, x(t) =

∫
xf(x, t)dx. (4)

The value of the fractal derivative α, α ∈ (0, 1) is a parameter of the model.
This fractional order derivative has several different interpretations. It can be
considered in terms of Riemann-Liouville, Riesz-Feller, Caputo-Gerasimov, Grunwald-
Letnikov, see, e.g. [22] for further details. The function f is required to belong
to Lp, p > 1 class with respect to x. For example, a symmetric Riesz-Feller
derivative on [a, b] is represented as

δ2αf(x)

δx2α
=

1

2cosπα

[(
D2α
a+f

)
(x) +

(
D2α
b−f

)
(x)
]
, (5)

where (
D2α
a+f

)
x =

1

Γ (m− 2α)

dm

dxm

∫ x

a

f(y)(x− y)m−2α−1dy,

(
D2α
b+f

)
x =

(−1)m

Γ (m− 2α)

dm

dxm

∫ b

x

f(y)(y − z)m−2α−1dy,
(6)
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and m = [Re(2α)] + 1. We consider the special case, m = 2, in (1).
The fractional derivative term is conventionally represented as a convolution

with an appropriate (usually singular) kernel as

δ2αf(x)

δx2α
=

∫
Kα(x− y)f(y)dy. (7)

We consider the following kernel

Kα(z) =
1

Γ (1− 2α)

1

z2α
.

The kinematic equation (1) can be solved numerically for any initial condition
f(x, t)|t=0 = p(x) and boundary conditions. We choose the probability of zero
flow at the border as the latter.

The coordinates density distribution of users corresponding to the motion
over a fractal random trajectory is described in the n-dimensional space (n =
1, 2, 3) by the following equation

δf(x, t)

δt
+ divx

(
u(x, t)f(x, t)

)
= B(t)

∫
K
(
|x− y|

)
f(y, t)dy, (8)

where u(x, t), B(t), and K(z) are known.
In the following sections, we study the dependence of the mean SIR value,

when the mobility trajectories are samples generated from the distribution evolv-
ing according to (8).

2.2 SIR Trajectories

Observe that SIR is a functional depending on the distance between the moving
points at consecutive time instants. The coordinates (xi(t), yi(t), zi(t)) deter-
mine the position of the ith point of the trajectory in a convex three-dimensional
region, V ⊂ <3. The distance between the points on two randomly chosen tra-
jectories in three-dimensional space is defined by

r2ij =
(
xi(t)− xj(t)

)2
+
(
yi(t)− yj(t)

)2
+
(
zi(t)− zj(t)

)2
. (9)

Let the function of interest, depending on the distance between the spatial
points and belonging to different trajectories, be denoted as φij = φ(rij). In
wireless networks, this function is known as the path loss model. In this paper,
we assume the commonly accepted power law path loss model [23], i.e.,

φij ≡ φ(rij) =
1

r2ij
. (10)

In a field of N + 2 moving users, let us tag two users – one receiver and one
transmitter. The remaining nodes are considered as interfering stations. The
mean SIR at the tagged receiver at each time instance is given by

S(r1, r2) =
φij∑N+2
j=3 φ1j

, (11)
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where the sum in the denominator is the average value of the interference defined
by using the distances between the receiver and the interfering stations, i.e.,

U(r, t) =

∫
V

φ
(
|r − r′|

)
f(r′, t)dr′, (12)

and f(r′, t) is the density function of distances.

Then, the mean SIR in (11) can be written as

q(t) =

∫
S(r, t)f(r, t)dr. (13)

The mean value of SIR in (13) depends on the average environmental field
U(r, t) in (12). This value is a non-linear function over the trajectory sample.

2.3 Examples

The typical movement trajectories in the example obtained for the fractal walk
on a two-dimensional ternary Cantor set are shown in Fig. 1(a). The modeling
algorithm is described in [17]. As one may observe, the mobility process of users
comprises many short travels around the attractor points as well as occasional
long-distant movements. This process closely resembles the basic properties of
real measurements of user mobility in shopping malls, see, e.g., [24].

The associated SIR trajectory produced by using (13) for a randomly tagged
receiver is shown in Fig. 1(b). For this illustration, the number of interfering
stations, N , was set to 100. Note that the autocorrelation being a result of
spatial correlation caused by a fractal set is clearly observed.

(a) Random trajectories (b) SIR trajectory

Fig. 1. Ternary Cantor set in <2.
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3 Formulation for Evolution of Average SIR

In this section, we derive the main result of this paper, which is the evolu-
tion equation for the average value of SIR as specified in (13). Recall that the
coordinates density of the communicating users evolves according to (8). Us-
ing (12)–(13), we obtain

N
dq

dt
=

∫
V

φ(r)

U(r, t)

δf(r, t)

δt
dr −

∫
V

φ(r)

U2(r, t)

δU(r, t)

δt
f(r, t)dr. (14)

Substituting the first term of (14) with the derivative δf(r,t)
δt obtained from (8),

we proceed as∫
φ(x)

U(x, t)

δf(x, t)

δt
= −

∫
φ(x)

U(x, t)
divx

(
u(x, t)f(x, t)

)
dx+

+B(t)

∫
φ(x)

U(x, t)

∫
K
(
|x− y|

)
f(y, t)dydx =

=

∫
gradx

( φ(x)

U(x, t)

)
u(x, t)f(x, t)dx+

+B(t)

∫
φ(x)

U(x, t)

∫
K
(
|x− y|

)
f(y, t)dydx.

(15)

The equation (15) is obtained by using the integration by parts if the distri-
bution function vanishes on the boundary of the region. We further denote the

result of the scalar product u(x, t)gradx

(
φ(x)
U(x,t)

)
by P (x, t). Due to the SIR het-

erogeneity and the existence of non-zero density function for the speed change,
the offset in the average value of SIR is estimated by the scalar product. The
second term with the altered integration order from the last line of (15) is ob-
tained in the form of SIR fractal derivative by applying Fubini’s theorem as

R(y, t) = D2α
(
φ
U

)
(y, t). Hence, we now have

∫
φ(x)

U(x, t)

δf(x, t)

δt
dx =

∫ (
P (x, t) +B(t)D2α

( φ
U

)
(x, t)

)
f(x, t)dx. (16)

The second term in (8) can be treated similarly. Particularly, substituting
derivative in (12) with δf/δt of (8), the derivative δU/δt becomes

δU(r, t)

δt
=

∫
φ
(
|r − r′|

)δf(r′, t)

δt
dr′ =

−
∫
φ
(
|r − r′|

)
divr′

(
u(r′, t)f(r′, t)

)
dr′+

+B(t)

∫
φ
(
|r − r′|

)
K
(
|r′ − r′′|

)
f(r′′, t)dr′dr′′.

(17)
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Integrating the first term by parts, we have∫
φ
(
|r − r′|

)
divr′

(
u(r′, t)f(r′, t)

)
dr′ =

=

∫
gradr′φ

(
|r − r′|

)(
u(r′, t)f(r′, t)

)
dr′ =

=

∫
gradrφ

(
|r − r′|

)(
u(r′, t)f(r′, t)

)
dr′ =

= divr

∫
gradrφ

(
|r − r′|

)(
u(r′, t)f(r′, t)

)
dr′ = divrJ(r, t).

(18)

The resulting equation is obtained by replacing the derivative of φ(|r − r′|)
with respect to r′ by the derivative with respect to r. The second term in (8) for
the fractional derivative of the Lp([a, b]) class of functions is represented as [22]∫ b

a

h(x)
(
D2α
a+g

)
(x)dx =

∫ b

a

h(x)
(
D2α
b−h

)
(x)dx.

As a result, we obtain∫
φ
(
|r − r′|

)
K
(
|r′ − r′′|

)
f(r′′, t)dr′dr′′ =

(
D2αU

)
(x, t). (19)

Next, by combining (17) and (19), we arrive at

δU(x, t)

δt
= B(t)

(
D2αU

)
(x, t)− divxJ(x, t). (20)

The latter result demonstrates that the average SIR changes over time in
the same manner as the distribution function of coordinates defined in (8). Note
that these changes occur with the same coefficients as in (8).

The final equation for the evolution of the mean value of SIR is obtained
with (14) and (16)–(20), thus resulting in

N
dq

dt
=

∫ (
P (x, t) +B(t)D2α

( φ
U

)
(x, t)

)
f(x, t)dx−

−B(t)

∫
φ(x)

U2(x, t)

((
D2αU

)
(x, t)

)
f(x, t)dx+

+

∫
φ(x)

U2(x, t)

(
divxJ(x, t)

)
f(x, t)dx.

(21)

Observe that the above equation non-linearly depends on the distribution
function of the coordinates of points. Therefore, to quantitatively assess each
contribution of the term in (21) to the SIR values, the numerical simulations
are required. The result in (21) is a general model of the average SIR values
evolution in diffusion approximation, and it is valid not only for fractal but also
for the general non-stationary random walks.



8 Yuri Orlov et al.

Cantor

Sierpinski

-10 -8 -6 -4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

SIR, logarithmic scale

S
IR
P
D
F

(a) SIR density

Cantor

Sierpinski

0 200 400 600 800
0.0

0.5

1.0

1.5

Time

A
ve
ra
ge
S
IR

(b) Average SIR evolution

Fig. 2. SIR densities and average SIR evolution in time for two fractals.

Despite the complex structure of (21), it still provides a possibility to make
qualitative conclusions regarding the contributions of each component. In the
scenario with α = 1 in (8), there is an interesting special case of the so-called
zero-flow average SIR. Recall that in the classic Fokker-Planck equation, the
term f(r, t)ugrad

(
φ
U

)
after integration over the region of interest represents the

drift. Here, the term φ
U2 div(J) corresponds to the similar effect, but it affects

the average field U(r, t). These two terms have different signs, i.e., the total
transport effect of the drift u∇ φ

U + φ
U2 div(J) after integration with the density

f(r, t) might be negligible, e.g., the average scalar product of the drift and the
radius-vector ur is equal to zero. In this case, the SIR changes are due to the
diffusion effect only.

4 Numerical Results and Conclusions

The result in (21) offers an opportunity for faster modeling of the average SIR
values. In our numerical illustration, we consider two empirical density functions
corresponding to two various Hausdorff dimensions of the fractal sets, Cantor
square with 2α1 = ln 8/ ln 3 and Sierpinski triangle with 2α2 = ln 3/ ln 2. As one
may observe in Fig. 2(a), these functions exhibit drastically different properties.

The average SIR values for the sample lengths of 100 are demonstrated in
Fig. 2(b). The number of interfering nodes in this example is N = 10. Note
that the Cantor fractal results have much more variability implying that an
appropriate choice of the underlying model is of paramount importance.

In this paper, starting from the kinematic equation that describes the evolu-
tion of the coordinates density of users, we obtained the equation for the time
evolution of the average SIR value experienced at the receiver of interest that
moves in a field of N interfering stations. The proposed formalism allows to
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address a wide variety of specific movement patterns including non-stationary
ones. We then proceeded with obtaining the kinematic equation for the average
SIR value. The resulting expression, although being complex, can be solved in
special cases of interest, e.g., when the stationary density of the coordinates is
considered. However, even in the general case of non-stationary movement, it
allows for the qualitative assessment.

Our numerical illustration highlights that the average SIR evolution is drasti-
cally affected by the choice of the fractal set. One practical problem emphasized
by our study is to determine the appropriate value of α for different environ-
ments. In realistic scenarios, i.e., for applications in shopping malls, stadiums,
etc., there is not only non-zero time-dependent drift corresponding to e.g., a
lunch break or other intermissions when the flow of people changes significantly,
but also specific collective effects with non-local interaction.
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