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Abstract. Creating multiple layout alternatives for graphical user interfaces to
accommodate different screen orientations for mobile devices is labor intensive.
Here, we investigate how such layout alternatives can be generated automatically
from an initial layout. Providing good layout alternatives can inspire developers
in their design work and support them to create adaptive layouts. We performed
an analysis of layout alternatives in existing apps and identified common real-
world layout transformation patterns. Based on these patterns we developed a
prototype that generates landscape and portrait layout alternatives for an initial
layout. In general, there is a very large number of possibilities of how widgets can
be rearranged. For this reason we developed a classification method to identify
and evaluate “good” layout alternatives automatically. From this set of “good”
layout alternatives, designers can choose suitable layouts for their applications.
In a questionnaire study we verified that our method generates layout alternatives
that appear well structured and are easy to use.

Keywords: Automatic layout, Layout design, Screen rotation, Device independence

1 Introduction

Today, mobile apps need to support different screen orientations, i.e., landscape and
portrait, and need to have reasonable layouts for both orientations. To support this need,
mobile platform user interface (UI) development frameworks enable developers to spec-
ify flexible UIs, which can adapt to different conditions through two means: UI design-
ers can use layout managers to resize a UI automatically to the available screen space,
and UI designers can specify layout alternatives for different screen orientations.

Layout managers adapt the size of each UI widget to the available space, but in
general preserve the overall arrangement of the widgets. An example of this is shown
in Figure 1: the left parts shows a UI designed for portrait orientation, and at the top-
right, the same UI is shown in landscape. As this UI’s layout manager keeps relative
positioning intact, the landscape UI still has the same overall layout as the original
design on the left. Yet, due to the different aspect ratio between portrait and landscape



Fig. 1. Left: portrait layout. Top right: origi-
nal layout in landscape mode; space is not op-
timally used. Bottom right: layout adapted to
landscape mode.

Fig. 2. There are many possible layout alterna-
tives for a given portrait layout. Top right: an ex-
ample for a bad alternative. Bottom right: one
reasonably good alternative.

orientation, the UI at the top-right does not make optimal use of the available space: the
interface is stretched horizontally while the list view displays only a few items.

Some layout managers, such as a flow layout, can make a layout more adaptive
to different screen sizes. However, such adaptive layout managers may not always be
powerful enough or can lead to undesirable results. For example, a flow layout may
break a row of widgets at an undesired position. Also, multiple flow layouts in the same
layout may result in undefined behavior since multiple solutions are possible. To avoid
this, many UI designers today manually specify separate layout alternatives for certain
screen conditions, e.g., for landscape. In Figure 1, such a layout is shown at the bottom-
right: widgets are rearranged to make better use of the available space. Yet, manually
creating alternative layouts is laborious and error prone. Regardless of the used layout
manager, the developer has to consider the layout carefully for each screen condition.
Automatic generation of layout alternatives would not only make it easier for developers
to adapt their layouts to alternative screen orientations, but also support their creativity
by providing new layout ideas they may not have envisioned as an alternative.

The number of possible layout alternatives grows exponentially with the number of
widgets in the layout, i.e., in a complex layout there is a huge number of ways widgets
can be rearranged. This makes it difficult to analyze all possible options and, more im-
portantly, it is not clear how to identify “good” layout alternatives from the huge set
of possible alternatives. For example, Figure 2 shows two possible landscape alterna-
tives for a relatively simple portrait layout; while intuitively the bottom alternative is
better than the top one, it is not directly clear how to automatically detect this. Here, we
develop a novel classification method to identify “good” alternatives.

To address the question of how layout alternatives should be generated, we analyzed
815 existing mobile apps to identify common layout transformation patterns. Based on
the findings we define transformation rules between layouts and apply these transfor-
mation rules systematically to a given layout to create appropriate alternatives. The gen-
erated alternatives are then ranked using a novel objective function, which is then used



to provide a shortlist of suggestions to a GUI designer. In our survey of existing apps,
we identified that landscape alternatives for portrait layouts contain the most changes,
which motivated us to tackle this transformation first. In many cases, this transforma-
tion is the more appropriate option for the design process, as the default orientation of a
mobile UI is portrait and the landscape alternative is typically added after [1, 2]. How-
ever, our prototype also supports the generation of portrait alternatives for a landscape
layout. In a questionnaire study, we found that our method is able to generate and iden-
tify landscape layout alternatives that appear to be well structured, easy to use, and that
the automatic generation of layout alternatives can support GUI design.

Our contributions are:

1. An empirical study summarizing the use of layout alternatives in existing apps.
2. An automatic method to generate landscape and portrait layout alternatives.
3. An objective function to identify a set of “good” layout alternative candidates.
4. An evaluation of the approach.

2 Related Work

A variety of design guidelines and UI design patterns exist for mobile devices [3–5].
Nilsson [6] summarized design patterns for mobile UIs; some of these patterns focus
on utilizing screen space, including the switch between portrait and landscape mode.
Scarr et al. [7] compared the performance of three adaptation techniques for displaying
a set of icons – scaling, scrolling and reflow – and illustrated the usability benefits of
preserving spatial layout consistency. However, the mentioned work does not provide
guidelines or patterns to adapt layouts to different screen orientations or conditions.

Adaptive layout classes can adapt a GUI to different screen sizes [8]. This technique
is also used for web-based document layouts [9,10]. However, as discussed earlier, such
adaptive layout classes are not always sufficient for more drastic aspect ratio changes
where widgets need to be rearranged.

UI generators generate UIs automatically [11–14], and are typically based on UI
models which are specified by designers, such as task models, abstract UI models and
concrete UIs [15]. In this approach layout templates are filled with widgets from a spec-
ification to form a concrete layout. This has also been used to generate multiple user
interfaces from a single specification [16–18]. Similarly, documents with dynamic con-
tent can be rendered using multiple templates, selected based on constraints [19], or
web pages can be transformed into layout templates [20]. Lee et al. [21] provide pre-
defined layout examples and generate the final web document from a selected example.
With this approach, the output layout is predefined by a designer while in our approach
the layout is generated dynamically.

In our work we use an objective function to find an optimal layout alternative for the
given screen conditions. This technique has also been used to improve the usability and
aesthetics of UIs created in a sketching tool [22] as well as for automatic document for-
matting [23]. Sears [24] proposed an objective function for UI layouts which accumu-
lates the expected time required to perform common tasks. Similarly, SUPPLE [25,26]
adapts layouts to user’s motor and vision capabilities by choosing optimal widgets. Our
objective function is based on design patterns and designed to find “good” layouts using



layout information only available at design time. The designer is then able to select an
alternative layout from a list of possibly “good” layouts. SUPPLE also optimizes layout
containers, e.g., the orientation of a linear layout, to make a layout fit to different screen
sizes. Compared to SUPPLE, we perform more complex changes to the layout topology
by re-grouping widgets and recursively applying a set of layout transformations.

Layout graph grammars, a.k.a. spatial graph grammars, have been proposed as a
formal method for layout transformation. Brandenburg [27] described how context-
free graph grammars can be extended with layout specifications to visualize a graph.
Others extended this work and showed how context-sensitive graph grammars with
layout specifications and actions can be used to describe certain adaptations of web
pages [28, 29]. However, transformations still have to be defined manually.

Web pages often need to be adapted for viewing on mobile devices. Roudaki et
al. [30] summarized various approaches for this purpose. Qiu et al. [31] compared
methods for adapting and rendering web pages on small display devices by breaking
them down into a structural overview and detail views for content. Florins and Van-
derdonckt [32] proposed rules for graceful degradation of UIs when they are used on
more constrained devices. Yu and Kong [33] compared small-screen UI design patterns
for news websites. In our work we target layout transformations for screen orientation
changes where the screen area stays the same.

Personalized UIs have been proposed as a way to adapt UIs dynamically to different
users and situations. Hinz et al. [34] proposed to mine personalized content adaptation
rules from user interactions for the optimization of web content presentation on mobile
devices. The Framework for Agile Media Experiences (FAME) [35] permits developers
to define logical page models that are dynamically filled with content deemed appropri-
ate for a certain user while satisfying given constraints. However, these approaches use
predefined layout specifications to render the UI.

UI builders are development tools for specifying resizable UI layouts. Constraint-
based layouts, such as Auto Layout4, are often used to make a layout resizable [8, 36–
38]. Hottelier et al. [39] proposed a technique which allows designers to generalize and
specialize constraint-based layout specifications using direct manipulation. Xu et al.
proposed methods that make it easier for designers to beautify UIs by inferring layout
constraints [40] and to arrange graphic elements with commands [41] based on the way
they are visually grouped. The Auckland Layout Editor [42] maps simple drag&drop
operations to linear layout constraints. However, little help is available when existing
layouts need to be adapted to new requirements.

3 Analysis of Existing Layout Alternatives

To get an overview of current practices in layout adaptation, we surveyed existing lay-
outs in real software projects, and analyzed how such layouts are adapted to different
screen conditions. Also, we were interested in identifying commonly used adaptation
patterns. To answer these questions we automatically analyzed the source code of all
815 (in 2014) available open source Android apps from the F-Droid project5. Android

4 developer.apple.com/design/adaptivity
5 f-droid.org
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Fig. 3. Boxplot of number of layouts per application.

uses a standardized way to specify layout alternatives for different screen conditions in
XML files, which provided the data for our study. Layouts can also be specified directly
in Java code, but in our data set only 2% of the layouts were instantiated that way.

Usage of Layout Models Our survey identifies layout models that are frequently used
in Android layout specifications. This enables us to get a better grasp on the types of
layout arrangements that need to be transformed in practice. Android offers many of
the common layout models, such as: LinearLayout for arranging widgets vertically in
a column or horizontally in a row; RelativeLayout, which is a form of constraint-based
layout; FrameLayout, which usually contains only a single widget; and GridLayout,
which arranges widgets in a grid. Figure 3 shows a boxplot of the usage frequencies
for different layout models in the apps. LinearLayout is the most common model, and
vertical LinearLayouts are somewhat more common than horizontal ones. The second
most frequent class of layouts is RelativeLayouts, followed by the simple FrameLayout.
Other models, such as TableLayout and GridLayout, are relatively uncommon. These
results are consistent with the findings of Shirazi et al. [43]. ScrollView is not a layout
model, but is usually used to make a layout resizable when screen estate is scarce.

Analysis of Layout Transformations To analyze the relevance of layout alternatives, we
surveyed how frequently developers specify such alternatives for their apps. Further-
more, we analyzed how much each layout alternative differs from the corresponding
default layout. To measure this, we looked at the widgets that we were able to uniquely
identify (by their ID) in a layout alternative as well as in the corresponding default
layout. We counted how many of these widgets are at a different structural position
(∆position) in a layout alternative compared to the default. Widgets were considered to
be at different positions if their paths to the root of the layout hierarchy, as given in the
XML file, differed.

Among the 815 apps with 11, 110 layouts we found 365 (3.2%) alternatives for
landscape layouts and 397 (3.5%) alternatives for different layout sizes (247 (2.2%)
alone for large6 layout sizes). The low percentage of layout alternatives alone already

6 developer.android.com/guide/practices/screens_support.html
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supports the need for automatic layout alternative generation. We found that the layout
alternatives for landscape contain on average more widgets at different positions than
the alternatives for different sizes (∆position = 6.5 vs. ∆position = 3.6).

To understand how a layout specification is typically adapted to different screen
sizes and orientation, we manually analyzed 99 of the layout alternatives in detail (63
landscape and 36 other resizing alternatives). In particular, we selected those layout al-
ternatives in which the widget positions changed significantly, i.e., with∆position ≥ 10,
plus 15 randomly selected layouts with a smaller difference. Since we did not know
what layout adaption techniques we would encounter, we first identified layout adapta-
tion categories by manually analyzing the layouts. In a second step another researcher
classified the layouts into these categories. We identified the following categories of
transformations in the layouts:
1. Appearance: changes in fonts, text labels, image content, spacing or insets, widget

size (but not arrangement), etc.
2. Widgets: widgets were added or removed.
3. Horizontal Flow: a row of widgets was broken into several adjacent rows, or adja-

cent rows were joined.
4. Vertical Flow: a column of widgets was broken into several adjacent columns, or

adjacent columns were joined.
5. Pivot: a horizontal linear layout was transformed into a vertical one, or vice versa.
6. Scrolling: a scrollable container was inserted to deal with overflowing content.
7. Drawer: widgets were moved to a hidden “drawer” container to make room.
8. Inconsistent: clear misalignment of widgets or unnecessary changes in widget order.

Figure 4 shows the distribution of categories for layout alternatives. Note that each
alternative can be in multiple categories, e.g., a linear layout may have been pivoted as
well as split into multiple columns. As the vertical space is reduced in landscape, the
most common adaptation is unsurprisingly vertical flow. Scrolling is very frequent; it
offers a simple – if not always user friendly – solution to content overflow. Overall, the
results indicate that transformations of linear layouts, such as flow across columns and
rows, as well as pivoting are frequently used for creating a landscape alternative.



4 Automatic Generation of Layouts

Building on the findings and identified transformation patterns from the previous sec-
tion, we developed a tool that generates layout alternatives for a given layout. This is
a challenging problem since the solution space grows exponentially with the number
of changes applied to the initial layout. Moreover, defining an objective function that
can identify “good” layout alternatives is demanding: the “goodness” of a layout is a
complex construct that incorporates aesthetic and semantic criteria, which are hard to
define (or even recognize) in a way that can be easily automated. As identified in the
previous section, landscape layout alternatives contain the most layout changes. For
this reason we first target layout transformations between portrait and landscape orien-
tation. To address the complexity of the solution space, we focus on the most common
transformations for landscape alternatives, i.e., flow and pivot (Figure 4).

We treat the generation of good landscape alternatives as a constrained discrete
optimization problem. We define a set of layout transformations and, starting with the
initial layout, search the solution space by applying transformations repeatedly. To limit
the search, we define and apply an objective function to prioritize transformations that
appear more promising. The objective function can only estimate the “goodness” of a
layout as perceived by a UI designer, therefore the layout with the best objective value
is not necessarily the best choice. We rank the generated layout alternatives by their
objective value and allow UI designers to quickly browse and edit the top-ranked ones.

4.1 Describing Layout Transformations with Tiling Algebra

To describe layout specifications and their transformations concisely at a high abstrac-
tion level, we use an algebraic description called a tiling algebra [44]. Every layout is
denoted by an algebraic term. Terms can be defined recursively as follows, based on
two associative tiling operators | and /:

1. Atoms: The smallest terms of the algebra are individual widgets (i.e., layouts con-
taining only a single widget). They are given capitalized names, e.g., Button or B.

2. Horizontal Tiling |: If a and b are terms representing layouts, then the term a|b
represents a horizontal layout in which layout a is arranged to the left of layout b.

3. Vertical Tiling /: If a and b are terms representing layouts, then the term a/b
represents a vertical layout in which layout a is arranged on top of layout b.

Then, a horizontal linear layout with three widgetsA,B and C is written asA|B|C.
Fragments: Terms in the tiling algebra can nest analogously to layouts, and we call

the nested sub-layouts in a term fragments. This is similar to binary space partitioning
layouts [45]. For example, l1 = (A|B)/(C|D) describes that a layout l2 = A|B is
above a layout l3 = C|D. l2 and l3 are fragments of l1.

Named Tabstops: To describe more complex layouts, such as table and grid lay-
outs, we introduce named tabstops, i.e., named grid lines between fragments. A named
tabstop can occur multiple times in a fragment which allows us to describe alignments
within a fragment. For example, the fragment of a simple 2 × 2 grid can be described
using a named tabstop i: (A|

i

B)/(C|
i

D). This means the tabstop i occurs in the first and

the second row of the grid.



Fig. 5. Examples for the transformation rules.

Levels: Terms can be described by abstract syntax trees (ASTs), where each inner
node is a tiling operator and the leaf nodes are widgets. We call the fragments that are
formed at a depth n of an AST, i.e., the fragments combined at the same nesting depth n,
the nth level of the term. For example, consider the layout l1 = (A|B)/(C|D|(E/F )):
the first level contains only l1 itself; the second one contains A|B and C|D|(E/F ); the
third level contains C, D and E|F ; and the fourth one contains E and F .

The tiling algebra is well suited to describe LinearLayouts, FrameLayouts, Table-
Layouts and many GridLayouts. Transforming RelativeLayouts automatically to a tiling
algebra is not always possible and non-trivial. Some complex, interleaved grid layouts
cannot be described using a single fragment and named tabstops. However, for the lay-
outs analyzed in our survey, we were able to describe all GridLayouts and manually
replace RelativeLayouts by layout classes that can be described using tiling algebra.

4.2 Transformation Rules

Based on the most common transformations identified in our survey of existing land-
scape alternatives, we define three basic transformation rules on fragments for the trans-
formation from portrait to landscape: pivot, vertical flow and inverse horizontal flow. We
define the inverse transformation rules for the transformation from landscape to portrait
layouts analogously. Figure 5 visualizes the transformation rules.

We use the right-arrow symbol → to denote transformations from one layout to
another. Note that the variables in the rules (e.g., a) represent fragments, i.e., they are
not necessarily widgets but can possibly be broken down further.

Transformation rules for portrait to landscape:
Pivot: The pivot transformation changes the orientation of a fragment, i.e., the |

operator becomes /, and vice versa. For example, I/C/L → I|C|L. The pivot trans-
formation generalizes to table layouts, e.g., (A|

i

B)/(C|
i

D)→ (A/
i

B)|(C /
i

D), i.e., the

grid is transposed.
Vertical Flow: The vertical flow transformation breaks a column, i.e., vertical Lin-

earLayout, into two adjacent ones:

a1/ . . . /an → (a1/ . . . /ak)|(ak+1/ . . . /an).

The vertical flow transformation takes multiple break positions into account. For exam-
ple, I/C/L can be transformed to (I|C)/L or alternatively to I|(C/L) .



Inverse Horizontal Flow: This transformation splits a column into multiple rows:

a1/ . . . /an → (a1 |
m
. . . |

n
ai)/ . . . /(ak |

m
. . . |

n
an).

For example, A/B/C/D/E → (A |
m
B)/(C |

m
D)/E. Similar to the vertical flow trans-

formation multiple possibilities how rows are merged are taken into account, e.g.,
A/B/C/D → (A |

m
B)/(C |

m
D) or (A|B|C)/D.

The transformation rules for landscape to portrait are:
Pivot: Same as for portrait to landscape.
Inverse Vertical Flow: The inverse vertical flow merges two columns:

(a1/ . . . /ak)|(ak+1/ . . . /an)→ a1/ . . . /an.

Horizontal Flow: The horizontal flow merges multiple rows into a column:

(a1| . . . |ai)/ . . . /(ak| . . . |an)→ a1/ . . . /an.

4.3 Grouping of Fragments

In order to transform a layout meaningfully, it is useful to group logically related wid-
gets together. Logically related widgets are sometimes already grouped in a layout spec-
ification, but this is not always the case. For example, consider a UI layout in which
three labels L are logically paired with editable text fields E: the correct grouping may
already be encoded in the layout specification with a separate nested layout for each of
the pairs, i.e., l1 = (L/E)/(L/E)/(L/E), but the layout may also simply be defined
in a single layout as l2 = L/E/L/E/L/E. l1 is easier to transform meaningfully,
as related widgets stay together when applying the previously defined transformations.
For example, a vertical flow transformation may split a pair of label and text field:
l2 → (L/E/L)|(E/L/E). However, a similar transformation on the groups of l2 would
leave the pairs intact: l1 → ((L/E)/(L/E))|(L/E).

Our grouping approach is inspired by Gestalt principles [46]: it forms groups ac-
cording to repeated patterns of fragments (principle of similarity) to make sure that
the fragments in each group are transformed together (principle of common fate). To
group the fragments in a linear layout, we 1) identify the longest repeated consecu-
tive pattern of fragments in the layout, and 2) group all occurrences of the pattern
into new fragments, i.e., linear sub-layouts. Step 1) is equivalent to the well-known
longest repeated substring problem, which can be solved in linear time. For example,
to group a layout l3 = a/L/L/E/L/E/L/L/E/L/E/b the algorithm 1) identifies
l4 = (L/L/E/L/E) as the longest repeating consecutive pattern, and 2) groups the
occurrences of the pattern so that l3 → a/l4/l4/b. The grouping process can be recur-
sively repeated, i.e., we can look for groups in the fragments a, l4 and b, which results
in l4 → L/l5/l5 with l5 = (L/E). Sometimes there are multiple ways how items
can be grouped in which case the grouping algorithm returns multiple solutions, e.g.,
L|E|L|E|L can be grouped as (L|E)|(L|E)|L or L|(E|L)|(E|L).

It is possible that the grouping produced by this approach is wrong, i.e., does not
match the logical relations in the UI. Therefore, this grouping is only considered as



a possible fragment when applying transformations. By itself, the grouping does not
change a layout. However, after grouping a fragment, transformations on that fragment
are more likely to respect the aforementioned Gestalt principles.

4.4 Objective Function

We define an objective function f(l) to estimate the quality of a layout specification l.
Smaller values of l indicate better layouts. The function is a weighted sum:

f(l) = wmin · tmin(l) + wpref · tpref (l) + wratio · tratio(l)
+wnTra · tnTra(l) + wsym · tsym(l) + wlevel · tlevel(l)

with t being quality terms that are calculated for a layout, and w being constant weights
which are chosen empirically. This sum can be extended to incorporate additional cri-
teria. In the following we briefly summarize the definitions of the quality terms and the
heuristics behind them. The first three quality terms correspond directly to commonly-
used penalty functions, e.g., in constraint-based UI layouts [8,47]. These terms take the
minimum and preferred widget and layout sizes into account. Here, the preferred size is
the natural size of a widget or a layout, i.e., the size a widget or a layout would obtain if
their are no other constraints, such as the window size, forcing it to a different size. The
other quality terms are motivated by research into UI aesthetics and usability [7,48,49].
We focused on terms that are well-motivated by previous work, but acknowledge that
more terms, e.g., to account for alignment, could be added to the objective function.

Minimum Size: “A layout that can be shrunk to a compact size is likely to have a
good structure [8, 47].”

tmin =
min2w +min2h

screen2w + screen2h

minw, minh, screenw and screenh are the width and height of the minimum and
the screen size. The divisor normalizes the value to the screen size. If the layout in its
minimum size does not fit on the screen, we assign tmin a very large value.

Preferred Size: “If the widgets of a layout have a size close to their preferred size,
the space is well used [8, 47].”

tpref =

∑
i((prefw,i − sizew,i)

2 + (prefh,i − sizeh,i)2)
screen2w + screen2h

prefi and sizei are the preferred and the actual size of each widget.
Aspect Ratio: “A good layout in its preferred size has an aspect ratio close to that

of the target screen [8, 47, 50].”

tratio = |ratiopref − ratioscreen|/ratioscreen

We constrain tratio ≤ 1 to limit the impact of this term.
Number of Transformations: “A smaller number of transformations is preferable

as this preserves the spatial consistency of the UI [7].” tnTra is the number of trans-
formations which was applied to derive the layout from the initial one. We constrain
tnTra ≤ 5 to limit the impact of this term.



Symmetry: “Layouts with a high symmetry are preferable [48, 49].” We chose a
simple, screen-independent definition of symmetry based on the AST of a layout frag-
ment: a fragment is symmetric if it consists of topologically equivalent parts. That is,
layouts are symmetric if all the sub-layouts they contain are structurally equivalent. and
simple widgets are symmetric by definition. This can be understood intuitively through
examples: (A/B)|(C/D)|(E/F ) is symmetric becauseA/B,C/D andE/F are struc-
turally equivalent (vertical tilings of two widgets). The fragment (A|B)/(C|D)/E is
not symmetric because E is a single widget and not a horizontal tiling of two widgets
as the other sub-fragments. Based on this notion,

tsym(l) = 1− s(l)

widgetCount(l)2 · nLevels(l)

with s defined recursively on a fragment l = a1/ . . . /an or l = a1| . . . |an as

s(l) =

{
nWidgets(l)2 · nLevels(l) , if l symmetric∑

i=1..n s(ai) , otherwise

s(l) measures the degree of symmetry in l: if l is symmetric, the value returned is higher
with the size of l, i.e., with its number of widgets nWidgets and levels nLevels. If l
itself is not symmetric, the same logic is applied to its sub-layouts, summing up the
value of each symmetric sub-layout found. The divisor ensures that 0 ≤ tsym(l) ≤ 1.

Transformation Level: “A transformation close to the root of the fragment hierar-
chy is better as this preserves the spatial consistency of larger sub-layouts [7].” tlevel is
the deepest level that has been changed by the transformations that derived the layout
from the initial one. For example, consider an initial layout l1 = (A/(B/C))/(D/E)
with three levels. If we transform l1 → l2 = (A/(B/C))|(D/E) (pivot of the first
/ on level 1) and then l2 → l3 = (A|(B/C))|(D/E) (pivot of / at level 2), then
tlevel(l3) = max(1, 2) = 2. We constrain tlevel ≤ 5 to limit the impact of this term.

4.5 Empirical Optimization of Parameters

The weights of the objective function are parameters of the layout generation approach.
They should be chosen so that the objective function correlates with the “goodness” of
a layout. Initially, we had no data about the “goodness” of landscape layout alternatives,
i.e., no ground truth. Thus, we had to optimize the weights based on our own subjective
ratings of “goodness”, facing the following two challenges:
1. Precision: It is hard for an individual to tell precisely how “good” a layout alterna-

tive should be rated.
2. Local Optimization: Adjusting the weights to create a more appropriate objective

value for a specific layout can reduce the objective value for other layouts.
We addressed the precision challenge as follows: while it is hard to get precise rat-

ings, it is usually possible for an experienced individual to recognize layout alternatives
that are clearly unsuitable (“bad” layouts) and layout alternatives that could be suitable
(“good” layouts). Using our automatic layout transformation approach, we generated
a variety of landscape alternatives for a number of portrait layouts and then selected a



set of “good” and “bad” layouts from them, based on subjective judgment. The weights
were chosen in a way that maximizes the discriminatory power of the objective function,
i.e., so that the “good” layouts had low and the “bad” layouts high objective values.

To address the challenge of local optimization, we used a form of linear regression
based on quadratic programming. For each possible pair of a “good” landscape layout
alternative lgood and a “bad” alternative lbad for a given portrait layout, a soft constraint
is added to a linear constraint system: f(lbad) − f(lgood) ≥ 1. This difference should
be at least 1 for every such pair, so the layouts can be discriminated. Note that we
do not add constraints for every possible pair of good and bad layout alternatives. We
only add constraints for every possible pair derived from the same layout, as the layout
generation approach compares only such alternatives with each other.

Overall, this yields a set of weights for the objective function. In the following table,
the man row gives the values for the initial manual process and the opt row gives the
results for the subsequent constraint optimization.

wmin wpref wratio wnTra wsym wlevel

man 0.2 10 0.4 0.04 1 0.2
opt 2.8 10 0.2 0.4 2.5 0.8

The values are scaled to wpref = 10. Note that the weights of different objective
function terms are not directly comparable as the terms are not normalized to each other.

4.6 Search Strategy

In order to find suitable landscape layouts, starting with the given layout, we search the
space of possible layouts by repeatedly applying the transformation rules. The solution
space grows exponentially with the number of transformation steps: at each step, the
number of transformations that can be applied is roughly linear to the layout size. The
pivot rule can be applied to any fragment in a layout; the vertical flow and inverse
horizontal flow rules can be applied to any vertical fragment, usually in more than one
way; and grouping can be applied recursively on fragments containing repetitions.

As a result, a brute force search is not practical in many cases. To search the solution
space more efficiently, we perform transformations on intermediate layouts with a good
objective value. That is, we generally try to optimize a layout already estimated to be
comparatively good before looking at worse layouts. Furthermore, in order to preserve
symmetry in a layout (one of the quality terms of the objective function), we use a
heuristic that favors a transformation to be consistently applied to a whole level of the
layout. That is, we first apply the same transformation to all fragments of a chosen level:
if the fragments on that level are similarly structured, i.e., if there is symmetry between
them, then applying the same transformation to each of them is likely to preserve that
symmetry. For example, applying the pivot transformation to the entire (symmetric)
second level of (A/B)|(A/B) yields a symmetric layout (A|B)|(A|B).

However, using this search strategy, we found that calculating a sufficient number
of good layout alternatives still takes up to several minutes. This is not acceptable for a
tool that supports the interactive design process of a developer. A performance analysis



Fig. 6. Screenshot of the implementation: a list of the layout alternatives with the best objec-
tive values (top-left), the original portrait layout (bottom-left), and the selected landscape layout
alternative (right).

revealed that most time was spent in the relatively complex calculation of the minimum
and actual layout size needed for the objective function evaluation. To solve this prob-
lem we split the objective function into a part that is quick to calculate and a second that
is slower: f = ffast+ fslow with ffast = wnTra · tnTra+wsym · tsym+wlevel · tlevel
and fslow = wmin · tmin+wpref · tpref +wratio · tratio. We found that there is a good
correlation between f and ffast, i.e., for the analyzed layouts we found that the six best
layouts chosen by f were among the 23 best layouts chosen by ffast. This allows us to
perform a coarse search using ffast followed by a detailed search on the found layouts
using the full objective function f . With this approach we can perform the search for
good layout alternatives in under a second on a i5-4300U CPU at 1.90GHz.

5 Implementation

We implemented the layout alternative generation approach as a plugin for the Android
Studio development environment, the official development environment for Android,
which has an integrated design editor for XML layout files7. With our plugin the user
can generate landscape and portrait layout alternatives from a layout XML file. As
shown in Figure 6, the user can quickly browse the top-ranked layout alternatives and
edit a chosen alternative if desired. Internally, the plugin transforms the input into a

7 The source code is available on: gitlab.com/czeidler/layoutalternatives

gitlab.com/czeidler/layoutalternatives


constraint-based layout [8, 47] in order to calculate the size properties required for the
objective function.

6 Limitations

In the following we discuss limitations of our approach. In our analysis of existing
layouts (Section 3) we focused on Android and it is not clear if our results can be
generalized to other platforms, e.g., iOS. However, the main Android layout classes are
similar to those on other mobile platforms, and mobile design patterns are comparable
across platforms [5]. With a fairly large number of analyzed layouts we believe we
captured a representative picture of existing transformation patterns and that our results
are transferable to different platforms.

Currently, our prototype does not handle dynamic layouts, e.g., layouts that change
on user interaction. While it is possible that our prototype could handle multiple inter-
mediate steps of a dynamic layout, such a feature is currently difficult to implement
since dynamic behavior is not specified in the layout XML files.

To limit the solution space we focused on a small set of transformations (Section 4).
This makes it sometimes difficult or even impossible to generate some rarer layout
alternatives, e.g., multiple transformations may have to be applied to achieve a certain
result. To solve this problem more specialized transformations need to be introduced.

7 Evaluation

We evaluated how well our objective function is able to identify “good” layout alterna-
tives using a questionnaire study. Based on our analysis of existing layout alternatives
in real-world apps, we selected 15 portrait layouts with a landscape alternative that
changed significantly, covering different app genres and UI styles. Then we generated
a ranking of landscape layout alternatives with the best objective values for each of the
15 portrait layouts. Finally, the quality of the resulting landscape layouts was assessed.
In a survey we asked participants to rate the layout alternatives.

7.1 Pilot Validation

Before conducting the questionnaire study, we tried to validate our approach through
the following hypothesis:
H1 Layout alternatives comparable to the original landscape layouts from the app de-

veloper are ranked highly by the objective function.
To answer H1 we searched among the generated layout alternatives for layouts that

are comparable to the original landscape layouts. We judged a layout alternative as com-
parable if it follows the general layout topology of the original, i.e., if the correct layout
transformations had been applied. Here, minor details that our transformations cannot
achieve, e.g., font size changes or widget alignment, were ignored. For all 15 layouts
we were able to identify layout alternatives that were comparable to the original land-
scape layout. Figure 7 shows that most of these layout alternatives were ranked among
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Fig. 7. Automatic ranking of the layout alternatives which are comparable to the original land-
scape and portrait layouts created by the app developer. Our objective function ranks the original
layout alternatives highly.

the top three candidates. That is, they were among the top three generated layouts ac-
cording to their objective values, and therefore near the top of the list of alternatives in
our prototype. This supports H1, i.e., that the prototype generates the expected layout
and that the layout is ranked highly by the objective function.

For further validation we performed the inverse test, i.e., generated portrait layout
alternatives from the generated landscape alternatives. We were able to transform all
landscape layouts back to their original portrait ones. Furthermore, the layout alternative
matching the original portrait layout was also ranked highly (Figure 7). Interestingly, the
portrait alternative matching the original portrait layout were generally ranked higher
than the landscape alternative matching the original landscape layout. An explanation
for this is that the transformation rules for landscape to portrait are simpler than the
inverse rules. For example, while there are generally multiple ways to break a column
into two columns using the vertical flow transformation, there is only one way to merge
two columns.

7.2 Methodology

In our questionnaire study we aimed to verify the following hypotheses:
H2 The layout alternatives that are ranked highly contain acceptable layouts.
H3 Such layouts are useful as a starting point for designing landscape alternatives.

We used a web questionnaire to evaluate the six best layout alternatives, i.e., those
with the smallest objective values, generated for each of the 15 portrait layouts. Note
that the six best layout alternatives always contained the original landscape alternative
(see Figure 7). After questions about demographics and previous experience with UI
design, the 15 portrait layouts and their generated landscape alternatives were shown
in randomized order. For each portrait layout, a participant was first asked to rate the
portrait layout itself and then each of the landscape layout alternatives in randomized
order. To facilitate comparisons, we showed each layout alternative next to the original
portrait layout. For each portrait layout and each layout alternative we asked the fol-



lowing 5-point Likert-scale questions (which are loosely based on [51]), ranging from
strongly disagree to strongly agree:
Q1 The portrait/landscape layout appears well structured.
Q2 The portrait/landscape layout appears easy to use.
Q3 There are problems with this portrait/landscape layout.
After each of the 15 layouts, i.e., the portrait layout and its six landscape alternatives,
we asked the following questions, again using the 5-point Likert scale:
Q4 Some of the proposed layout alternatives were as I expected them to be.
Q5 The proposed layout alternatives were missing one or more layouts that I would

have expected.
Q6 The proposed layout alternatives contained good layouts that were unexpected.
Q7 The proposed layout alternatives gave me a good overview of how the layout can

be transformed to landscape.
Q8 The proposed layout alternatives contained a good starting point for the design of

a landscape layout alternative.
At the end of the questionnaire the participants were asked to answer the following
5-point Likert-scale questions:
Q9 As a layout designer I would like to use a tool that proposes layout alternatives for

different screen conditions, e.g., landscape alternative for a given portrait layout.
Q10 I do not think a tool that proposes layout alternatives would be useful for layout

designers.
Finally, we gave participants the option to leave free-text comments.

7.3 Results and Discussion

21 participants (9 female, 12 male, average age 31) responded to our ad and filled the
questionnaire. According to the responses, 13 had UI design experience, seven were
familiar with UI layout design tools, and eight had designed layout alternatives for
different screen conditions. The participants were a mix of professionals working in IT,
designers, and computer science students. In total, 15× 7× 21 = 2205 quality ratings
for 15× 7 = 105 layouts were submitted (15 apps with (6 + 1) layouts each).

To validate H2 we consider the ratings of the best generated layout alternatives in
comparison to that of the original portrait layout. In Figure 8 we can see that layout
alternatives ranked higher by the objective function generally also got better ratings.
The first and second best alternatives received a positive rating by more than half of the
participants. The third alternative received a borderline result. The fact that two layouts
received a positive rating by the majority can be interpreted as a form of resilience of
the tool output; we can expect more than one proposed layout to be acceptable by many.
Overall, these results are a good support for hypothesis H2.

To validate H3 we looked in particular at the answers to the summary questions
about the layout alternatives for each of the portrait layouts (Figure 9). Q8 addresses
H3 most directly and was answered strongly in the affirmative, supporting acceptance
of H3. Q7 addresses more the added value of the whole set of layout alternatives and
the positive result strengthens H3 further. For Q5, agreement signals potential short-
comings of the tool, but less than half the responses agree, so this does not seem to be
a limiting factor. For Q6, a majority of positive answers is not necessarily expected,
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Fig. 8. Answers to Q1, Q2, Q3 for the original portrait and the three best automatically ranked
alternatives. For 15 layouts, 21 participants gave 21 · 15 = 315 answers for the original layout
and its alternatives.

and the positive responses indicate benefits for at least some of the users. If a sizable
fraction of users finds unexpected layouts of reasonable quality, this would mean that
the tool can provide a useful service designing new layouts through stimulating creativ-
ity. In that sense, Q6 adds an important additional dimension to the evaluation of H3.
Q4 complements Q6 to some degree and addresses whether the tool is able to obtain
reasonable layouts automatically. The answers show that the tool appears predictable to
the users in that it delivers at least some expected layouts. We can therefore accept H3
in two ways: first, the tool eases the UI design work as seen in the answers to Q4 and
Q8, and second, the tool might also provide new ideas, as indicated in the answers to
Q6. Figure 10 shows that there was a strong agreement among the participants that a
tool that proposes layout alternatives would generally be useful. This was also backed
by comments from the participants. For example: “A tool that automatically displays
alternatives for layout designs is extremely useful.” or “Some of the layouts were really
good, especially ones that are aligned symmetrically.”

Study Limitations One threat to validity of the questionnaire results is acquiescence
bias, which could lead to alternatives being rated overly positive. We addressed this
threat by asking for three quality measures (Q1-Q3), which allowed participants to ex-
press a differentiated judgment. Furthermore, agreement to Q3 signals a negative judg-
ment. The fact that higher ranked alternatives got better ratings even though the order
in the survey was randomized (Figure 8) speaks against a strong acquiescence bias.
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Similarly, a variety of questions (Q4-Q8) was used to investigate H3 and to obtain a
differentiated understanding of possible benefits.

Another threat to validity is a possible selection bias in the layouts chosen for the
user study. The population of layouts is necessarily a very heterogeneous space, and
we tried to mitigate such a bias by basing our selection of layouts on the layout survey
described earlier, which looked at a larger set of apps and layouts.

A minor issue is that for technical reasons, some custom widgets in layouts were
not rendered correctly, i.e., only as gray boxes containing the widget name. We told
the participants to expect this and judge the layouts imagining that the gray boxes were
appropriate widgets. Still, this might have had a slight negative effect on ratings.

8 Conclusion

In this paper we investigated how layout alternatives for alternative screen orientations
can be generated automatically. To identify suitable layout transformation patterns we
analyzed layouts from 815 existing Android apps. Based on this analysis, we designed
a set of rules to transform layouts and presented a new way to computationally estimate
the quality of a transformed layout. Using this quality measure as objective function,
we automatically generated landscape and portrait layout alternatives for a given layout.
Finally, we validated the utility of our implementation and whether the objective func-
tion is able to identify “good” layouts in a questionnaire study. We found that layout
alternatives ranked highly by the objective function were rated well by the participants.
Generated layout alternatives appeared to be well structured and easy to use. Moreover,
our method generated good layouts that were not anticipated by the participants, which
means our prototype can actively help developers to design new GUIs.

In future work, we plan to identify other transformation rules, e.g., rules which ap-
ply visual appearance changes or change the layout more drastically. Yet, to improve the
accuracy of the corresponding objective function, we need to simultaneously investigate
new quality terms, such as a term that encapsulates additional Gestalt principles. Also,
we plan to improve the quality of the layout alternatives by learning from the alternative
choices designers made for their layouts while using our system. Finally, transforma-
tions between different screen sizes, e.g., tablet to phone, should be supported.
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